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VEGF-A: a critical regulator of blood vessel growth
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ABSTRACT. Angiogenesis is required for a variety of normal and pathological, proliferative processes. Numer-
ous regulators of angiogenesis have been identified and characterized over the last decades. Among these, vas-
cular endothelial growth factor (VEGF)-A appears especially important in normal development and in disease
processes. Several VEGF inhibitors have been approved by the FDA for the treatment of tumors or the neovas-
cular form of age-related macular degeneration. This article examines the molecular and biological characteris-
tics of VEGF and also discusses preclinical and clinical studies with VEGF inhibitors and the lessons learned
from these studies.
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Angiogenesis is a complex process that results in the
establishment of microvascular networks required for
pre/postnatal development and for tissue repair in the
adult [1-4]. The cardiovascular system is the first organ
system to develop and reach a functional state in an
embryo [5]. Importantly, without the onset of angiogene-
sis, most tumors cannot grow beyond 1 to 2 mm due to
diffusion limitations and thus may remain dormant [6].
Tumor cells appear to utilize developmental programs
resulting in the upregulation of proangiogenic factors
and, possibly, downregulation of inhibitory ones [7].
The observation that tumor growth can be accompanied
by increased vascularity was reported more than a cen-
tury ago (for review, see [7]). In 1939, Ide et al. postu-
lated the existence of a tumor-derived “blood vessel
growth stimulating factor” [8]. In 1945, Algire et al. pro-
gressed these concepts, proposing that “the rapid growth
of tumor transplants is dependent upon the development
of a rich vascular supply” [9]. These investigators
hypothesized that the acquisition by the tumor cells of
the ability to promote vascular proliferation is a critical
step in tumorigenesis, since it is likely to confer a growth
advantage on the tumor cells [9]. In 1968, Greenblatt and
Shubik [10] and Ehrmann and Knoth [11] demonstrated
that transplantation of tumor cells promotes blood vessel
proliferation, even when a Millipore filter is interposed
between the tumor and the host, suggesting that the neo-
vascularization is mediated by diffusible factors produced
by tumor cells. In 1971, Folkman proposed that anti-
angiogenesis might be an effective approach to treat
human cancer [12]. Subsequently, several putative angio-
genic factors were described, including aFGF, bFGF,
EGF, TGF, etc. [7].

HISTORY OF VEGF

In 1983, Senger et al. described the identification, in the
conditioned medium of a guinea-pig tumor cell line, of a
protein able to induce vascular leakage in the skin. This
was named “tumor vascular permeability factor” (VPF)
[13]. The authors proposed that VPF could be a mediator
of the high permeability of tumor blood vessels. However,
these efforts did not yield the full purification of the VPF
protein. The lack of amino acid sequence data precluded
cDNA cloning and establishing the identity of VPF. There-
fore, very limited progress in elucidating the role of VPF
was possible during the following several years. In 1990,
Senger et al. reported the purification and NH2-terminal
amino acid sequencing of guinea pig-VPF [14].
In 1989, we reported the isolation of an endothelial cell
mitogen from the supernatant of bovine pituitary cells,
which we named “vascular endothelial growth factor”
(VEGF) [15]. The NH2-terminal amino acid sequence of
VEGF did not match any known protein in available data-
bases [15]. Subsequently, Connolly’s group at Monsanto
Co., reported the isolation and sequencing of VPF [16]. By
the end of 1989, we had isolated cDNA clones encoding
bovine VEGF164 and three human VEGF isoforms:
VEGF121, VEGF165 and VEGF189 [17]. The Monsanto
group described a human VPF clone, which encoded a
protein identical to VEGF189 [18]. These studies indicated
that, unexpectedly, a single molecule was responsible for
both mitogenic and permeability-enhancing activities. The
finding that VEGF is potent, diffusible and specific for
vascular endothelial cells led to the hypothesis that this
molecule might play a role in the regulation of physiolog-
ical and pathological growth of blood vessels [15, 17, 19].
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MOLECULAR AND BIOLOGICAL
PROPERTIES OF VEGF-A

