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ABSTRACT. Immunotherapy has demonstrated limited efficacy in immunologically “cold” breast cancers char-
acterized by absent T-cell infiltration and inadequate interferon signaling. The purpose of this work is to propose
and articulate a mechanistic and therapeutic framework in which mitochondrial stress is deliberately harnessed
to convert immunologically “cold” breast tumors into “hot,” T cell-inflamed, immunotherapy-responsive lesions.
This review synthesizes emerging evidence positioning mitochondrial stress as a strategic lever to transform these
immune-excluded tumors into inflamed, therapy-responsive lesions. We examine how mitochondrial dysfunction
triggers cytosolic release of mitochondrial DNA (mtDNA), a potent damage-associated molecular pattern that acti-
vates the cGAS-STING pathway, initiating type I interferon responses and secretion of T-cell-recruiting chemokines
such as CCL5 and CXCL10. This axis functions as a “double-edged sword”—while acute activation converts “cold”
tumors into “hot” immune-responsive states, chronic engagement drives immunosuppressive cytokine networks and
therapeutic resistance, with outcomes varying across breast cancer subtypes. We explore six combination therapeutic
strategies: mitochondrial poisons, radiotherapy/chemotherapy, PARP/ATR inhibitors, metabolic reprogramming
agents, mitochondrial quality control modulators, and localized mitochondrial stress induction, each paired with
immune checkpoint blockade. The review emphasizes “controlled ignition” as a paradigm whereby precisely dosed
mitochondrial stress amplifies tumor antigenicity and favorable cytokine landscapes while avoiding chronic immu-
nosuppression. Cytokine networks emerge as both integrators and therapeutic targets of mitochondrial-immune
crosstalk. Future advances require mapping subtype-specific thresholds, developing tumor-restricted delivery sys-
tems, and implementing biomarker-guided trials to safely harness mitochondrial stress, potentially redefining these
organelles as programmable immunological adjuvants in breast cancer therapy.
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reast cancer remains a leading cause of mortal-

B ity worldwide [1], with triple-negative breast

cancer (TNBC) being particularly aggressive

due to its lack of hormone receptors [2]. While immu-

notherapy has revolutionized treatment for some, base-

line response rates in breast cancer remain low because

many tumors are immunologically “cold”, characterized

therapeutic ceiling has prompted a shift toward under-
standing and therapeutically exploiting tumor-intrinsic
and microenvironmental mechanisms that govern
immune exclusion, among which mitochondrial signa-
ling has emerged as a central and druggable node [7].

Across current trials, only a minority of breast cancer

by T-cell exclusion and mitochondrial dysfunction
[3, 4]. Priming strategies are essential to overcome these
resistance mechanisms and improve survival outcomes
across all molecular subtypes.

Immunologically “cold” breast tumors, particularly
hormone receptor—positive and many HER2-enriched
and triple-negative breast cancers (TNBC), show limited
benefit from current immune checkpoint inhibitors
because they lack robust T-cell infiltration, interferon
signaling, and effective antigen presentation [5, 6]. This

patients—most notably a subset of PD LIl-positive
TNBC—achieve durable responses to checkpoint
blockade [8-12], with luminal and many HER2 positive
tumors remaining largely non responsive [13-15]. TNBC
typically displays higher mutational burden, greater
chromosomal instability [2, 16, 17], and more frequent
baseline activation of the cGAS-STING axis, leading
to partially inflamed, ‘hot leaning’ immune phenotypes
[18, 19], whereas hormone receptor—positive luminal
tumors are often immune excluded with low TILs and



Igniting the Tumor: Targeting Mitochondrial Stress to Prime Breast Cancer for Immunotherapy 25

cytokine milieus dominated by TGF-f and IL-10[6, 13,
20, 21]. These subtype specific immune and cytokine
landscapes imply that strategies harnessing mitochon-
drial stress to prime immunotherapy must be tailored—
using relatively modest perturbation in TNBC to avoid
chronic immunosuppression, and more intensive or
repeated priming regimens, often combined with
cytokine/myeloid targeted agents, in luminal and HER2
enriched disease.

Traditionally viewed as bioenergetic engines, mitochon-
dria in breast cancer cells and infiltrating immune cells
are now recognized as hubs integrating metabolism,
redox state, cell death pathways, and innate immune
sensing to shape the tumor immune microenvironment
[22-25]. Recent work shows that mitochondrial dysfunc-
tion, altered dynamics, and metabolic rewiring in breast
tumors influence antigen presentation, oxidative stress,
and susceptibility to immunogenic cell death [7], while
mitochondrial fitness in T cells, NK cells, and myeloid
cells critically determines their effector function within
the hostile breast tumor niche [26].

A key conceptual advance is that mitochondrial stress
can convert organelles into platforms for innate immune
activation through release of mitochondrial DNA
(mtDNA) and other damage-associated molecular
patterns (DAMPSs) into the cytosol [27-29]. These mito-
chondrial signals engage pathways such as cGAS-
STING to induce type I interferons and chemokines that
orchestrate dendritic cell activation and T-cell recruit-
ment, suggesting that controlled mitochondrial pertur-
bation in breast cancer may help drive “cold-to-hot”
transition required for effective immunotherapy.
Within this framework, mitochondria move from
passive metabolic supporters to master regulators of
breast tumor immunity whose stress responses can be
pharmacologically tuned. The following sections will
dissect how mtDNA-cGAS-STING signaling, its
downstream cytokine and chemokine networks, and the
context-dependent consequences of mitochondrial
stress can be leveraged—alone and in combination with
checkpoint blockade—to “ignite” non-immunogenic
breast cancers and improve the depth and durability of
immunotherapy responses (figure 1).

MITOCHONDRIA AS MASTER
REGULATORS OF THE TUMOR IMMUNE
MICROENVIRONMENT

Mitochondria shape the tumor immune microenviron-
ment (TIME) through their control of cancer cell
metabolism, redox balance, organelle quality, and
innate immune signaling, thereby influencing how
visible tumor cells are to the immune system and how
effective antitumor effector cells can be [26]. In breast
cancer, dysregulated mitochondrial dynamics, biogen-
esis, and oxidative phosphorylation (OXPHOS) not
only fuel proliferation and metastasis but also remodel
antigen presentation, cytokine production, and suscep-
tibility to T-cell-mediated killing, while mitochondrial
fitness in tumor-infiltrating lymphocytes and
macrophages critically determines whether the TIME
is “hot” or “cold” [26].

