

REVIEW ARTICLE

Cytokines modulate neutrophil deathCarole Elbim¹, Jérôme Estaquier^{2,3}¹ Centre de Recherche des Cordeliers, Université Pierre et Marie Curie – Paris 6, UMR S 872, Paris; Université Paris-Descartes, UMR S 872, Paris; Inserm, U872, Paris, France² Inserm U955, Faculté Crêteil Henri-Mondor, Crêteil, France³ Assistance Publique Hôpitaux de Paris, Hôpital Henri-Mondor, Crêteil, France**Correspondence:** C. Elbim, Centre de Recherche des Cordeliers, 15 rue de l'École de Médecine, 75006 Paris, France
<carole.elbim@crc.jussieu.fr>

Accepted for publication November 7, 2009

ABSTRACT. Polymorphonuclear neutrophils (PMN) are terminally differentiated cells with a short life span, in the blood circulation. The prolongation of the life span of PMN is critical in their effectiveness against pathogens, in particular in the tissues. This review summarizes the effect of cytokines on PMN apoptosis and points to some examples of pathological situations characterized by inappropriate cytokine production associated with dysregulation of PMN apoptosis.

Keywords: neutrophils, apoptosis, cytokines, inflammation

Polymorphonuclear neutrophils (PMN) are key components of the first line of defense against bacterial and fungal pathogens. They contribute to the early, innate response by rapidly migrating to inflamed tissues, where their activation triggers microbicidal mechanisms such as the release of proteolytic enzymes and antimicrobial peptides, as well as the rapid production of reactive oxygen species (ROS) in what is called the oxidative burst. ROS are essential for bacterial killing and also potentiate inflammatory reactions [1]. PMN are usually short-lived cells, which die spontaneously by necrosis or apoptosis. Apoptotic PMN are recognized and phagocytosed by macrophages, a process that is essential to resolve inflammation [2]. In fact, this phagocytic removal of intact, apoptotic neutrophils prevents them from releasing their cytotoxic content into the extracellular environment, which would occur if the cells died by necrosis [3]. The prolongation of PMN life span is critical in their effectiveness against pathogens. Shortened PMN survival due to apoptosis may contribute to susceptibility to severe and recurrent infections, in some pathological situations, through neutropenia [4, 5]; in addition, down-regulation of the pro-inflammatory capacity of PMN has been reported during apoptosis [6]. In contrast, inappropriate PMN survival and persistence at sites of inflammation are thought to contribute to the pathology of chronic inflammatory diseases [7, 8]. Thus, programmed death in PMN needs to be well regulated in order to provide an appropriate balance between their immune functions and their safe clearance. In this context, it has been shown that cytokines have a crucial role in determining PMN cell survival. This review gives an overview of the cell signalling involved in cytokine modulation of PMN death.

MOLECULAR MECHANISMS OF NEUTROPHIL APOPTOSIS (FIGURE 1)

Role of caspases

PMN apoptosis involves the activation of a family of cysteine proteases, called caspases, which cleave cellular substrates at an obligatory aspartic acid within a preferred sequence [9]. Caspase activation is a central event in apoptosis, and results in the proteolytic degradation of multiple substrate proteins that contribute to the apoptotic phenotype. PMN express a variety of regulatory and effector caspases, including caspases-1, -3 and -8 [10, 11]. PMN contain barely detectable levels of cytochrome *c*; however, the trace amount of cytochrome *c* present in PMN is both necessary and sufficient for caspase activation [12]. More recently, it has been proposed that cathepsin D, a serine protease localized in the azurophilic granules, mediates caspase-8 activity [13].

Role of calpains

Calpains are also cysteine proteases present in isolated PMN [14]. The level of calpastatin, a highly specific calpain inhibitor, decreases during PMN death, leading to a drastic enhancement of the calpain-1 activity. Activated calpain-1 cleaves, in turn, the proapoptotic molecule Bax into an active fragment [15]. Furthermore, it has been reported that calpain mediates the cleavage of Atg5, an autophagy-related gene required for the formation of autophagosomes, switching autophagy to apoptosis [16].

