

RESEARCH ARTICLE

Long-term exposure to IL-1 β enhances Toll-IL-1 receptor-mediated inflammatory signaling in murine airway hyperresponsiveness

Yaping Zhang¹, Cang-Bao Xu², Lars-Olaf Cardell¹

¹ Division of ENT Diseases, Department of CLINTEC, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden

² Division of Experimental Vascular Research, Institute of Clinical Science in Lund, Lund University, Lund, Sweden

Correspondence: Y. Zhang, Ph.D., Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska, University Hospital, Huddinge, 141 86 Stockholm, Sweden
<Yaping.Zhang@ki.se>

Accepted for publication May 28, 2009

ABSTRACT. Toll-interleukin-1 (Toll-IL-1) receptor signaling may play a key role in the development of airway hyperreactivity (AHR) and chronic airway inflammatory diseases such as asthma. Previously, we have demonstrated that pro-inflammatory cytokines, tumor necrosis factor- α (TNF- α) and interleukin-1 β (IL-1 β), induce AHR. However, the underlying intracellular signaling mechanisms that lead to AHR remain elusive. In order to see if the Toll-IL-1 receptor-mediated inflammatory signal pathways are involved in the development of AHR, the present study was designed to use a real-time PCR array, a sensitive and powerful tool, consisting of 84 genes related to Toll-IL-1 receptor signal pathways. Murine tracheal segments were organ cultured for four days in the presence and absence of IL-1 β . The Toll-IL-1 receptor-mediated inflammatory signal gene profile was studied using the real-time PCR-based cDNA array. The key gene expressions that were altered were verified by immunohistochemistry using confocal microscopy. Tracheal ring segment contractile responsiveness to the inflammatory mediator bradykinin was monitored using a sensitive myograph system. The results showed that after exposed to IL-1 β for four days, the tracheal segments exhibited increased mRNA expression of 67 genes (out of the 84 genes in the array), although expression reached statistical significance for only 16 of these genes. There were 14 genes that showed only a tendency towards a decrease in mRNA expression following IL-1 β treatment. Immunohistochemistry confirmed that protein expression for CD14, RP105, MCP-1 and phosphorylated I κ B- α were increased in both the airway epithelial and smooth muscle cells. In order to link the activation of Toll-IL-1 receptor-mediated inflammatory signal mechanisms to the AHR, the anti-inflammatory drug dexamethasone, was used. Dexamethasone not only completely abolished the IL-1 β -induced AHR to bradykinin, but also abrogated the increased mRNA expression for inflammatory mediators, IL-6, IFN- γ and Cox-2. In conclusion, long-term exposure of murine airway to IL-1 β induces up- and down-regulation of mRNA expression for Toll-IL-1 receptor signal molecules, with a significant increase in the expression of 16 genes that contribute to the development of airway inflammation and AHR. Understanding cytokine-induced activation of the Toll-IL-1 receptor-mediated inflammatory signaling mechanisms may provide new options for the treatment of airway inflammation and AHR.

Keywords: IL-1 β , Toll-IL-1, receptor, signal, inflammation, AHR

Asthma is characterized by chronic airway inflammation, airway hyperresponsiveness (AHR), airway remodelling and reversible airway obstruction. Cytokines play critical roles in the development of chronic airway inflammation and AHR. Interleukin-1 β (IL-1 β) is a pro-inflammatory cytokine involved in the pathogenesis of asthma [1, 2]. Increased IL-1 immunostaining in the submucosa of patients with toluene diisocyanate-induced occupational asthma suggests that IL-1 is involved in human asthma development [3]. In guinea pigs, ozone exposure for three days induces IL-1-mediated airway hyperreactivity, which can be prevented by IL-1 receptor antagonist treat-

ment [4]. IL-1 β acts on type I IL-1 receptors (IL-1R1) that include the *Drosophila melanogaster* protein Toll and Toll-like receptors (TLRs) [5, 6]. Because of the similarity of IL-1RI to Toll, the conserved sequence in the cytosolic region of these proteins has been termed the Toll-IL-1 receptor (TIR) domain. This receptor superfamily represents an ancient signaling system that is a critical determinant of innate and acquired immunological inflammation [7].

Our previous studies have shown that cytokines, tumor necrosis factor- α (TNF- α) and IL-1 β , induced AHR to the inflammatory mediator bradykinin, and serotonin [8, 9].

The present study was designed to investigate the underlying intracellular Toll-IL-1 receptor signal mechanisms that lead to AHR. This involved a murine model of chronic airway inflammation and AHR [8, 9], using a real-time PCR-based cDNA array, a sensitive and reliable tool, consisting of 84 important genes related to the Toll-IL-1 receptor signal pathways. We demonstrated that IL-1 β significantly up-regulated mRNA expression for 16 genes related to Toll-IL-1 receptor signal pathways. Immunohistochemistry verified that protein expression for CD14, RP105, MCP-1 and phosphorylated I κ B- α was increased in both the airway epithelial and smooth muscle cells. The anti-inflammatory drug dexamethasone not only completely abolished IL-1 β -induced AHR, but also abrogated the increased mRNA expression for the inflammatory mediators. Taken together, this suggests that IL-1 β induces up- and down-regulation of Toll-IL-1 receptor signal gene expression. This increased expression of inflammatory mediators contributes to airway inflammation and AHR.

METHODS AND MATERIALS

Tissue preparation and organ culture procedures

Tracheas from 9-10 week-old, male BALB/c J mice (MB A/S, Ry, Denmark) were dissected and placed individually into the wells of 24-well plates (Ultra-low attachment; Sigma, St. Louis, MO, USA) with 1 mL of serum-free Dulbecco's Modified Eagle's Medium (DMEM, Sigma, St. Louis, MO, USA) supplemented with penicillin (100 U/mL) and streptomycin (100 μ g/mL) (Life Technologies, Gaithersburg, MD, USA). The tracheal segments were then incubated at 37°C, in humidified 5% CO₂ in air, in the presence and absence of murine IL-1 β (R&D Systems, Abingdon, UK), or IL-1 β plus dexamethasone (Sigma, St. Louis, MO, USA) for four days. The tracheal segments were moved into new wells containing fresh medium supplemented with IL-1 β and dexamethasone each day [10]. The experimental protocols had been approved by the local Animal Ethics Committee (M124-06).