Mitochondrial dynamics and cancer cell
immunogenicity

In breast cancer, metastatic and stem-like populations
typically display enhanced mitochondrial fission and
fragmented networks driven by factors such as DRP1
and related fission mediators, whereas more fused mito-
chondrial architectures are associated with lower meta-
static potential and reduced aggressiveness [30].
Imbalanced dynamics have dual effects on immuno-
genicity: excessive fission promotes mitochondrial reac-
tive oxygen species (mtROS), mtDNA damage, and
neoantigen generation, yet also downregulates MHC-1
antigen presentation and favors secretion of immuno-
suppressive mediators, enabling immune escape despite
increased mutational load [31].

Biogenesis, mitophagy, and danger signaling

Coordinated mitochondrial biogenesis and mitophagy
maintain organelle quality, whereas defective turnover
permits accumulation of damaged mitochondria that
leak mtROS and mtDNA, acting as DAMPs [32]. These
signals can engage pathways such as cGAS-STING and
NF-kB to induce type I interferons and inflammatory
cytokines that, in principle, enhance dendritic cell acti-
vation and T-cell priming, but chronic, unrestrained
stress skews toward immunosuppressive transcriptional
programs and checkpoint upregulation, shaping a
tolerant TIME [33].

OXPHOS, ROS, and antigen presentation

Breast cancer cells flexibly toggle between glycolysis and
OXPHOS; high OXPHOS states provide ATP and
anabolic intermediates but also generate mtROS that
influence both cell death and immune visibility [34].
Moderate mitochondrial stress and ROS can promote
immunogenic cell death with exposure of calreticulin,
ATP release, and cGAS-STING-dependent interferon
signaling, whereas excessive ROS and fragmented mito-
chondria impair MHC-I expression, reduce antigen
presentation, and enhance secretion of factors such as
IL-10 that dampen cytotoxic T-cell function [26].

Mitochondrial control of T cells in the TIME

Tumor-infiltrating CD8" T cells in solid tumors
frequently exhibit mitochondrial defects, including
reduced mitochondrial mass, impaired OXPHOS, and
dysfunctional dynamics, which collectively drive
exhaustion and limit effector cytokine production [35,
36]. Interventions that restore mitochondrial fitness—
such as improving mitochondrial content and respira-
tory capacity through metabolic conditioning or
exercise—enhance T-cell persistence, granzyme produc-
tion, and tumor control, highlighting mitochondria as
central regulators of T-cell functionality in “hot” versus
“cold” environments [37].

Macrophages, ROS, and polarization

Tumor-associated macrophages (TAMs) integrate envi-
ronmental cues via mitochondrial metabolism, with
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Figure 1.

The mtDNA-cGAS-STING pathway bridges cold and hot tumor phenotypes. Left: immune excluded cold tumor with poor T cell
infiltration and immunosuppressive microenvironment. Center: mitochondrial damage, mtDNA release, cGAS activation and
¢GAMP mediated STING signaling. Right: type I interferon and chemokine induction (e.g., CXCL10, CCL5) promoting CD8 T cells,
NK cells and dendritic cell recruitment and hot tumor phenotype. mtDNA: mitochondrial DNA. cGAS: cyclic GMP-AMP synthase.
cGAMP: 2’3’-cyclic GMP-AMP. STING: stimulator of interferon genes. IFN: interferon (typically type I interferons, IFN-o/p, in this
context). CCLS: C—C motif chemokine ligand 5. CXCL10: C—X-C motif chemokine ligand 10. CD8 T cells: CD8-positive T
lymphocytes. NK cells: natural killer cells.

OXPHOS- and fatty acid oxidation—driven programs
favoring M2-like, immunosuppressive phenotypes and
more glycolytic, ROS-producing states supporting
pro-inflammatory, M1-like functions [36]. Mitochondrial
reprogramming in TAMs, influenced by tumor-derived
metabolites and acidity, can thus either sustain immune
evasion or, when redirected, promote antigen presenta-
tion, cytokine production, and cross-priming of CD8+
T cells within the breast TIME [36, 38].

Bidirectional mitochondrial crosstalk in the
tumor microenvironment

Beyond cell-autonomous effects, tumor and immune
cell mitochondria engage in bidirectional metabolic
crosstalk. Tumor-derived lactate, kynurenine, and
adenosine suppress T-cell OXPHOS and promote
exhaustion [39, 40], while robust mitochondrial fitness
in infiltrating T cells and NK cells sustains granzyme
and IFN-y production that, in turn, induces tumor
mitochondrial stress, mtDNA release, and cGAS—
STING activation [41, 42]—creating a reinforcing loop.

Integrating cancer and immune cell mitochondria

Collectively, mitochondrial dynamics, biogenesis, and
OXPHOS in breast cancer cells dictate the balance
between immunogenic stress signals and immune
evasion, while mitochondrial health in T cells and
macrophages governs effector capacity and polariza-
tion. This multi-compartment mitochondrial network
positions mitochondria as master regulators of the
TIME and provides a mechanistic basis for strategies

that deliberately impose “controlled” mitochondrial
stress to enhance antigen presentation, type I interferon
and chemokine production, and ultimately the efficacy
of breast cancer immunotherapy.

THE MTDNA-CGAS-STING AXIS: A PIVOTAL
INNATE IMMUNE SENSING PATHWAY IN
CANCER

The mitochondrial DNA (mtDNA)-cGAS-STING
axis has emerged as a central innate immune sensing
pathway that links organelle stress to inflammatory and
antitumor signaling in cancer [43, 44]. In breast tumors
and other solid malignancies, diverse mitochondrial
insults can drive leakage of mtDNA into the cytosol,
where it is recognized as a foreign-like nucleic acid,
thereby triggering cGAS-STING-dependent type |
interferon and chemokine responses that shape the
tumor immune microenvironment [44]. Figure 2 illus-
trates mechanism of cytosolic DNA sensing via cGAS-
STING triggers a coordinated innate immune response.

Mitochondrial stress and mtDNA destabilization

Oncogenic signaling, hypoxia, metabolic overload, and
therapy-induced damage all impose chronic stress on
tumor cell mitochondria, leading to elevated ROS,
impaired replication, and accumulation of oxidatively
damaged mtDNA [32]. When mitophagy and mitochon-
drial quality control are compromised, these damaged
genomes persist, increasing the likelihood that nucleoids
will be mispackaged, clustered, or exposed at sites of
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Figure 2.