VEGF belongs to a gene family that also includes VEGF-B,
C, D, E, and placenta growth factor [20-23]. Multiple iso-
forms of VEGF, ranging from 121 to 206 amino acids, can
be generated by alternative exon splicing [23]. These iso-
forms differ in their ability to bind heparin, which deter-
mines their bioavailability, and may play distinct roles in
angiogenesis during development [24]. In addition, extracel-
lular proteolysis regulates VEGF activity. Early studies
showed that plasmin is able to cleave heparin-binding
VEGF isoforms at the COOH-terminus to generate bioac-
tive and diffusible fragments [25, 26]. More recently, Lee
et al. reported that MMP3 is able to generate VEGF proteo-
lytic fragments, which are biologically and biochemically
very similar to those resulting from plasmin cleavage [27].
VEGF promotes growth of vascular endothelial cells
derived from arteries, veins and lymphatics (for review
[21, 28]. VEGF also induces a strong angiogenic response
in a variety of in vivo models [17, 29]. VEGF-A was also
shown to promote monocyte chemotaxis [30]. Subse-
quently, VEGF-A was reported to have hematopoietic
effects, inducing colony formation by mature subsets of
granulocyte-macrophage progenitor cells [31].
VEGF-A is also a survival factor for endothelial cells
[32-35]. While in most circumstances VEGF functions
as a paracrine mediator, autocrine roles for VEGF in the
survival of hematopoietic stem cells and endothelial cells
have been described [36, 37].
Three tyrosine kinase receptors bind members of
the VEGF gene family: VEGFR-1 (Flt-1), VEGFR-2
(KDR) and VEGFR-3. Moreover, co-receptors, such as
heparan sulphate proteoglycans and neuropilins, may
facilitate activation of VEGFRs (reviewed in [28]).
VEGF-B and PlGF bind selectively to VEGFR-1.
VEGF-A is the main ligand for VEGFR-2 [28]. However,
proteolytically-cleaved forms of VEGF-C and VEGF-D
may also bind to and activate VEGFR-2 [38]. In contrast,
VEGFR-3 is activated only by VEGF-C and VEGF-D
[38]. VEGFR-1 and VEGFR-2 are expressed in vascular
endothelial cells, monocytes, macrophages and hemato-
poietic stem cells. VEGFR-1 is also expressed in certain
non-endothelial cell types [28]. In contrast to VEGFR- 1
and VEGFR-2, VEGFR-3 is critically involved in the
regulation of lymphangiogenesis, and its expression in
the adult appears to be largely restricted to lymphatic
endothelial cells [38]. All VEGF-A isoforms can bind
VEGFR-1 and VEGFR-2. Despite the fact that VEGF
binds to VEGFR1 with ~ 10-fold higher affinity than
VEGFR2, it is mainly VEGFR2 that mediates VEGF
signaling in endothelial cells [39, 40]. Hence, many
efforts have been made toward targeting the VEGF/
VEGFR2 pathway for the treatment of cancer and other
disorders such as age-related macular degeneration.

ROLE OF VEGF-A IN TUMOR ANGIOGENESIS
IN MOUSE MODELS

The existence of numerous angiogenic factors, sug-
gested that blocking single angiogenic molecules
might have very limited effect on tumor growth
(reviewed in [7]). However, experiments with neutral-

izing antibodies and other inhibitors demonstrated that
blockade of the VEGF pathway is sufficient to signifi-
cantly suppress angiogenesis associated with solid
tumor growth in many models. Subcutaneous and
orthotopic models have been used to test the effects
of inhibitors of the VEGF/VEGFR pathway on the
growth of a variety of tumor cell lines. Mab A4.6.1
(the murine precursor of bevacizumab) was first
shown to suppress the growth of human rhabdomyosar-
coma, glioblastoma, and leiomyosarcoma cells
implanted in immunodeficient mice [41]. Since then,
Mab A4.6.1/bevacizumab has been tested on a wide
range of human tumor cells implanted subcutaneously
or orthotopically [42]. Together, these studies demon-
strate that Mab A4.6.1/bevacizumab is effective in
reducing tumor vessel density and suppressing tumor
growth, even as a single agent, regardless of tumor
location and route of administration.
A confounding factor in assessing the efficacy of Mab
A.4.6.1 (or bevacizumab) in human xenograft models is
the species-specificity and inability of this antibody to neu-
tralize murine VEGF [43]. Several studies have shown that
the extent of stromal cell recruitment is tumor-dependent
and the VEGF produced by host cells can be a major
driver of tumor angiogenesis, such that the efficacy of
Mab A.4.61 in human tumor xenografts is inversely
related to the degree of stromal recruitment [44-47]. The
availability of cross-reactive, phage-derived antibodies,
which neutralize mouse and human VEGF [48], has
enabled more complete VEGF blockade studies, not only
in xenografts, but also in genetic mouse models. Using
such cross reactive antibodies, Shojaei et al. examined
the differences among various syngeneic murine tumor
cell lines in terms of responsiveness to VEGF blockade
[49]. They found that tumor cells that are relatively insen-
sitive to VEGF blockade exhibit a greater ability to recruit
CD11b+Gr+ myeloid cells compared to the sensitive ones.
Subsequent studies identified the secreted protein Bv8 as a
myeloid cell-derived mediator of tumor angiogenesis [50,
51]. Recent studies indicate that not only frankly malig-
nant tumors, but also benign or premalignant tumors may
be sensitive to anti-VEGF therapies. Inhibition of VEGF-
A has been shown to suppress the angiogenic switch,
resulting in a substantial increase in survival, in the
Apc+/min mouse model of intestinal polyposis [52]. Fur-
thermore, Korsisaari et al. tested the efficacy of anti-
VEGF treatment in a mouse model of multiple endocrine
neoplasia type 1(Men1) [53]. They found that tumors in
animals that received anti-VEGF treatment were growth-
arrested, resulting in reduced serum prolactin levels and
increased lifespan of mice [53].