Real-time PCR-based cDNA array

After four days of organ culture, the tracheal segments were stored at - 80°C in RNAlater solution (QIAGEN, GmbH, Hilden, Germany) for subsequent extraction of total RNA. This was done using a PureLinkTM micro-to-midi total RNA purification system (Invitrogen Corporation, Carlsbad, CA, USA) including RNase I (Invitrogen Corporation), in accordance with the manufacturer's recommendations. The quality and quantity of the extracted total RNA were assessed using spectrophotometric UV absorbance ratios of 260/280 nm and 260/230 nm, respectively. All the RNA samples meet the standards of integrity, and were free from protein, organics and genomic DNA contaminants, *i.e.* absorbance ratios at 260/280 nm were 1.98 to 2.1 and at 260/230 nm is 1.65-1.8 in Tris-HCl buffer solution (pH 7.5).

cDNA was synthesised from DNase-treated RNA by reverse transcription, in accordance with the manufacturer's protocol, using first strand cDNA synthesis kits (C-02, SuperArray Bioscience Corporation, Frederick, MD, USA), which contain an effective genomic DNA elimination step and a built-in external RNA control. Briefly, total RNA (1 μ g) was mixed with genomic DNA elimination mixture and incubated at 70°C for 3 min, and then immediately placed on ice for at least 1 min. Ten μ L of the RT cocktail were added to each 10 μ L of the genomic DNA elimination mixture to make a final volume of 20 μ L, which was then incubated at 37°C for 60 min. Finally, the mixture was heated at 95°C for 5 min to degrade the RNA and to inactivate the reverse transcriptase.

The procedure for the real-time PCR-based cDNA array for the mouse Toll-IL-1 receptor signaling pathway (APMM-018A, SuperArray Bioscience Corporation) was carried out in accordance with the manufacturer's protocol. Each array was a 96-well plate containing SYBR Green-optimized primer sets corresponding to a total of 96 genes, including five housekeeping genes and three sets of negative controls. Briefly, the cDNA was diluted with RNase-free distilled water to a volume of 100 μ l and added to a RT² real-timeTM SYBR Green/ROX qPCR Master Mix (PA-112, SuperArray Bioscience Corporation). Aliquots of the mixture were added to a 96-well plate, where each well contained predispensed, gene-specific primer sets related to Toll-IL-1 receptor signaling pathways. The plates were then placed in an ABI Prism 7000 Sequence Detector System (Applied Biosystems, Foster City, CA, USA), and real-time PCR was performed with heating at 95°C for 15 min for the activation of HotStart DNA polymerase, followed by 40 cycles at 95°C for 15 s and 60°C for 1 min. The housekeeping genes (β -actin, GAPDH, HSPC- β , HPRT-1 and GUS- β) were used for normalization of the PCR array data, and the ROX reference dye for normalising the instrument's optics. In addition, for each reaction, "no reverse transcription control", "no template" and "genomic DNA" samples were included as negative controls. Raw data were acquired and processed with the ABI Sequence Detector System software version 1.0 (Applied Biosystems) to calculate the threshold cycle (C_t) value. The specificity of the PCR products were checked by examination of the dissociation curves. The relative gene expression values were subsequently determined according to the standard $\Delta\Delta C_t$ method (<http://www.superarray.com>).

Immunohistochemistry

After organ culture, the tracheal segments were immersed in a fixative solution consisting of 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4), for 3 h at 4°C. After fixation, the specimens were dehydrated in 20% sucrose with 0.1 M phosphate buffer (pH 7.4) for 24 h at 4°C, and then frozen in Tissue-Tek (Sakura Finetek Europe BV, Zoeterwoude, Netherlands) and stored at - 80°C. Ten μ m-thick sections were cut using a cryostat. These were mounted on SuperFrost Plus slides (Menzel GMBH & COKG, Braunschweig, Germany). Immunohistochemistry

was carried out using standard protocols, *i.e.* the sections were incubated with the primary antibody overnight at 4°C and the secondary antibody for 1 h at room temperature in the dark. Primary and secondary antibodies, as well as the dilutions used were as follows: CD14 (1:100, rabbit, Abcam plc, Cambridge, UK), MCP-1 (1:100, rabbit, Abcam plc), RP105 (1:100, rabbit, ProSci Incorporated, Poway, CA, USA), bradykinin B₁ receptor (1:50, goat, Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA), bradykinin B₂ receptor (1:100, rabbit, Alexis Biochemical, Lausen, Switzerland), phospho-IκB-α (Ser32) (1:100, rabbit, cell signalling Technology Inc., Beverly, MA, USA). The appropriate secondary antibodies, goat anti-rabbit IgG H&L (1:200, Abcam plc), donkey anti-goat IgG H&L (1:200, Abcam plc), conjugated with fluorescein isothiocyanate (FITC), were used for fluorescence microscopic imaging. In the control experiments, either the primary antibody or the secondary antibody was omitted. The stained specimens were observed under a confocal microscope (Nikon, C1plus, Nikon Instruments Inc., NY, USA). The fluorescence intensity was measured and analysed using Image J software (<http://rsb.info.nih.gov/ij>). For each specimen, six, randomly selected sections were studied. In each section, the fluorescence intensity was measured at six, preset areas. The mean value of fluorescence intensity was obtained from six experiments.

Real-time PCR

Real-time PCR was carried out using the same procedure as used for the PCR-based cDNA array. The PCR primers for CD14, Muc13, IL-6, IFN-γ, Cox-2, and housekeeping gene β-actin (NM_007393) and hypoxanthine guanine phosphoribosyl transferase 1 (Hprt1, NM_013556) were purchased from the same supplier (SuperArray Bioscience Corporation) as used for the PCR based cDNA array to ensure the same sequences and locations of PCR products as in the cDNA array assay.