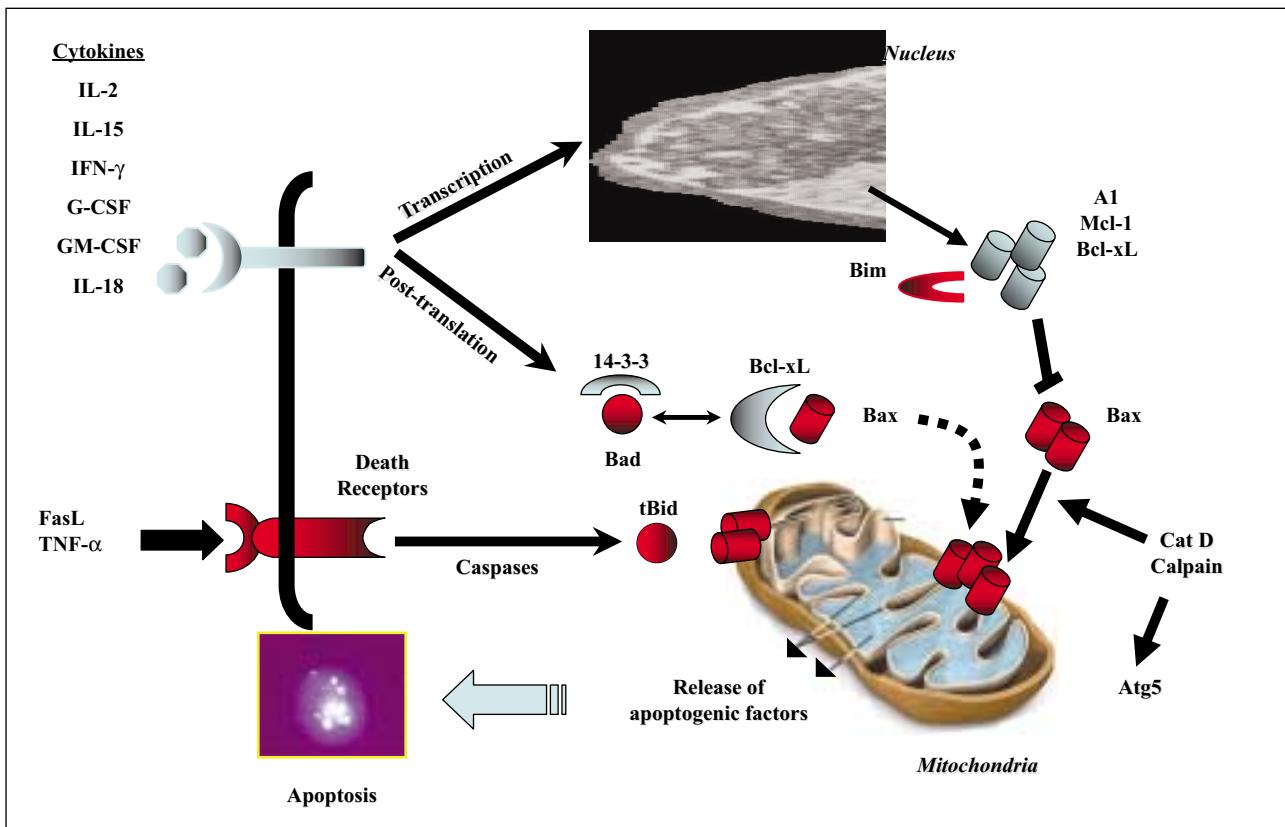


Figure 1

Biochemical pathways involved in the death of neutrophils.

Members of the *Bcl-2* family

It is now generally agreed that PMN do not express the anti-apoptotic protein Bcl-2, but they do express mRNA for the anti-apoptotic proteins, Mcl-1, A1 and Bcl-xL [17, 18]. Mcl-1 and A1 proteins are expressed in PMN, and their levels decrease prior to the onset of apoptosis [17, 18]. Mcl-1 and A1 proteins have very short half-lives (approximately 2-3 h), whereas the half-lives of the pro-apoptotic proteins such as Bax, Bak and Bad, are relatively long. In the absence of *de novo* synthesis of Mcl-1 and A1, the activity of the longer-lived pro-apoptotic proteins prevails and tips the balance towards apoptosis.

Members of the TNF family

The TNFR is a transmembrane protein containing an extracellular TNF-binding domain and a TNFR-associated death domain (TRADD) in the cytoplasmic region of the protein [19]. PMN express two TNFRs, TNFRSF1A (55-R, CD120a, or TNFRI) and TNFRSF1B (75-R, CD120b, or TNFRII), and each has a slightly different role in PMN apoptosis [20]. Gon *et al.* showed that TNFRI is required for TNF-α-mediated PMN apoptosis, and its ability to promote apoptosis is enhanced by TNFRII [21]. Blocking TNFRI, but not TNFRII, with specific antibodies inhibits neutrophil apoptosis [21]. Additional work using TNFR-selective mutants, has shown that TNFRI is dominant [22]. Moreover, the ability of TNF-α to induce PMN apoptosis was reported to be linked to ROS production. Indeed, PMN from patients with chronic granulomatous disease, character-

ized by a defect in ROS production, fail to undergo apoptosis in the presence of high concentrations of TNF-α [20, 23].

IN VITRO MODULATION OF PMN DEATH BY CYTOKINES (TABLE 1)

Among the various pro-inflammatory cytokines, it has been shown that *in vitro* IL-1β, IL-2, TNF-α, IL-15, IFN-γ, G-CSF, GM-CSF and IL-18 can prolong PMN survival [24, 25]. IL-8, a chemokine, has also been shown to delay PMN apoptosis mediated by Fas and TNF-α receptors [26, 27]. The reported effects of IL-6 on PMN apoptosis are however, more controversial [28, 29]. In this context, G-CSF and GM-CSF exert potent *in vitro* stimulatory effects on PMN from HIV-infected patients at the late stage of the disease [30, 31]. Similarly, IL-15 significantly enhanced *in vitro* PMN functional activity and decreased PMN cell death in PMN from untreated advanced HIV-infected patients [32].