CLINICAL TRIALS WITH VEGF INHIBITORS
IN CANCER PATIENTS

Several VEGF inhibitors have been developed as anti-
cancer agents including a humanized anti-VEGF-A
monoclonal antibody (bevacizumab; Avastin®) [54, 55],
various small molecules inhibiting VEGFR-2 signal
transduction [56], and a VEGF receptor chimeric protein
[57]. For recent reviews, see [4, 58-62].

VEGF-A: a critical regulator of blood vessel growth 159



The clinical benefit of bevacizumab is being evaluated in a
variety of tumor types and lines of therapy, in combination
with chemotherapy and several biologicals. The clinical
trial that resulted in FDA approval of bevacizumab (Feb-
ruary 2004) was a randomized, double-blind, phase III
study in which bevacizumab was administered in combi-
nation with bolus-IFL (irinotecan, 5FU, leucovorin) che-
motherapy as first-line therapy for previously untreated,
metastatic colorectal cancer [63]. Median survival and
progression-free survival were increased by the addition
of bevacizumab [63]. Although bevacizumab was gener-
ally well tolerated, some serious and unusual toxicities
were observed including gastrointestinal perforation and
arterial thromboembolic complications. Hypertension
requiring medical intervention with standard anti-
hypertensive therapy developed in 11% of bevacizumab-
treated patients and is now recognized as a class effect of
VEGF blockers [60]. Also, bevacizumab combined with
weekly paclitaxel in women with previously untreated
metastatic breast cancer, provided a significant improve-
ment in the primary endpoint of progression-free survival
[64]. Combining bevacizumab with paclitaxel and carbo-
platin in patients with previously untreated, nonsquamous,
non-small-cell lung carcinoma (NSCLC) provided a sig-
nificant improvement in the primary endpoint of overall
survival [65]. An earlier, phase II, study of bevacizumab
in NSCLC had identified pulmonary bleeding as a signifi-
cant adverse event in this tumor type [66]. Squamous cell
histology was identified as a major risk factor for bleeding
and these patients were excluded from the phase III study,
markedly reducing the rate of serious bleeding associated
with bevacizumab [65]. Also, combining bevacizumab
with 5-fluorouricil, leucovorin, and oxaliplatin (FOLFOX)
in patients with previously treated metastatic colorectal
cancers provided a significant improvement in the primary
endpoint of survival [67]. Most recently, bevacizumab has
been approved by the FDA also for the therapy of renal
cell carcinoma (in combination with interferon-alfa) and
glioblastoma multiforme.
Besides bevacizumab, several other types of VEGF
inhibitors are being developed. Among these, a variety
of small molecule RTK inhibitors targeting the VEGF
receptors are at different stages of clinical development.
The most advanced are Sunitinib (Sutent®) and sorafe-
nib (Nexavar®). Sunitinib inhibits tyrosine phosphory-
lation of several RTKs including VEGFRs, PDGFR,
c-kit and Flt-3. Sunitinib is FDA-approved for the treat-
ment of Gleevec-resistant, gastro-intestinal stromal
tumor (GIST) [68] and for metastatic renal cell carci-
noma [69]. Sorafenib is a raf kinase inhibitor that also
inhibits VEGFR-2 and -3, PDGFR-β, Flt-3 and c-kit
[70]. Sorafenib has been approved by FDA for
advanced renal cell carcinoma (RCC) [71] and inopera-
ble hepatocellular carcinoma [72].