In vitro pharmacology

The cultured segments were immersed in temperature-controlled (37°C) myographs (Organ Bath Model 700MO, JP Trading, Aarhus, Denmark), containing 5 mL of Krebs-Henseleit buffer solution, continuously equilibrated with 5% CO₂ in O₂ to obtain a stable pH of 7.4 for recording of isometric tension. A pre-tension of 0.8 mN was applied to each segment, which has been demonstrated to be optimal [10]. Each segment was then contracted with 60 mM KCl to test the contractile function. To inhibit epithelial prostaglandin release, the segments were incubated with 3 μM indomethacin (Sigma, St. Louis, MO, USA) 30 min before administration of des-Arg⁹-bradykinin or bradykinin (Neosystem SA, Strasbourg, France). Each agonist concentration-effect curve was fitted to the Hill equation using an iterative, least square method (GraphPad Prism, San Diego, USA), to provide estimates of maximal contraction (E_{max}) and pEC₅₀ values (negative logarithm of the agonist concentration that produces 50% of the maximal effect).

Statistical analysis

All data were expressed as mean values ± S.E.M and analyzed using the unpaired Student's *t*-test with Welch's correction. P-values less than 0.05 were considered to be statistically significant.

RESULTS

mRNA expressions for Toll-IL-1 receptor signal genes

Eighty-four gene mRNAs related to Toll-IL-1 receptor signaling were analyzed, using a real-time PCR array, in tracheal segments following four days of organ culture in the absence (control) and presence of IL-1β. Compared with the control, IL-1β induced an up-regulation of expression of mRNA for 67 genes, although only 16 (RP105, CD14, Hspa1a, Pglyrp1, Irak2, IκB-α, MCP-1, Csf2, Csf3, IFN-γ, IL-1α, IL-6, TNF-β, Tnfaip3, Cebpb, Cox-2) of these gene mRNA expressions reached statistical significance (*table 1*, *p* < 0.05). Nine (CD14, Csf2, Csf3, IFN-γ, IL-1α, IL-6, RP105, pglyrp1 and Cox-2) of these genes exhibited a more than five-fold up-regulation, with a maximum of 36-fold increase (*table 1, figure 1*). For 14 genes, mRNA expression was down-regulated by IL-1β, but none reached significance (*table 2*, *p* > 0.05). ELK1, a member of the ETS oncogene family (Elk1 (NM_007922), and TLR3 (NM_126166) remained unchanged. Interleukin-1 receptor-associated kinase 1 (Irak1, NM_008363) was not detected.

Immunohistochemistry

The tracheal segments that had been organ cultured in presence of IL-1β exhibited increased protein expressions for phosphorylated IκB-α (*figure 2A, B*), CD14 (*figure 2D, E*), RP105 (*figure 2G, H*), MCP-1 (*figure 2J, K*), bradykinin B₁ (*figure 2M, N*) and B₂ (*figure 2P, Q*) receptors in both epithelium and smooth muscle cells, compared to controls. The protein expressions for RP105 and CD14 were similar in both epithelium and smooth muscle, whereas MCP-1, phosphorylated IκB-α and bradykinin B₁ receptor protein expressions were greater in the epithelium than in the smooth muscle. However, bradykinin B₂ receptor protein expression was predominant in the smooth muscle.

Effects of dexamethasone on mRNA expression of inflammatory mediators

Dexamethasone significantly decreased IL-1β-induced enhancement of mRNA expression for IL-6, IFN-γ and Cox-2, but not Muc13 and CD14 (*table 3*), suggesting that under IL-1β stimulation, there were inflammatory changes in the airway.

Dexamethasone abolished IL-1β-induced enhancement of bradykinin receptor-mediated airway contractions