Downstream signaling of cGAS—-STING. Cytosolic DNA activates cGAS to produce cGAMP, which binds ER-resident STING and
drives its trafficking to Golgi compartments. STING then engages TBK1-IRF3 to induce type I interferons and IKK-NF-xB to

induce pro-inflammatory cytokines such as IL-6 and TNF-a. cGAS:

cyclic GMP-AMP synthase. cGAMP: 2°3’-cyclic GMP-AMP.

STING: stimulator of interferon genes. ER: endoplasmic reticulum. TBK1: TANK-binding kinase 1. IRF3: interferon regulatory
factor 3. IKK: IxB kinase. NF-kB: nuclear factor-kB. IL-6: interleukin-6. TNF-a: tumor necrosis factor alpha. IFN: interferon (type I
interferons, IFN-a/p).

membrane instability that predispose them to escape
the organelle [45].

Routes of mtDNA release into the cytosol

Multiple, partially overlapping mechanisms mediate
mtDNA efflux from stressed mitochondria. BAX/BAK
macropores formed during mitochondrial outer
membrane permeabilization can allow inner membrane
“herniations” that carry nucleoids through the outer
membrane, releasing mtDNA into the cytosol even
under sublethal, minority mitochondrial outer
membrane permeabilization (MOMP) conditions [45].
In parallel, opening of the mitochondrial permeability
transition pore and voltage-dependent anion channel
(VDAC)-dependent permeabilization increase inner
membrane leakage, while impaired mitophagy and
mitochondrial-derived ~ vesicles can  misdirect
mtDNA-containing material to the cytosol rather than
to lysosomal degradation, sustaining low-level DNA
leakage without overt cell death [45, 46].

Cytosolic mtDNA as a DAMP sensed by cGAS

Once in the cytoplasm, mtDNA behaves as a potent
damage-associated molecular pattern because of its
bacterial ancestry, circular form, and relative CpG
enrichment, features that distinguish it from well-pack-
aged nuclear chromatin. The cytosolic DNA sensor
cyclic GMP-AMP synthase (cGAS) binds double-
stranded mtDNA in a largely sequence-independent
manner, and DNA binding promotes cGAS dimeriza-
tion and higher-order oligomerization, which in turn

catalyzes synthesis of the cyclic dinucleotide 2'3’-
cGAMP from ATP and GTP [45]. This enzymatic step
converts the presence of mtDNA into a diffusible
second messenger that can act cell-autonomously or
spread to neighboring cells and immune populations
via transport mechanisms such as gap junctions or
extracellular vesicles [45, 46].

STING engagement and downstream signaling

STING, an adaptor protein residing on the endoplasmic
reticulum, binds cGAMP and undergoes conformational
changes that drive its oligomerization and trafficking
from the ER to perinuclear compartments, including the
ER-Golgi intermediate compartment and Golgi [47]. In
these locations, STING recruits and activates TBK 1 and
IKK kinases, leading to phosphorylation and nuclear
translocation of IRF3, together with NF-kB activation,
thereby inducing a transcriptional program dominated
by type I interferons, interferon-stimulated genes, and
inflammatory chemokines such as CXCL10 and CCL5
that are critical for dendritic cell activation and effector
T-cell recruitment [27, 43, 48].

In cancer biology, the mtDNA-cGAS-STING pathway
functions as a molecular bridge between mitochondrial
integrity, cell death pathways, and adaptive immune
priming. Transient, therapy- or stress-induced mtDNA
release can promote immunogenic cell death, enhance
antigen presentation, and convert poorly infiltrated
“cold” tumors into inflamed lesions more amenable to
checkpoint blockade, whereas chronic or deregulated
activation may drive tolerogenic or immunosuppressive
feedback, contributing to immune evasion [43].
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Understanding how distinct forms and magnitudes of
mitochondrial stress control mtDNA leakage and
cGAS-STING activation is therefore pivotal for ration-
ally designing interventions that harness this axis to
ignite productive antitumor immunity in breast cancer.

A DOUBLE-EDGED SWORD: CONTEXT-
DEPENDENT OUTCOMES OF STING
ACTIVATION

Downstream of the c¢cGAS-STING axis (detailed in
Figure 2), the immunological outcome is dictated by the
temporal dynamics of signaling. Transient activation
successfully ‘ignites’ the tumor by triggering an acute type
I interferon wave that is crucial for dendritic cell cross-
priming. In breast cancer, this context dependence is
particularly evident across molecular subtypes, where
STING can either ignite productive antitumor immunity
or, when chronically engaged, foster immune evasion,
stromal remodeling, and therapeutic resistance [49].

Igniting antitumor immunity: from “cold” to “hot”

Acute or well-timed STING activation in the tumor
microenvironment triggers a robust type I interferon
program that enhances dendritic cell maturation, cross-
priming of CD8+ T cells, and natural killer (NK) cell
activation [50-52]. Downstream of IRF3 and NF-«xB,
STING stimulation induces chemokines such as
CXCL9, CXCLI10, and CCL5, which drive recruitment
and retention of effector T cells and NK cells, facili-
tating conversion of immune-desert or immune-ex-
cluded lesions into inflamed, T cell-infiltrated tumors
[53-57]. Preclinical models show that intratumoral or
systemic STING agonists can induce IFN-I-dependent
tumor regression, promote trafficking of antigen-bearing
myeloid cells to draining lymph nodes, and synergize
with checkpoint blockade to deepen and prolong
responses [58-60]. In breast cancer, transcriptomic and
immunologic analyses indicate that tumors with intact
c¢GAS-STING signaling and high STING-driven
chemokine signatures are more likely to display “hot”
immune phenotypes and enhanced sensitivity to immu-
notherapy, particularly in subsets of triple-negative
disease [61-63].

Fueling resistance and immunosuppression

In contrast, chronic or dysregulated STING activation
can skew cytokine output toward protumor inflamma-
tion, immunosuppression, and tissue remodeling [64].
Sustained NF-kB and inflammasome engagement
downstream of STING promotes production of 1L-6,
TNF-a, and TGF-f, which support myeloid-derived
suppressor cell and regulatory T-cell expansion, drive
fibrosis and aberrant angiogenesis, and ultimately
dampen effective cytotoxic T-cell function [49, 65, 66].
Breast cancer studies highlight that STING pathway
status and output differ across luminal, HER2", and
TNBC subtypes, with prolonged or maladaptive acti-
vation linked to epithelial-mesenchymal transition,
resistance to HER2-targeted therapy, and upregulation
of checkpoints such as PD-L1 [67, 68]. Moreover,
tumor-intrinsic mechanisms (for example, MY C-driven
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repression or selective loss of cGAS/STING compo-
nents) can either silence beneficial signaling or bias it
toward tolerogenic cytokine profiles, underscoring that
therapeutic strategies must carefully calibrate the inten-
sity and duration of STING engagement to avoid
tipping from immune activation into immune escape
[29, 43, 69].

