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Physiological, ex vivo cell oxygenation is necessary
for a true insight into cytokine biology
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Eukaryotic physiology is founded upon aerobic metabo-
lism. This results in the synthesis of highly energetic
phosphates, that is highly dependent upon the presence
of oxygen (O2). However, the O2 concentration must be
adapted to the particular metabolic type of cell, which is
why one of the major functions of the respiratory system
and circulation is to provide an appropriate O2 concentra-
tion for each cell type. In the human organism, the O2

concentration varies significantly between the tissues: in
the circulation and in lung parenchyma [1-4], as well as
in well-irrigated, parenchymal organs (liver, kidneys,
heart) [5-9], it is between 4 and 14%. In other tissues,
relatively less well-irrigated, the O2 concentration is
even lower: in the brain, it varies from 0.5 to 7% [10-
12], in the eye (retina, corpus vitreous), from 1 to 5%
[13] (reviewed in [14]), and in bone marrow, from 0 to
4% [15, 16].
For most cell types, the optimal O2 concentration is
between 3 and 6%, i.e. the concentration existing in the
atmosphere approximately 1 billion years ago [17, 18].
Some cell types should even be protected from O2, and
need concentrations lower than 2% possibly approaching
zero, corresponding to atmospheric concentrations
between 2 and 3 billion years ago. This early step in
evolution [21, 22] is reflected by the metabolic properties
and ontogenesis of primitive stem cells [19, 20]. Indeed,
O2 favours synthesis of reactive oxygen species (ROS)
that might have a regulatory role, but which could also
be harmful to the cells. Every cell type exhibits a system
of antioxidant defence.
In fact, in course of evolution, cell metabolism has
become adapted to moderate oxygenation i.e. oxygen
concentrations that can be found in the tissues [21, 22].
This adaptation has involved both the modulation of the
molecular mechanisms existing in living organisms
before appearance of oxygen in the atmosphere, and
adoption and development of new mechanisms such as
cellular respiration (reviewed in [24]) during the course
of oxygenation of the atmosphere (reviewed in [23]). For
example, the stabilisation of HIF-1α transcripts, which
originally initiated synthesis of molecules acting in anaer-
obic metabolism, shifted towards their oxygen-dependent
degradation.

Thus, eukaryotic cell metabolism must find the balance
between the need for oxygen to provide energy in the
form of energetic phosphates, and the fight against excess
ROS. This system however, has its limits, and to ensure
the well-being of cells, oxygen concentrations should not
go beyond them [25]. In this respect, it is clear that the
atmospheric O2 concentration is too high for the cells of
most tissues.
Nevertheless, almost all present knowledge related to the
action of cytokines on cells, and to the consequent cellu-
lar response, is based upon experiments performed at 20-
21% O2 i.e. highly hyperoxic conditions. Apart from the
technical problems related to controlling O2 concentra-
tions, it is likely that two paradigms were at the origin
of this negligence in the matter of ex-vivo culture oxygen-
ation: (i) erythropietin (Epo)-dependent regulation of red
blood cell (RBC) production and (ii) vascular endothelial
growth factor (VEGF) and its role in neovascularisation.
These two paradigms led to a mental "shortcut", referring
only to the "hypoxic condition" within the biology of
these two factors. From the late seventies until today
however, a number of data have been collected, clearly
demonstrating that the cellular response to cytokines
depends upon the actual O2 concentration. For example,
in the same culture medium and in the presence of the
same soluble factors, haematopoietic cells have shown a
completely different response at low O2 concentration
compared to that at 20-21% [26-30]. The real nature of
stem cells i.e. their maintenance in G0 phase, self-
renewal, commitment, etc., which are, of course, regu-
lated by certain cytokines and growth factors, should be
re-evaluated at the appropriately low O2 concentrations
that characterize the stem cell niche [31-33]. Thus, here
again, the response of stem cells to cytokine stimulation
is completely different at 0.1, 1, 3-5, than at 20% O2,
implying a physiological, regulatory role for oxygen con-
centration in early haematopoiesis [34-37]. For example,
we recently demonstrated a positive effect of IL-6 on
stem cell maintenance. However, this was revealed only
at 1% and not at 20-21% O2 [38]. The response of com-
mitted progenitors to cytokine stimulation involves all
haematopoietic lineages [39-41]. It was shown for exam-
ple that O2 tension alters the effect of cytokines on mega-
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karyocyte, erythrocyte, and granulocyte lineage [39].
As a matter of fact, the findings at 3-5% O2 should be
taken as the physiologically normal condition, and 20-
21% as a non-physiological, hyperoxic state. This point
has been confirmed in the ex vivo model of erythropoie-
sis, where low O2 concentrations seem to be a general
physiological regulator, beyond the well-known, Epo-
related downstream tuning [42, 43], (submitted).
Recently, a series of papers studying different cell types
have confirm that the actual O2 concentration determines
the cellular response to cytokines as well as the cytokine
secretion pattern of the cells [44-58]. In line with these
studies are some papers published in ECN, a recent one
by Schutyser [59] and another by Krstic et al. (page 10 to
16 of this issue). The latter reveals that the extent of
IL-17 action on CD34+ cells and haematopoietic pro-
genitors, is O2 concentration-dependent. Furthermore,
the stimulating effect of IL-17 on BFU-E was markedly
enhanced at 3% O2 (assumed to be the physiological O2

concentration in progenitors residing in bone marrow).
This is yet one more reason to urge the revision of our
knowledge of cellular responses to cytokines that has
been acquired at non-physiological, atmospheric (20%),
O2 concentrations. Low oxygen, without doubt, better
approximates the in vivo environment, i.e. "in situ nor-
moxia".
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