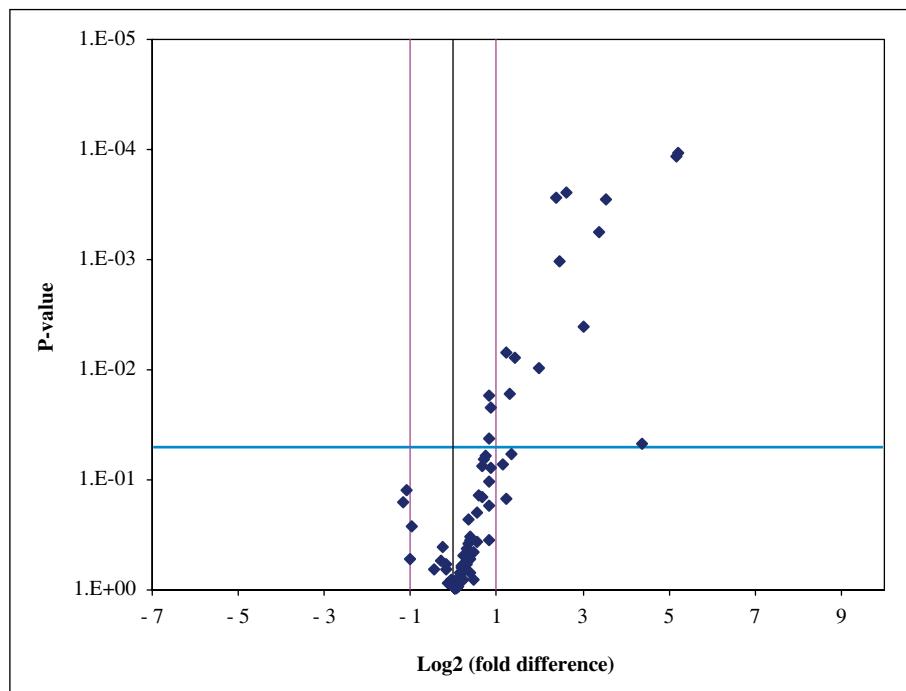
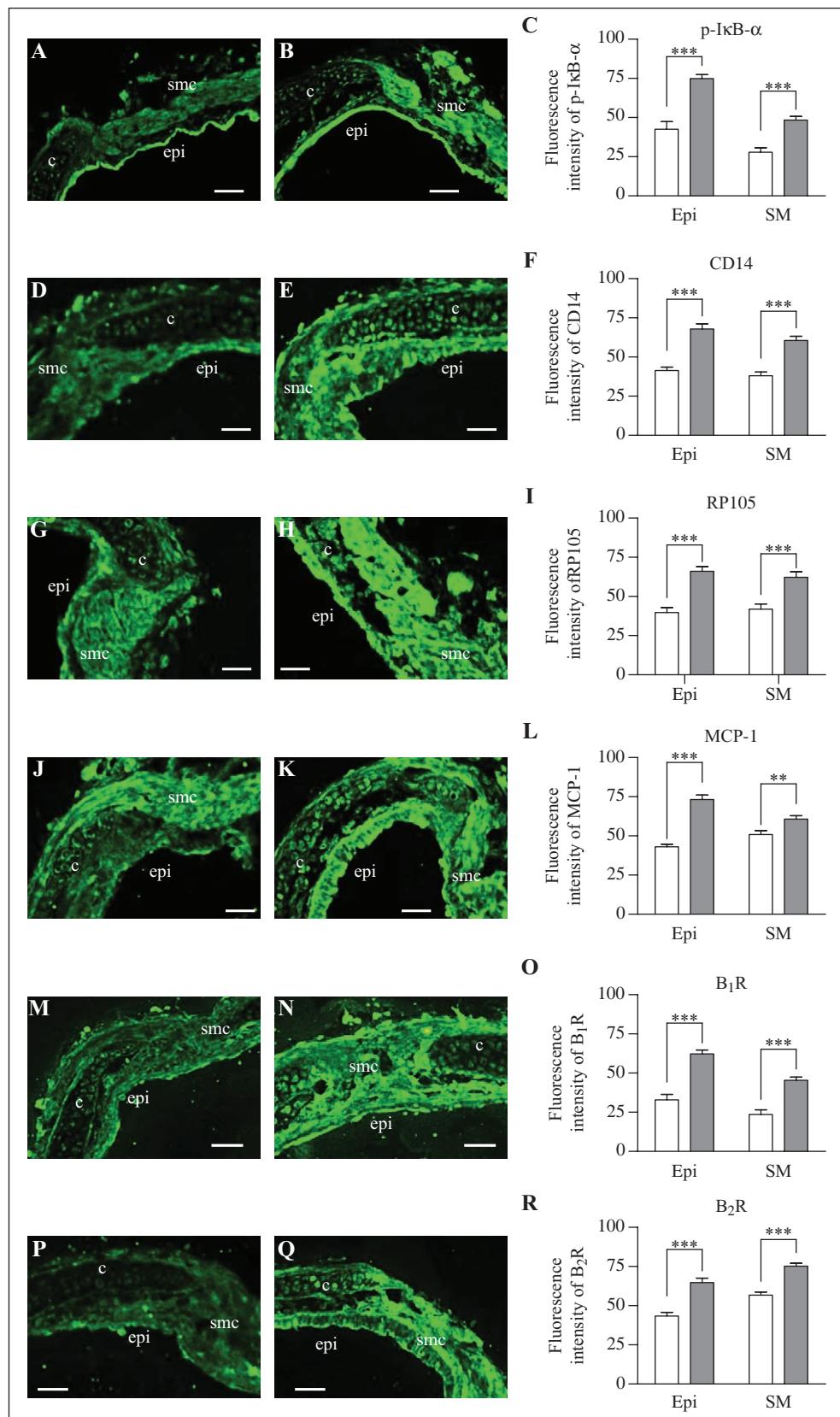

In order to focus on the role of airway smooth muscle contractility, epithelium-dependent relaxation was blocked by indomethacin. IL-1β significantly enhanced