Despite the therapeutic potential of the STING pathway,
its systemic activation poses significant safety risks,
including cytokine release syndrome and T-cell apoptosis
driven by excessive type I interferons. Clinical data from
first-generation STING agonists revealed that uncon-
strained signaling can lead to dose-limiting systemic
inflammation and autoimmunity [70]. To mitigate these
‘dark side’ effects, current strategies employ tumor-re-
stricted delivery systems, such as mitochondria-targeted
nanocarriers or pH-responsive polymers, which localize
the “ignition’ signal to the tumor microenvironment. This
spatial control is critical to uncouple the beneficial anti-
tumor immunity from detrimental systemic toxicity,
ensuring that mitochondrial stress serves as a precise
adjuvant rather than a systemic toxin [70, 71].
Although preclinical models clearly distinguish acute,
beneficial mitochondrial stress from chronic, suppres-
sive stress, this threshold is not yet quantitatively
defined in clinical settings. In practice, it will likely need
to be operationalized using dynamic pharmacodynamic
readouts rather than fixed dose or time cut-offs. Short-
lived surges in type I IFNs and T-cell-recruiting
chemokines such as CXCL9, CXCL10, and CCLS5 [49,
72-76], without sustained elevation of I1L6, ILS, IL10,
or TGFp [77, 78], may represent a desirable ‘ignition’
pattern, whereas persistent pro-tumor inflammatory
and immunosuppressive cytokine signatures would
signal a shift into detrimental chronic stress. Early-
phase trials of mitochondrial stress—based regimens
should therefore incorporate serial cytokine profiling
and interferon-stimulated gene signatures, together with
careful toxicity monitoring, to empirically define safe
and effective activation windows.

CYTOKINE NETWORKS: FUNCTIONAL
READOUTS AND INTEGRATORS OF
MITOCHONDRIAL-IMMUNE CROSSTALK

Cytokine networks sit at the interface of mitochondrial
stress, cCGAS-STING activation, and the emergent
immune phenotype of breast tumors, acting both as
readouts of underlying organelle-immune crosstalk and
as active sculptors of the tumor microenvironment [79].
In this context, distinct cytokine signatures—ranging
from interferon- and chemokine-dominated pro-inflam-
matory profiles to IL-6/IL-10/TGF-$-rich immunosup-
pressive states—provide mechanistic insight into
mitochondrial and STING pathway activity (figure 3),
while serving as prognostic biomarkers and therapeutic
targets in breast cancer.

Cytokines as readouts of mitochondrial-STING
signaling

Acute mitochondrial stress with controlled mtDNA
release typically engages cGAS-STING and drives a type
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Cytokine networks integrating mitochondrial stress and cGAS-STING activation. Mitochondrial ROS and mtDNA release trigger
c¢GAS-STING signaling in tumor and immune cells, shaping production of interferons, chemokines (e.g., CXCL10) and immunosup-
pressive cytokines (e.g., IL 10, TGF f). The balance of these cytokines determines whether the breast tumor microenvironment is pro

inflammatory or immunosuppressive. ROS: reactive oxygen species. mtDNA: mitochondrial DNA. cGAS: cyclic GMP-AMP
synthase. STING: stimulator of interferon genes. IFN: interferon (mainly type I interferons, IFN o/f). CXCL10: C X C motif

chemokine ligand 10. CCLS5: C C motif chemokine ligand 5. IL 10: interleukin 10. TGF B: transforming growth factor beta. IL 6:

interleukin 6. IL 1f: interleukin 1 beta. TNF a: tumor necrosis factor alpha. TCR: T cell receptor. TBK1: TANK binding kinase 1.
TBK3: TANK binding kinase 3 (also known as IKK ).

Iinterferon program characterized by IFN-a/p, interfer-
on-stimulated genes, and T-cell-recruiting chemokines
such as CXCL9, CXCL10, and CCL5[43, 44, 80]. These
cytokines correlate with enhanced dendritic cell activa-
tion, improved antigen presentation, and higher densities
of cytotoxic and memory T cells in the tumor, reflecting
a “hot,” inflamed microenvironment that is more permis-
sive to checkpoint blockade. In contrast, chronic or
dysregulated STING and mitochondrial stress can shift
the cytokine output toward I1L-6, IL-1p, TNF-«, 1L-8,
IL-10, and TGF-p, reflecting an exhausted or rewired
STING axis and establishing a milieu that supports
myeloid-derived suppressor cells, regulatory T cells, and
tumor-promoting inflammation [81].

Pro-inflammatory versus immunosuppressive
cytokine profiles in breast cancer

Recent systematic and multiplex analyses in breast
cancer show that elevated pro-tumor inflammatory and
immunosuppressive cytokines—especially IL-6, TNF-a,
IL-1B, IL-8, IL-10, and TGF-p—associate with higher
stage, increased metastasis, and poorer survival, under-
scoring their value as negative prognostic biomarkers
[20, 79, 82]. Conversely, signatures enriched for IL-12,
IFN-y, and interferon-induced chemokines correlate

with more effective antitumor immunity, higher
tumor-infiltrating lymphocyte scores, and better
outcomes or improved response to immunotherapy in
selected breast cancer cohorts [83]. Spatial and tran-
scriptomic studies further reveal that many breast
tumors display “mixed” cytokine niches, where immu-
nostimulatory and suppressive factors coexist, high-
lighting that the net functional state of the cytokine
network—rather than any single mediator—captures
the integrated output of mitochondrial, STING, and
cellular stress signaling [84, 85].

Cytokine signatures as biomarkers and
therapeutic targets

Because cytokine patterns reflect upstream mitochon-
drial integrity and cGAS-STING activity, composite
cytokine signatures are increasingly explored as
biomarkers to stratify patients, forecast immunotherapy
benefit, and monitor pharmacodynamic responses to
mitochondrial- or STING-targeted agents [20, 69].
Clinical and translational studies support the develop-
ment of cytokine-based indices (for example, 1L-6/
IFN-y ratios or multi-cytokine panels) and systemic
inflammation scores as predictors of prognosis and
treatment response in breast cancer, including
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inflammatory and immune-enriched subtypes [20, 86].
At the same time, cytokines themselves are being
targeted or harnessed therapeutically: blockade of IL-6,
IL-1B, or TGF-B aims to dismantle mitochondrial
stress—driven immunosuppressive circuits, while
agonistic strategies or engineered delivery of IL-12,
IFN-o/p, or IFN-y seek to amplify STING-induced
pro-inflammatory signaling and consolidate cold-to-hot
conversion [87-89].