ROLE OF VEGF-A IN INTRAOCULAR
NEOVASCULAR SYNDROMES

VEGF-A mRNA expression is correlated with
neovascularization in several animal models of retinal ische-
mia [32, 64]. This is consistent with the fact that VEGF-A
gene expression is up-regulated by hypoxia [73]. In 1994, it

was reported that the levels of VEGF-A are elevated in the
aqueous and vitreous humor of human eyes with
proliferative retinopathy secondary to diabetes and other
conditions [74, 75]. Subsequently, animal studies using
various VEGF inhibitors, including soluble VEGF receptor
chimeric proteins [76], anti-VEGF-A monoclonal antibodies
[77] and small molecule VEGF RTK inhibitors [78], have
directly demonstrated the role of VEGF as a mediator of
ischemia-induced, intraocular neovascularization.
Age-related macular degeneration (AMD) is the most
common cause of severe, irreversible vision loss in the
elderly [79]. AMD is classified as non-exudative (dry) or
exudative (wet or neovascular) disease. Although the
exudative form accounts for ~ 10-20% of cases, it is
responsible for 80-90% of the visual loss associated
with AMD [80]. Verteporfin (Visudyne®) photodynamic
therapy (PDT) [81], has been approved by the FDA only
for predominantly classic lesions, in which 50% or more
of the lesion consists of classic, choroidal neovasculariza-
tion (CNV). Pegaptanib sodium (Macugen®), an aptamer
that binds to the VEGF165, but not to VEGF121 or the
proteolytic fragments of VEGF-A [82], was approved in
December 2004 for all angiographic subtypes of neovas-
cular AMD. Although both treatments can slow the pro-
gression of vision loss, only a small percentage of treated
patients experience any improvement in visual acuity.
Ranibizumab (Lucentis®) is a recombinant, humanized
Fab that binds to and potently neutralizes the biological
activities of all known human VEGF-A isoforms, as
well as the proteolytic cleavage products VEGF110 or
VEGF113 [27, 83, 84]. Ranibizumab has been evaluated
in two large, phase III, multicenter, randomized, double-
masked, controlled pivotal trials in different neovascular
AMD patient populations.
The MARINA trial randomized subjects with minimally
classic (less than 50% of the lesion consisting of classic
CNV) or occult without classic CNV to monthly sham
injections or monthly intravitreal injections of one of
two doses of ranibizumab [85]. A significantly greater
proportion of ranibizumab-treated subjects avoided mod-
erate vision loss than the sham-injected subjects. More-
over, on average, ranibizumab-treated subjects gained
vision at one or two years compared with baseline, while
sham-injection subjects lost vision. A significantly larger
percentage of subjects treated with ranibizumab
gained ≥ 15 letters than did the sham-injection group.
The ANCHOR trial randomized subjects with predo-
minantly classic CNV to verteporfin PDT with monthly
sham ocular injections, or to monthly intravitreal injections
of one of two doses of ranibizumab with a sham PDT
procedure. In the primary analysis at one year, the study
met its primary endpoint, with a significantly greater pro-
portion of ranibizumab subjects avoiding moderate vision
loss compared with subjects treated with verteporfin PDT
[86]. In addition, on average, ranibizumab-treated subjects
gained vision at one year compared with baseline, while
verterporfin PDT subjects lost vision, and a significantly
larger percentage of subjects treated with ranibizumab
gained ≥ 15 letters at one year than did the verteporfin
PDT group. In June 2006, ranibizumab was approved by
the FDA for the treatment of all subtypes of neovascular
AMD [84].
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CONCLUSIONS AND PERSPECTIVES

Research conducted over the last two decades has estab-
lished that VEGF plays an essential role in the regulation
of embryonic [87, 88], postnatal physiological angio-
genesis processes, including normal development [89,
90] and cyclical ovarian function [91]. A variety of ani-
mal models have generated much information on the
biology of VEGF and the therapeutic potential of
VEGF/VEGFR inhibitors in cancer. The findings
obtained in xenografts have been substantially confirmed
and extended in genetic models.
There is also clear evidence that targeting VEGF-A is a
meaningful approach for the treatment of cancer and age-
related macular degeneration. However, further studies
are required to establish optimal dosages and therapeutic
regimens. It appears likely that cancer therapy will be
combinatorial in most cases. VEGF inhibitors have
been approved by the FDA for the treatment of patients
with highly advanced malignancies, although preclinical
studies suggested that such agents are likely to be most
effective when the tumor burden is low. Several adjuvant
trials with bevacizumab in breast, colorectal and non-
small-cell lung cancer patients are presently ongoing to
test the hypothesis that patients with less advanced
tumors may show greater responsiveness to such therapy.
A particularly active area of research concerns the eluci-
dation of the mechanisms of refractoriness or acquired
resistance to anti-VEGF therapy. Tumor cell-intrinsic or
treatment-induced expression of angiogenic factors has
been implicated [92, 93]. Recent studies have provided
evidence that, at least in some murine models, refractori-
ness to anti-VEGF therapy is related to the ability of the
tumor to recruit CD11b+Gr1+ myeloid cells, which, in
turn, promote VEGF-dependent angiogenesis [49, 94].
Further work is needed to determine whether these find-
ings are clinically relevant.
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