Table 1
Genes up-regulated following IL-1 β treatment

Gene title	Symbol	GenBank No	Fold change	P-value
Caspase 8	Casp8	NM_009812	1.11	0.77
Chemokine (C-C motif) ligand 2	Ccl2	NM_011333	3.99	0.009
CD14 antigen	Cd14	NM_009841	5.44	0.001
CCAAT/enhancer binding protein (C/EBP), beta	Cebpb	NM_009883	2.36	0.007
Conserved helix-loop-helix ubiquitous kinase	Chuk	NM_007700	1.76	0.35
C-type lectin domain family 4, member e	Clec4e	NM_019948	1.76	0.17
Colony-stimulating factor 2 (granulocyte-macrophage)	Csf2	NM_009969	5.2	0.0003
Colony-stimulating factor 3 (granulocyte)	Csf3	NM_009971	36.62	0.0001
Chemokine (C-X-C motif) ligand 10	Cxcl10	NM_021274	1.08	0.92
Fas (TNFRSF6)-associated <i>via</i> death domain	Fadd	NM_010175	1.04	0.89
FBJ osteosarcoma oncogene	Fos	NM_010234	1.27	0.37
High mobility group box 1	Hmgb1	NM_010439	1.13	0.62
Harvey rat sarcoma virus oncogene 1	Hras1	NM_008284	1.12	0.70
HIV-1 Rev binding protein	Hrb	NM_010472	1.27	0.50
Heat shock protein 1A	Hspa1a	NM_010479	1.81	0.02
Heat shock protein 1 (chaperonin)	Hspd1	NM_010477	1.23	0.57
Interferon gamma	Ifng	NM_008337	20.66	0.04
Inhibitor of kappaB kinase beta	Ikbkb	NM_010546	1.22	0.50
Interleukin 10	Il10	NM_010548	1.29	0.69
Interleukin 12A	Il12a	NM_008351	2.34	0.15
Interleukin 1 alpha	Il1a	NM_010554	8.06	0.004
Interleukin 1 beta	Il1b	NM_008361	2.51	0.058
Interleukin 2	Il2	NM_008366	1.37	0.81
Interleukin 6	Il6	NM_031168	36.04	0.0001
Interleukin 6 receptor, alpha	Il6ra	NM_010559	1.12	0.69
Interleukin-1 receptor-associated kinase 2	Irak2	NM_172161	1.76	0.04
Interferon regulatory factor 1	Irf1	NM_008390	2.2	0.07
Interferon regulatory factor 3	Irf3	NM_016849	1.25	0.42
Jun oncogene	Jun	NM_010591	1.08	0.78
Lymphotxin A	Lta	NM_010735	1.78	0.017
Mucin 13, epithelial transmembrane	Muc13	NM_010739	11.44	0.0003
Lymphocyte antigen 96	Ly96	NM_016923	1.75	0.10
Mitogen-activated protein kinase kinase 4	Map2k4	NM_009157	1.06	0.85
Mitogen-activated protein kinase kinase kinase 7	Map3k7	NM_172688	1.38	0.44
Mitogen-activated protein kinase 8	Mapk8	NM_016700	1.48	0.14
Mitogen-activated protein kinase 8 interacting protein 3	Mapk8ip3	NM_013931	1.31	0.34
Mitogen-activated protein kinase 9	Mapk9	NM_016961	1.14	0.59
Nuclear factor of kappa light chain gene enhancer in B-cells 1, p105	Nfkbb1	NM_008689	1.82	0.07
Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2, p49/p100	Nfkbb2	NM_019408	1.45	0.19
Nuclear factor of kappa light chain gene enhancer in B-cells inhibitor, alpha	Nfkbia	NM_010907	2.70	0.007
Nuclear factor of kappa light chain gene enhancer in B-cells inhibitor, beta	Nfkbbib	NM_010908	1.62	0.06
Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 1	Nfkbbil1	NM_010909	1.27	0.22
Nuclear factor related to kappa B binding protein	Nfrkb	NM_172766	1.06	0.86
Nuclear receptor subfamily 2, group C, member 2	Nr2c2	NM_011630	1.03	0.96
Pellino 1	Peli1	NM_023324	1.19	0.64
Peptidoglycan recognition protein 1	Pglyrp1	NM_009402	6.12	0.0002
Peroxisome proliferator-activated receptor alpha	Ppara	NM_011144	1.11	0.74
Eukaryotic translation initiation factor 2-alpha kinase 2	Eif2ak2	NM_011163	1.02	0.98
Prostaglandin-endoperoxide synthase 2	Ptgss2	NM_011198	10.25	0.0006
Reticuloendotheliosis oncogene	Rel	NM_009044	1.68	0.06
V-rel reticuloendotheliosis viral oncogene homolog A (avian)	Rela	NM_009045	1.30	0.32
Receptor (TNFRSF)-interacting serine-threonine kinase 2	Ripk2	NM_138952	1.6	0.14
TANK-binding kinase 1	Tbk1	NM_019786	1.25	0.46
Toll-like receptor adaptor molecule 1	Ticam1	NM_174989	1.15	0.49
Toll-interleukin 1 receptor (TIR) domain-containing adaptor protein	Tirap	NM_054096	1.30	0.51
Toll-like receptor 1	Tlr1	NM_030682	1.04	0.95
Toll-like receptor 2	Tlr2	NM_011905	1.19	0.63
Toll-like receptor 4	Tlr4	NM_021297	1.1	0.76
Toll-like receptor 5	Tlr5	NM_016928	1.17	0.80

Gene title	Symbol	GenBank No	Fold change	P-value
Toll-like receptor 6	Tlr6	NM_011604	1.10	0.81
Tumor necrosis factor	Tnf	NM_013693	1.59	0.07
Tumor necrosis factor, alpha-induced protein 3	Tnfaip3	NM_009397	2.45	0.01
Toll interacting protein	Tollip	NM_023764	1.44	0.36
TNF-RSF1A-associated <i>via</i> death domain	Tradd	NM_001033161	1.15	0.58
TNF-receptor-associated factor 6	Traf6	NM_009424	1.28	0.51
Ubiquitin-conjugating enzyme E2N	Ube2n	NM_080560	1.01	0.97
Ubiquitin-conjugating enzyme E2 variant 1	Ube2v1	NM_023230	1.17	0.59

Isolated tracheal segments were cultured in the absence (control) and presence of IL-1 β (10 ng/mL) for four days. The Toll-IL-1 receptor signaling gene profile was analyzed using a real-time PCR-based cDNA array. Each data point is derived from three experiments. P-values were calculated using two-tailed, unpaired Student's *t*-test with Welch's correction. Text in bold indicates that the altered genes expressions are statistically significance.


Figure 1

A volcano plot of the Toll-IL-1 receptor signaling gene profile. Isolated tracheal segments were cultured in the absence (control) and presence of IL-1 β (10 ng/mL) for four days. The gene profile was analyzed using a real-time PCR-based cDNA array. The pink lines mark a two-fold change in gene expression level induced by IL-1 β treatment ($n = 3$). P-values were calculated using two-tailed, unpaired Student's *t*-test with Welch's correction. The blue line represents p -value = 0.05.

Table 2
Genes down-regulated following IL-1 β treatment

Gene title	Symbol	GenBank No	Fold change	P-value
Bruton agammaglobulinemia tyrosine kinase	Btk	NM_013482	0.47	0.12
CD80 antigen	Cd80	NM_009855	0.95	0.84
CD86 antigen	Cd86	NM_019388	0.81	0.53
Interferon beta 1, fibroblast	Ifnb1	NM_010510	0.49	0.52
Interleukin 1 receptor, type I	Il1r1	NM_008362	0.85	0.40
Lymphocyte antigen 86	Ly86	NM_010745	0.44	0.16
Mitogen-activated protein kinase kinase 3	Map2k3	NM_008928	0.96	0.83
Mitogen-activated protein kinase kinase kinase 1	Map3k1	NM_011945	0.96	0.79
Myeloid differentiation primary response gene 88	Myd88	NM_010851	0.89	0.58
Toll-like receptor adaptor molecule 2	Ticam2	NM_173394	0.92	0.86
Toll-like receptor 7	Tlr7	NM_133211	0.95	0.87
Toll-like receptor 8	Tlr8	NM_133212	0.51	0.26
Toll-like receptor 9	Tlr9	NM_031178	0.72	0.65
Tumor necrosis factor receptor superfamily, member 1a	Tnfrsf1a	NM_011609	0.89	0.64

Each data point is derived from three experiments. P-values were calculated using two-tailed, unpaired Student's *t*-test with Welch's correction.