While STING activation is essential for priming anti-
tumor immunity, its consequences are highly subtype-de-
pendent. In Triple-Negative Breast Cancer (TNBC),
DNA damage-induced STING signaling predominantly
drives a type I interferon response (IFN-o/f) and the
secretion of CXCL10 and CCLS5, which correlates with
prolonged progression-free survival by recruiting CD8+
cytotoxic T lymphocytes [29]. Conversely, in hormone
receptor-positive (Luminal A/B) subtypes, chronic
low-level STING activation is frequently linked to an
immunosuppressive cytokine milieu rich in IL-6 and
TGF-p, which promotes macrophage polarization
toward an M2-like phenotype and facilitates therapeutic
resistance [66]. Furthermore, recent profiling of “hot”
versus “cold” tumors confirms that a sustained pro-in-
flammatory cytokine signature (IFN-y, IL-12, CXCL9]
is the primary determinant of cytolytic activity, whereas
“cold” tumors exhibit elevated TGF-p and 1L-10 levels
that blunt mitochondrial stress signals [71]. Table 1
summarizes differential cytokine signatures and mito-
chondrial stress responses across breast cancer subtypes.
Taken together, cytokine networks can be viewed as
dynamic integrators that encode the balance between
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beneficial and detrimental consequences of mitochon-
drial stress and cGAS-STING signaling in breast
tumors. By reading out these cytokine states—and selec-
tively modulating them with antibodies, receptor traps,
or cytokine/chemokine agonists—future therapies may
both report on and recalibrate mitochondrial-immune
crosstalk, enabling rational combination regimens that
align controlled mitochondrial stress, STING activa-
tion, and a favorable cytokine landscape to support
durable antitumor immunity.

THERAPEUTIC STRATEGIES TO
EXPLOIT MITOCHONDRIAL STRESS FOR
IMMUNOTHERAPY

Mitochondrial stress represents a tractable lever to
convert breast tumors from immune-deserted to
inflamed states, but it must be engaged in a controlled,
context-sensitive manner to avoid tipping into chronic
immunosuppression. Figure 4 demonstrates mitochon-
dria-centric strategies of combination therapy.
Targeting mitochondrial function, mtDNA-cGAS-
STING signaling, and associated cytokine networks has
therefore become a focus of translational efforts to
improve immunotherapy responses in solid tumors,
including breast cancer [43, 69, 90].

Inducing controlled mitochondrial stress to
trigger immunity

Several classes of agents can induce mitochondrial stress
in a way that favors acute, immunogenic signaling
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Figure 4.

Mitochondria targeting combination strategies to enhance immunotherapy. Center: mitochondrial stress in cancer cells increases ROS,
mtDNA release and cGAS-STING-dependent interferon and chemokine production. Surrounding panels: examples of strategies
including low dose mitochondrial poisons, radiotherapy/chemotherapy, PARP/ATR inhibitors, metabolic reprogramming agents,

mitophagy modulators and local mitochondrial stress combined with systemic checkpoint blockade. mtDNA: mitochondrial DNA.

ROS: reactive oxygen species. cGAS: cyclic GMP-AMP synthase. STING: stimulator of interferon genes. IFN: interferon (here
primarily type I interferons, IFN-o/f). CXCL9: C-X-C motif chemokine ligand 9. CXCL10: C-X-C motif chemokine ligand 10.
CCLS: C-C motif chemokine ligand 5. IL-6: interleukin-6. IL-8: interleukin-8. IL-10: interleukin-10. IL-12: interleukin-12. TNF-a:
tumor necrosis factor alpha. TGF-p: transforming growth factor beta. OXPHOS: oxidative phosphorylation. FAO: fatty acid
oxidation. DDR: DNA damage response. DAMPs: damage-associated molecular patterns. ISG: interferon-stimulated gene. MDSC:
myeloid-derived suppressor cell. TAM: tumor-associated macrophage.
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Table 1.
Differential cytokine signatures and mitochondrial stress responses across breast cancer subtypes.
Mitochondrial Stress
Breast Cancer Baseline Inmune  Dominant Cytokine | STING Response Pro-Inflammatory Immunosuppressive
Subtype Phenotype Signature (Baseline)  Potential Output (Target) Risks (Avoid)
Luminal A/ “Cold”/ Cytokine milieu Intrinsic signaling (e.g.,  Therapeutic Chronic or
B (HR/HER?2) immune-ex- dominated by TGF-  ER-driven transcriptio-  mitochondrial stress uncalibrated stress
cluded with low B, IL-10, and nal programs) tends to aimed at inducing risks upregulating
TILs and CXCL12, produced  dampen cGAS-STING  type I IFNs 1L-6 and IL-1p,
prominent by cancer-asso- activation, resulting (IFN-a/p) and fostering fibrosis,
myeloid-stromal  ciated fibroblasts in low basal mitochon- CCLS5 may help stromal remode-
barriers that and M2-like drial-STING overcome the ling, and endo-
prevent effective macrophages, responsiveness and exclusion barrier and  crine-therapy
T-cell entry [91] reinforcing T-cell weak spontaneous type  initiate de novo resistance through
exclusion and I IFN signaling [66] CD8+ T-cell an inflammatory
immune paralysis recruitment into feedback loop [71].
[91] these tumors [66]
HER2-En- Intermediate / IL-6, TNF-a, and HER?2 signaling and Properly timed Excess or
riched (HER2") mixed pheno- CCL2 are downstream PI3K/ mitochondrial stress prolonged
type, with some frequently elevated AKT can attenuate combined with activation
tumors and contribute to STING, but HER2 HER2-targeted favors TGF-f and
exhibiting “hot” HER2-targeted blockade or antibody— agents can boost VEGEF upregula-
features under therapy resistance drug conjugates can CXCL9, CXCLI10, tion, promoting
HER2-directed by expanding restore mtDNA- and IFN-y, thus angiogenesis,

therapy but
others remaining
immune-desert

cancer stem-like
populations and
sustaining chronic

cGAS-STING activity,
creating windows of
enhanced innate

enhancing ADCC
and cytotoxic T-cell
retention within the

epithelial-mesen-
chymal transition
(EMT), and escape

greater baseline
TILs, but many
cases remain
functionally
exhausted due to
strong check-
point and
myeloid
suppression [71]

genomic stress and
ongoing innate
immune sensing,
yet counterba-
lanced by PD-L1
and immunosup-
pressive myeloid
cells [63]

activation, although
this signaling can be
diverted toward
protumor inflammation
when NF-kB dominates
over IRF3 [29]

or myeloid-do- inflammation [93] immune sensing [66] tumor bed [92] from HER2-direc-
minant [92] ted therapy [71]
Triple-Nega- Often exhibits Baseline inflamma- High chromosomal Controlled
tive (TNBC) a partially “hot” tory milieu enriched  instability and cytosolic ~ mitochondrial stress
phenotype with for IFN-y, DNA burden or pharmacologic
higher mutatio- CXCL10, and IL-8,  confer high intrinsic STING agonism
nal burden and reflecting chronic cGAS-STING can amplify

IFN-o/p, IL-12,
CXCL9, CXCLI10,
and CCLS, thereby
reinvigorating
exhausted T cells
and strengthening
T-cell trafficking into
TNBC lesions [66,
94]

Abbreviations: HR, hormone receptor; HER2, human epidermal growth factor receptor 2; TNBC, triple-negative breast cancer; TIME, tu-
mor immune microenvironment; mtDNA, mitochondrial DNA; cGAS, cyclic GMP-AMP synthase; STING, stimulator of interferon genes;
OXPHOS, oxidative phosphorylation; ROS, reactive oxygen species; DAMPs, damage-associated molecular patterns; IFN, interferon; TILs,
tumor-infiltrating lymphocytes.

rather than catastrophic organelle failure or chronic
inflammation [95]. Low-dose mitochondrial poisons
(for example, complex I or III inhibitors, mild uncou-
plers) and selected radiotherapy or chemotherapy regi-
mens can enhance mtROS, promote mtDNA oxidation
and release, and stimulate cGAS-STING-dependent
type I interferon and chemokine production without
immediately triggering irreversible cell death in all
tumor cells [27, 28, 89]. However, because mitochondria
are essential for neurons, cardiomyocytes, and hemato-
poietic cells, systemic or prolonged inhibition of respira-
tory complexes or mitophagy carries substantial risks
of neurotoxicity, cardiotoxicity, and myelosuppression
[96-104]. In a ‘controlled ignition” framework, these
agents are therefore best deployed as short, sublethal
priming pulses, ideally using tumorrestricted delivery
systems or local administration [105-110], with phar-
macodynamic monitoring of both cytokine output and
organ toxicity to avoid sustained offtumor mitochon-
drial damage. Precision dosing and scheduling are
crucial to maintain “sublethal” stress that allows suffi-
cient antigen processing and cytokine elaboration,

rather than overwhelming necrosis that floods the
microenvironment with tolerogenic DAMPs and
suppressive cytokines [34, 88].

A second strategy exploits targeted modulation of mito-
chondrial quality-control pathways. Pharmacologic or
genetic interference with mitophagy and nucleoid main-
tenance (for example, via modulation of TFAM,
PINK 1/Parkin signaling, or mitochondrial proteases)
can increase the pool of damaged mitochondria and
facilitate mtDNA leakage into the cytosol, thereby
amplifying cGAS-STING activation and type I inter-
feron responses [32, 45, 46]. When carefully titrated,
such interventions enhance immunogenic signaling, but
excessive or prolonged blockade risks accumulation of
dysfunctional mitochondria, chronic NFxB-biased
output, and a shift toward IL6/IL10/TGFp-dominated
immunosuppressive states [43, 81, 111].

Third, mitochondria-targeted delivery systems and nano-
medicines are being developed to impose spatially
restricted stress. Conjugating chemotherapeutics, photo-
sensitizers, or redox-active molecules to mitochon-
dria-targeting moieties (such as triphenylphosphonium)
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or encapsulating STING-stimulating payloads in mito-
chondria-accumulating nanocarriers enables direct orga-
nelle engagement at lower systemic doses, enhancing
immunogenic cell death, mtDNA release, and STING-
driven chemokine production within the tumor while
limiting off-tumor toxicity [87, 89, 90]. Photosensitizer-
or radiotherapy-based mitochondria-targeted approaches
are particularly attractive for localized disease or oligo-
metastatic settings, where temporal control of light or
dose can be synced with immunotherapy cycles to maxi-
mize acute immune activation [49, 112].

Finally, metabolic reprogramming agents—such as
inhibitors of OXPHOS, fatty acid oxidation, or
glutamine metabolism—can be used to reshape mito-
chondrial function in both tumor and immune compart-
ments. In tumor cells, transient OXPHOS inhibition
can augment ROS, enhance antigenicity, and increase
susceptibility to T-cell killing [26, 34]. In T cells, inter-
ventions that improve mitochondrial biogenesis and
spare respiratory capacity—through exercise-mimetic
strategies, PGCla activation, or cytokine support—can
restore effector function and resilience in the nutri-
ent-poor tumor microenvironment [35-37]. Here, a
central challenge is separating beneficial stress in tumor
cells from detrimental exhaustion in effector cells, neces-
sitating careful attention to timing, dosing, and cell-type
specificity.

Rational combination therapies: pairing mitochondrial
modulators with checkpoint blockade

Because mitochondrial stress and cGAS-STING acti-
vation principally function as priming and inflaming
signals, they naturally complement checkpoint
blockade, which acts downstream to unleash pre-ex-
isting or nascent T-cell responses [64]. A central concept
is to use mitochondrial modulators as “ignition” agents
that increase tumor antigenicity, dendritic cell activa-
tion, and chemokine-driven T-cell trafficking, while
PD1/PDLI1 or CTLA4 blockade prevents exhaustion of
the recruited effector pool [43, 69, 113]. In preclinical
breast and other solid tumor models, sequencing mito-
chondrial stress—-inducing chemotherapy, radiation, or
targeted agents before or concurrent with checkpoint
inhibitors enhances infiltration of CD8" T-cells and NK
cells, elevates CXCL9/CXCL10/CCLS levels, and
improves response rates compared with checkpoint
blockade alone [53, 58-60].