Figure 2

Immunohistochemical representation of key genes, phosphorylated I κ B- α (p-I κ B- α), CD14, RP105, MCP-1, bradykinin B₁ (B₁R) and B₂ (B₂R) receptor proteins in isolated murine airway segments cultured without (control, **A, D, G, J, M, P**) and with (**B, E, H, K, N, Q**) IL-1 β (10 ng/mL) for four days. The intensity of fluorescence was quantified using Image J software (**C, F, I, L, O, R**). Empty bars are controls, and dashed bars denote IL-1 β groups. Each data point is derived from six experiments. P-values were calculated using two-tailed, unpaired Student's *t*-test with Welch's correction.

* Control versus IL-1 β , ** p < 0.01, *** p < 0.001.
Epi: epithelium; SMC: smooth muscle, C: cartilage.

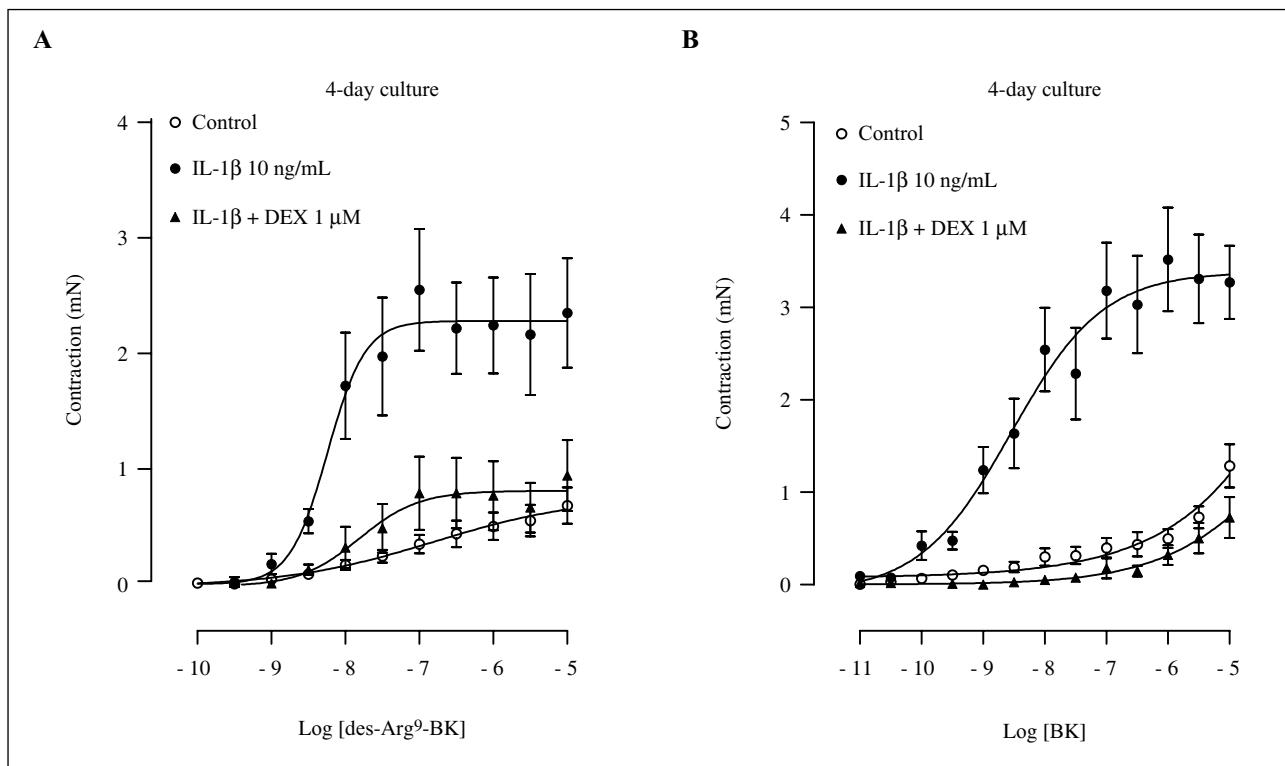


Figure 3

Concentration response curves for des-Arg⁹-bradykinin (A) and bradykinin (B). The tracheal segments were cultured for four days in the absence (control) and presence of IL-1 β (10 ng/mL) or IL-1 β (10 ng/mL) plus dexamethasone (DEX, 1 μ M). Each data point is derived from six-nine experiments and presented as mean \pm SEM.

the airway contractile responses to des-Arg⁹-bradykinin (B_1 -agonist) and bradykinin (B_2 -agonist), with maximal contractions (E_{max}) that increased from 0.77 ± 0.19 to 2.32 ± 0.42 mN and from 1.62 ± 0.22 to 3.53 ± 0.33 mN, respectively (figure 3A, B, $p < 0.05$). In addition, IL-1 β shifted the concentration effect curves leftwards for both des-Arg⁹-bradykinin (control $pEC_{50} = 6.78 \pm 0.21$ versus IL-1 β $pEC_{50} = 8.12 \pm 0.16$, $p < 0.05$) and bradykinin (control $pEC_{50} = 5.16 \pm 0.38$ versus IL-1 β $pEC_{50} = 8.26 \pm 0.38$, $p < 0.05$). The increased bradykinin B_1 and B_2 receptor-mediated airway contractions were in parallel with IL-1 β -induced increased protein expressions for bradykinin B_1 (figure 2M, N) and B_2 (figure 2P, Q) receptors in the airway smooth muscle cells. As expected, dexamethasone (1 μ M) almost completely abolished the IL-1 β -induced increase in contractile responses to des-Arg⁹-bradykinin and bradykinin (figure 3A, B; $p < 0.001$).