Rational combinations can be organized along several
axes. Mechanistically, agents that induce mtDNA release
or immunogenic cell death—such as selected
DNA-damaging drugs, PARP or ATR inhibitors, and
mitochondrial complex inhibitors—are combined with
checkpoint inhibitors to couple antigen/IFN/chemokine
induction with relief of T-cell inhibition, an approach
supported by recent ATR-cGAS-STING data and
PARP inhibitor-ICI combinations [28, 47]. Spatial and
temporal integration is achieved by using local mitochon-
drial stress (for example, via mitochondria-targeted
photodynamic therapy or stereotactic radiotherapy) to
create an “in situ vaccine” effect at the primary tumor or
oligometastatic sites, followed by systemic checkpoint
blockade to control microscopic or distant disease
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[49, 88, 112]. Optimizing the interval between mitochon-
drial perturbation and checkpoint dosing is key to align
peak antigen presentation and chemokine production
with maximal T-cell reinvigoration.

Given the risk that chronic STING activation and mito-
chondrial stress promote IL6/TGFp-dominated immu-
nosuppression, combinations that add cytokine or
myeloid-targeted therapies are gaining interest. Pairing
mitochondrial stress-inducing regimens and checkpoint
blockade with IL6 or TGFp inhibitors, CSF1R or CXCR2
antagonists, or modulators of myeloid metabolism may
tilt the balance toward a durable pro-inflammatory
cytokine landscape and reduce myeloid-derived suppressor
cell and M2-like TAM accumulation [20, 49, 66, 79].

Subtype specific considerations

Subtype-specific considerations are likely to be critical
for mitochondrial stress based combinations. In TNBC,
where where genomic instability and baseline STING
activity can be relatively higher and tumor-infiltrating
lymphocytes (TILs) are more abundant, milder mito-
chondrial perturbation or intermittent dosing may
suffice to amplify type I interferons and CXCL9/10/
CCLS5 without provoking sustained IL 6/TGF f—domi-
nated immunosuppression [49, 61, 62]. In hormone
receptor—positive and many HER2-enriched tumors,
which commonly exhibit immune exclusion and TGF-
rich cytokine milieus, more intensive or cyclic priming
strategies—potentially combined with blockade of
dominant suppressive cytokines or myeloid pathways—
may be required to first convert the tumor into a T
cell-permissive state before or during checkpoint
blockade (table 1)[67, 68, 114]. Recent evidence further
highlights that resistance to hormonal and targeted
therapies in breast cancer can be driven by suppression
of the NROA1/DNMT3A axis [115], reinforcing the
need to tailor metabolic and epigenetic interventions to
subtype-specific vulnerabilities.

Overall, the most compelling therapeutic vision is a
multi-layered regimen in which mitochondrial modula-
tors are used not simply as cytotoxic agents but as
programmable “danger signal” generators. By cali-
brating the intensity, duration, and cellular targets of
mitochondrial stress, and embedding this within a
framework of checkpoint inhibition and cytokine/
myeloid control, future therapies may reliably ignite
and sustain productive antitumor immunity in breast
cancer while minimizing the risk that the same pathways
are co-opted to drive resistance and immune escape.
Table 2 summarizes the combination strategy targeting
mitochondria for Immunotherapy.

CONCLUSION AND FUTURE PERSPECTIVES

Mitochondrial stress has emerged as a unifying frame-
work to understand and therapeutically exploit how
breast tumors interact with the immune system, repo-
sitioning mitochondria from passive metabolic orga-
nelles to programmable hubs of innate immune sensing
and cytokine control. By linking mtDNA leakage,
cGAS-STING activation, and cytokine network
remodeling to cold-to-hot tumor conversion, this para-
digm offers a mechanistic basis for designing
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Table 2.
Combination strategy targeting mitochondria for Immunotherapy
Combination Strategy Biological Roles Current Status Reference
Low-dose mitochon- Sublethal inhibition of mitochondrial complexes increases  Predominantly preclinical (mouse [27, 28]
drial poisons (e.g., mtROS and mtDNA leakage, acutely activating cGAS— models and early combination
complex /111 STING to induce type I IFNs (IFN-o/p) and T-cell- concepts with checkpoint
inhibitors) + Immuno- recruiting chemokines CXCL9, CXCL10, and CCLS5, inhibitors; no large dedicated
therapy thereby enhancing CD8" T-cell priming and trafficking; Phase II trials yet)
however, chronic exposure risks skewing toward IL-6 and
IL-10 upregulation, promoting myeloid-derived suppres-
sor cell (MDSC) accumulation and immunosuppression
Selected radiotherapy DNA damage and mitochondrial injury trigger immu- Preclinical + Phase I/II (multiple [53, 58, 60]
or chemotherapy nogenic cell death with DAMP release and transient ongoing or completed early-phase
regimens + Checkpoint  bursts of type I [FNs and CXCL10/CCL5, supporting trials combining radiotherapy or
Inhibitors dendritic cell activation and effector T-cell recruitment; if selected chemotherapies with PD1/
fractionation or dosing drives persistent tissue PDLI1 or CTLA4 blockade in
damage, sustained NF-«xB activation can elevate IL-6, breast and other solid tumors)
TNF-a, and TGF-f, favoring fibrosis, T-cell exhaustion,
and resistance
PARP or ATR Inhibition of DNA damage response enhances cytosolic Preclinical + early Phase I/ [28, 47]
inhibitors + Check- DNA and mtDNA accumulation, amplifying cGAS— II (clinical trials testing PARP or
point Inhibitors STING-driven IFN-o/f and ISG expression as well as ATR inhibitors with ICIs in TNBC
CXCL10 and CCLS, which couples enhanced antigenicity  and other solid tumors, often as
with stronger lymphocyte infiltration; prolonged DDR biomarkerenriched exploratory
inhibition, however, can shift the cytokine milieu toward studies)
IL-6 and IL-8, supporting chronic inflammation and
clonal selection of resistant cells
Metabolic reprogram- Transient OXPHOS or FAO inhibition in tumor Mainly preclinical (mechanistic [26, 34]
ming agents (e.g., cells increases mtROS and can favor a shift toward and efficacy studies in murine
OXPHOS inhibitors) +  IFN-o/p and IL-12 production with higher CXCL9/ models; only limited, indirect
Immunotherapy CXCL10, improving antigen presentation and susceptibi- clinical experience from metabo-
lity to T-cell killing; in immune cells, excessive metabolic lism-targeting drugs combined
stress may drive IL-10 and TGF-p expression and T-cell with ICIs)
exhaustion, necessitating careful dosing to preserve T-cell
mitochondrial fitness
Modulators of Interference with mitophagy and nucleoid homeosta- Preclinical (proof-of-concept [45, 46]
mitochondrial quality sis expands the pool of damaged mitochondria and studies in cell lines and mouse
control (e.g., mito- enhances mtDNA release, promoting cGAS-STING models; no dedicated clinical trials
phagy inhibitors) + activation with acute induction of IFN-o/f and che- yet combining mitophagy/nucleoid
Immunotherapy mokines such as CXCL10 and CCLS; if blockade is modulators with ICls)
prolonged, accumulation of dysfunctional mitochondria
favors chronic NF-kB-biased output and increased 1L-6,
IL-8, and IL-10, driving protumor inflammation and
T-cell dysfunction
Local mitochondrial Spatially restricted mitochondrial damage at the tumor Preclinical + early Phase I [49, 112]

stress (e.g., stereotactic
radiotherapy,
mitochondria-targeted
photodynamic
therapy) + Systemic
Checkpoint Blockade

site generates a localized ‘in situ vaccine’” with high levels
of IFN-o/p/y, and CXCL9/CXCLI10, driving robust local
and systemic T-cell responses and abscopal effects;
inadequate spatial or temporal control may provoke
excessive TNF-a, IL-1p, and IL-6, increasing the risk of
tissue necrosis, systemic inflammatory toxicity, and
treatment-limiting adverse events

(mitochondria-targeted photody-
namic and ablative approaches in
animal models; small early-phase
studies of local ablative therapies
plus ICIs in selected solid tumors)

Abbreviations: TNBC, triple-negative breast cancer; HR, hormone receptor; HER2, human epidermal growth factor receptor 2; mtDNA, mitochondrial DNA;
OXPHOS, oxidative phosphorylation; IFN, interferon; ICI, immune checkpoint inhibitor; TME, tumor microenvironment; STING, stimulator of interferon genes;

DAMP, damage-associated molecular pattern; ROS, reactive oxygen species.

combination strategies that move beyond empiric cyto-
toxicity toward deliberate immune priming in otherwise
immunologically barren breast cancers [116].

Key conceptual advances

This review highlights three central advances: first, that
mitochondrial architecture, quality control, and meta-
bolic wiring in cancer and immune cells collectively deter-
mine whether mitochondrial stress yields immunogenic
interferon—chemokine programs or entrenched immuno-
suppression. Second, mtDNA-cGAS-STING signaling
operates as a dose- and context-dependent rheostat

whose acute activation can ignite T cell-inflamed pheno-
types, whereas chronic engagement fuels resistance,
stromal remodeling, and checkpoint upregulation. Third,
cytokine networks function as both readouts and effec-
tors of this mitochondrial-immune crosstalk, integrating
upstream organelle stress into prognostic signatures and
actionable therapeutic targets.

Translational opportunities

Therapeutically, these insights converge on a strategy
of “controlled ignition,” in which mitochondrial stress
is imposed in a spatially and temporally constrained
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manner to amplify antigenicity, type I interferons, and
T cell-recruiting chemokines while avoiding sustained
NF-xB-biased, IL-6/IL-10/TGF-p—dominated states.
Emerging platforms—including mitochondria-targeted
small molecules and nanomedicines, rationally dosed
OXPHOS and mitophagy modulators, and STING
agonists or epigenetic restorers of cGAS-STING—
provide a growing toolbox for such programmable
danger signaling, particularly when layered onto check-
point blockade. As multiplex cytokine profiling and
immune gene signatures mature clinically, they are
poised to guide patient selection, monitor pharmaco-
dynamic responses, and adapt combination regimens
in real time.

Future research directions

Several priorities must be addressed to safely and effec-
tively bring mitochondrial stress—based immuno-on-
cology into the clinic. Mechanistic studies should dissect
cell type-specific and subtype-specific thresholds for
beneficial versus deleterious mitochondrial stress,
including how luminal, HER2-enriched, and triple-neg-
ative tumors differentially tune cGAS-STING output
and cytokine landscapes. Systems-level approaches
integrating single-cell and spatial multi-omics with
metabolic and mitochondrial profiling will be critical
to map how mitochondrial reprogramming in tumor,
stromal, and immune compartments co-evolves under
therapy and shapes response or resistance to immuno-
therapy. Parallel translational work should focus on
rational trial designs that sequence and dose mitochon-
drial modulators as priming agents around immune
checkpoint inhibitors, with built-in biomarker programs
capturing mtDNA-STING activity, cytokine states,
and immune cell fitness. Finally, safety frameworks
must anticipate off-tumor inflammation and chronic
STING-driven toxicities, motivating development of
tumor-restricted delivery systems, reversible agonists,
and combination strategies that simultaneously ignite
anti-tumor immunity and restrain maladaptive cytokine
circuits. If these challenges can be met, targeting mito-
chondrial stress has the potential to transform immu-
nologically cold breast cancers into consistently
treatable, inflamed diseases and to redefine mitochon-
dria as programmable adjuvants at the core of breast
cancer immunotherapy.

Limitations for this study

This review is primarily conceptual and therefore has
several important limitations. First, most of the
discussed mitochondrial stress—cGAS-STING mecha-
nisms and combination strategies are derived from
preclinical models, with limited validation in large,
prospective breast cancer trials, so their translational
robustness and safety remain uncertain. Second,
subtype-specific differences in mitochondrial wiring,
cytokine networks, and STING pathway status are still
incompletely mapped, which constrains precise patient
stratification and may oversimplify the heterogeneity
of luminal, HER2-enriched, and TNBC tumors. Third,
the proposed “controlled ignition” paradigm does not
yet incorporate quantitative thresholds for beneficial
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versus deleterious mitochondrial stress or fully account
for systemic toxicities observed with STING agonists,
highlighting the need for biomarker-guided dosing,
longitudinal cytokine monitoring, and tumor-restricted
delivery platforms before these concepts can be reliably
applied in the clinic.
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LIST OF ABBREVIATIONS

cGAS Cyclic GMP-AMP synthase

STING Stimulator of interferon genes
mtDNA Mitochondrial DNA

DAMPs Damage-associated molecular patterns

TNBC Triple-negative breast cancer
TIME Tumor immune microenvironment

OXPHOS Oxidative phosphorylation

mtROS Mitochondrial reactive oxygen species
MHC-I Major histocompatibility complex class I
DRPI1 Dynamin-related protein 1

IFN Interferon (IFN-a/p for type I interferons)
IRF3 Interferon regulatory factor 3

NF-xB Nuclear factor-kappa B

cGAMP 2’3’-cyclic GMP-AMP

TNF-a Tumor necrosis factor alpha

CCLS C-C motif chemokine ligand 5

CXCL10 C-X-C motif chemokine ligand 10

PD-LI Programmed death-ligand 1

NK cells Natural killer cells

ER Endoplasmic reticulum

HER2 Human epidermal growth factor receptor 2
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