DISCUSSION

IL-1 is involved in the development of AHR in man [3] and in guinea pigs [4]. Previously, we have demonstrated that pro-inflammatory cytokines induced AHR to inflammatory mediators [8, 9]. However, the underlying cytokine, intracellular signal mechanisms that lead to the AHR remain elusive. The present study used a real-time PCR array, a sensitive and reliable tool, consisting of 84 genes related to the Toll-IL-1 receptor signal pathways, and observed that after long-term exposed to IL-1 β , the airway exhibited increased mRNA expression for 67 genes related to Toll-IL-1 receptor signaling pathway, although only 16 of these reached statistical significance. Protein expressions for CD14, RP105, MCP-1, phosphorylated I κ B- α , bradykinin B_1 and B_2 receptors were enhanced by IL-1 β in both the tracheal epithelium

Table 3
Dexamethasone inhibited IL-1 β -induced gene up-regulation

Gene title	Symbol	GenBank No	Fold change	P-value
CD14 antigen	Cd14	NM_009841	0.78	0.61
Mucin 13, epithelial transmembrane	Muc13	NM_010739	0.45	0.23
Interleukin 6	Il6	NM_031168	0.01	0.0002
Interferon gamma	Ifng	NM_008337	0.15	0.001
Prostaglandin-endoperoxide synthase 2	Ptg2	NM_011198	0.02	0.0006

Isolated tracheal segments were cultured in the presence of IL-1 β (10 ng/mL) with/without dexamethasone (1 μ M) for four days. Real-time PCR was performed. Each data point is derived from six experiments. P-values were calculated using two-tailed, unpaired Student's *t*-test with Welch's correction. Text in bold indicates genes whose expressions are statistically significant.

and smooth muscle cells. Dexamethasone, a well-known anti-inflammatory drug, completely abolished IL-1 β -induced up-regulation of IFN- γ , IL-6 and Cox-2 mRNA expression, and abrogated the increased bradykinin B₁ and B₂ receptor-mediated airway contractions. Our results suggest that Toll-IL-1 receptor-mediated inflammatory signaling changes in the airways might be an underlying mechanism for AHR.

CD14 acts as a co-receptor, along with TLR4 and MD-2. RP105 is a Toll-like receptor signalling molecule for TLR4 [7]. Activation of TLR4 intracellular inflammatory signalling subsequently increases production of inflammatory cytokines [11-14]. Here, we observed that IL-1 β increased gene expression for CD14 and RP105, at both mRNA and protein levels. This paralleled increased mRNA expression for inflammatory mediators (Csf2, Csf3, IFN- γ , IL-1 α , IL-6 and Cox-2), suggesting that IL-1 β induced activation and enhancement of TLR4 inflammatory signaling, the most important signaling pathway involved in immunological responses to gram negative bacterial invasion. In addition, increased mRNA and protein expression for MCP-1 was seen in the airway epithelial and smooth muscle cells after exposure to IL-1 β . This is in agreement with a recent report that demonstrates that airway epithelial cells actively participate in airway inflammation and immune defence against pathogens, by producing regulatory molecules in response to house dust mites [14]. Our data suggest that airway epithelial and smooth muscle cells participate in Toll-IL-1 receptor-mediated airway inflammation [15-17].

NF- κ B is a pleiotropic transcription factor that is regulated by the inhibitory protein that normally presents in the cytosol complex bound to NF- κ B dimers. The dimer binding prevents nuclear localization of NF- κ B, ensuring low basal transcriptional activity [18, 19]. Activation of NF- κ B by I κ B- α phosphorylation and degradation causes amplified expression of several genes encoding a plethora of pro-inflammatory mediators [20, 21]. The present study demonstrated that IL-1 β induced phosphorylation (activation) of I κ B- α and increased mRNA expression of multiple inflammatory mediators, Csf2, Csf3, IFN- γ , IL-1 α , IL-6, TNF- β , Cox-2, Hspa1a, Pglyrp1 and Cebpb. Dexamethasone suppressed IL-1 β -enhanced mRNA expression of the inflammatory mediators, IFN- γ , IL-6 and Cox-2, and abolished IL-1 β -induced AHR, demonstrating that increased transcription of inflammatory mediators is involved in IL-1 β -induced AHR.

Organ culture of isolated airways has been used to study the role of G-protein-coupled receptors in airway inflammation and AHR [8, 9]. Evidence from *in vivo* studies has shown that bradykinin B₁ and B₂ receptors were involved in allergen-induced AHR in rats [22] and in asthmatic patients [23]. On the other hand, bradykinin can induce airway relaxation *via* bradykinin B₁ and B₂ receptors [24]. In mice, this relaxation is epithelium-dependent and mediated *via* the release of prostacyclin, which in the present study, was blocked by administration of indomethacin, an inhibitor of cyclooxygenase enzymes (COXs), in order to examine bradykinin receptor-mediated contractions. In addition, bradykinin receptors located on airway epithelium not only mediate relaxation of airway tissue, but also induce airway secre-

tion and oedema [2, 25]. Thus, IL-1 β -induced up-regulation of bradykinin B₁ and B₂ receptors in the epithelium, may also contribute to the development of airway oedema and hypersecretion.

Dexamethasone is well-known to be the most effective anti-inflammatory drug for reducing AHR in asthmatic airways [26-28]. It also inhibits the inducible, bradykinin receptor expression in cultured human airway fibroblast and smooth muscle cells [29, 30]. Previously, we have demonstrated that dexamethasone can inhibit the TNF- α -induced enhancement of the airway contractile response to bradykinin [31]. Here, we demonstrated that IL-1 β -induced AHR was completely abolished by dexamethasone. In conclusion, Toll-IL-1 receptor-mediated inflammatory signaling changes in the airways might be an underlying mechanism for AHR. Further investigation of the changes in airway inflammatory mediators and the underlying Toll-IL-1 receptor-mediated intracellular inflammatory signaling mechanisms, may provide new pharmacological targets for the treatment of AHR and asthma.

Acknowledgments. This study was supported by the Swedish Medical Research Council, the Swedish Heart Lung Foundation, the Swedish Association for Allergology and the Swedish Foundation for Health Care Science and Allergic Research.

REFERENCES

1. Broide DH, Lotz M, Cuomo AJ, et al. Cytokines in symptomatic asthma airways. *J Allergy Clin Immunol* 1992; 89: 958.
2. Barnes PJ, Chung KF, Page CP. Inflammatory mediators of asthma: an update. *Pharmacol Rev* 1998; 50: 515.
3. Johnson VJ, Yucesoy B, Luster MI. Prevention of IL-1 signaling attenuates airway hyperresponsiveness and inflammation in a murine model of toluene diisocyanate-induced asthma. *J Allergy Clin Immunol* 2005; 116: 851.
4. Verhein KC, Jacoby DB, Fryer AD. IL-1 receptors mediate persistent, but not acute, airway hyperreactivity to ozone in guinea pigs. *Am J Respir Cell Mol Biol* 2008; 39: 730.
5. O'Neill LA. Signal transduction pathways activated by the IL-1 receptor/toll-like receptor superfamily. *Curr Top Microbiol Immunol* 2002; 270: 47.
6. Boraschi D, Tagliabue A. The interleukin-1 receptor family. *Vitam Horm* 2006; 74: 229.
7. Dunne A, O'Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. *Sci STKE* 2003; 171: re3.
8. Zhang Y, Adner M, Cardell LO. Up-regulation of bradykinin receptors in a murine *in vitro* model of chronic airway inflammation. *Eur J Pharmacol* 2004; 489: 117.
9. Zhang Y, Cardell LO, Adner M. IL-1 β induces murine airway 5-HT2A receptor hyperresponsiveness *via* a non-transcriptional MAPK-dependent mechanism. *Respir Res* 2007; 8: 29.
10. Adner M, Rose AC, Zhang Y, et al. An assay to evaluate the long-term effects of inflammatory mediators on murine airway smooth muscle: evidence that TNF-alpha up-regulates 5-HT(2A)-mediated contraction. *Br J Pharmacol* 2002; 137: 971.

11. Leturcq DJ, Moriarty AM, Talbott G, et al. Antibodies against CD14 protect primates from endotoxin-induced shock. *J Clin Invest* 1996; 98: 1533.
12. Verbon A, Dekkers PE, ten Hove T, et al. IC14, an anti-CD14 antibody, inhibits endotoxin-mediated symptoms and inflammatory responses in humans. *J Immunol* 2001; 166: 3599.
13. Knuefermann P, Nemoto S, Misra A, et al. CD14-deficient mice are protected against lipopolysaccharide-induced cardiac inflammation and left ventricular dysfunction. *Circulation* 2002; 106: 2608.
14. Vroeling AB, Jonker MJ, Breit TM, et al. Comparison of expression profiles induced by dust mite in airway epithelia reveals a common pathway. *Allergy* 2008; 63: 461.
15. Belvisi MG, Saunders MA, Haddad el B, et al. Induction of cyclo-oxygenase-2 by cytokines in human cultured airway smooth muscle cells: novel inflammatory role of this cell type. *Br J Pharmacol* 1997; 120: 910.
16. Saunders MA, Mitchell JA, Seldon PM, et al. Release of granulocyte-macrophage colony stimulating factor by human cultured airway smooth muscle cells: suppression by dexamethasone. *Br J Pharmacol* 1997; 120: 545.
17. Levine SJ. Bronchial epithelial cell-cytokine interactions in airway inflammation. *J Investig Med* 1995; 43: 241.
18. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. *Oncogene* 1999; 18: 6853.
19. Sadikot RT, Han W, Everhart MB, et al. Selective I kappa B kinase expression in airway epithelium generates neutrophilic lung inflammation. *J Immunol* 2003; 170: 1091.
20. Yang L, Cohn L, Zhang DH, et al. Essential role of nuclear factor kappaB in the induction of eosinophilia in allergic airway inflammation. *J Exp Med* 1998; 188: 1739.
21. Campbell KJ, Perkins ND. Regulation of NF-kappaB function. *Biochem Soc Symp* 2006; 73: 165.
22. Huang TJ, Haddad EB, Fox AJ, et al. Contribution of bradykinin B(1) and B(2) receptors in allergen-induced bronchial hyperresponsiveness. *Am J Respir Crit Care Med* 1999; 160: 1717.
23. Fuller RW, Dixon CM, Cuss FM, et al. Bradykinin-induced bronchoconstriction in humans. Mode of action. *Am Rev Respir Dis* 1987; 135: 176.
24. Li L, Vaali K, Paakkari I, et al. Involvement of bradykinin B1 and B2 receptors in relaxation of mouse isolated trachea. *Br J Pharmacol* 1998; 123: 1337.
25. Barnes PJ. Bradykinin and asthma. *Thorax* 1992; 47: 979.
26. Meijer RJ, Kerstjens HA, Arends LR, et al. Effects of inhaled fluticasone and oral prednisolone on clinical and inflammatory parameters in patients with asthma. *Thorax* 1999; 54: 894.
27. De Bie JJ, Hessel EM, Van Ark I, et al. Effect of dexamethasone and endogenous corticosterone on airway hyperresponsiveness and eosinophilia in the mouse. *Br J Pharmacol* 1996; 119: 1484.
28. Trifilieff A, El-Hashim A, Bertrand C. Time course of inflammatory and remodeling events in a murine model of asthma: effect of steroid treatment. *Am J Physiol Lung Cell Mol Physiol* 2000; 279: L1120.
29. Haddad EB, Fox AJ, Rousell J, et al. Post-transcriptional regulation of bradykinin B1 and B2 receptor gene expression in human lung fibroblasts by tumor necrosis factor-alpha: modulation by dexamethasone. *Mol Pharmacol* 2000; 57: 1123.
30. Schmidlin F, Scherrer D, Landry Y, et al. Glucocorticoids inhibit the bradykinin B2 receptor increase induced by interleukin-1beta in human bronchial smooth muscle cells. *Eur J Pharmacol* 1998; 354: R7.
31. Zhang Y, Adner M, Cardell LO. Glucocorticoids suppress transcriptional up-regulation of bradykinin receptors in a murine *in vitro* model of chronic airway inflammation. *Clin Exp Allergy* 2005; 35: 531.