Notably, TNF-α has been shown to have both pro-apoptotic and anti-apoptotic effects toward PMN. Van de Berg *et al.* showed that this bipolar effect is concentration-dependent [20]. At low concentrations (> 0.1 ng/mL), TNF-α delays PMN apoptosis and elicits production of proinflammatory cytokines, whereas at higher concentrations TNF-α initiates apoptosis. Consistent with these observations, high concentrations of TNF-α (10-100 ng/mL) override the ability of IFN-γ and GM-CSF to delay apoptosis [20].

Table 1
Inhibition of PMN apoptosis by cytokines

Cytokines able to inhibit PMN apoptosis	- IL-1 β , IL-2, TNF- α , IL-15, IFN- γ , IL-8, IL-18, G-CSF, GM-CSF [28-31]
Mechanisms	<ol style="list-style-type: none"> 1) Effect on anti-apoptotic molecules <ul style="list-style-type: none"> - Increased expression of Mcl-1 [17, 33-35] - Increased expression of A1 [41] 2) Effect on pro-apoptotic molecules <ul style="list-style-type: none"> - Decreased expression of Bax [42, 43] - Increased phosphorylation of Bax or Bad [36, 44] leading to decreased pro-apoptotic activity of Bax 3) Post-mitochondrial control <ul style="list-style-type: none"> - Inhibition of calpain activity [48]
Pathological situations associated with delayed PMN apoptosis and increased levels of pro-inflammatory cytokines	<ul style="list-style-type: none"> - Acute respiratory distress syndrome [50, 23] - Sepsis [51], acute pneumonia [42] - Rheumatoid arthritis [52] - Inflammatory bowel disease [54] - Cystic fibrosis; idiopathic fibrosis [55, 56] - Unstable angina and acute myocardial infarction [57] - Cancer associated with neutrophilia [42]
Therapeutic administration of G-CSF and GM-CSF in pathological situations associated with increased PMN apoptosis	<ul style="list-style-type: none"> - Community acquired pneumonia [58] - Cancer [59] - Cyclic neutropenia [60]

Enhanced expression of the anti-apoptotic protein Mcl-1 has been implicated in GM-CSF and IL-15-delayed PMN apoptosis [17, 33-35]. While transcriptional up-regulation of Mcl-1 is correlated with MAPK/Erk1/2 kinase activation [36], increased translation of Mcl-1 has been shown to depend on the PI-3K/Akt pathway [37]. Lyn kinase, Janus kinase/signal transducer and activator of transcription, and CD137 have also been reported to play prominent roles in GM-CSF-mediated survival through increased-Mcl-1 expression [38-40]. Early increases in Mcl-1 expression may represent phosphorylation or stabilization of Mcl-1 protein. Upregulation of the anti-apoptotic protein A1 has also been shown to be involved in GM-CSF-induced PMN survival [41].

Conversely, a decreased expression of the pro-apoptotic protein Bax has been observed in aged PMN stimulated with G-CSF, GM-CSF, IL-6 and IL-15, suggesting that the anti-apoptotic effect of these cytokines is, in part, related to the inhibition of Bax [42, 43]. Increased phosphorylation of the pro-apoptotic molecule Bad has been shown to be involved in PMN survival induced by GM-CSF [36, 44]. Phosphorylation results in the binding of Bad to the cytoplasmic 14-3-3 protein that interrupts the association between Bad and Bcl-X_L. Increased amounts of Bcl-X_L are then free to bind with Bax and prevent its proapoptotic activity. Finally, increased Bax phosphorylation has also been reported to regulate its activity, leading to increased PMN survival following GM-CSF and G-CSF-treatment [45]. The phosphorylation of Bad and Bax required PI3K/Akt activation and appeared to be mediated by Akt itself [44-46]. Moreover, death by neglect of PMN involves upregulation of the pro-apoptotic BH3-only member named Bim that is counteracted by GM-CSF [47]. Finally, G-CSF has also been recently reported to inhibit PMN apoptosis by inhibition of post-mitochondrial

calpain activity upstream of caspase-3 [48]. Interestingly, Lichtner *et al.* have reported that HIV protease inhibitors reverse *in vitro* apoptosis of PMN from AIDS patients by inhibiting calpain activity [49].

IN VIVO PMN DEATH AND IMMUNO-MODULATING EFFECT OF CYTOKINES (TABLE 1)

The lifespan of PMN increases significantly once they migrate out of the circulation and into the sites of inflammation, where they encounter various pro-inflammatory mediators. It has been extensively demonstrated that delayed PMN apoptosis is associated with increased pro-inflammatory cytokine levels in several diseases such as acute respiratory distress syndrome (ARDS) [50], sepsis [51], rheumatoid arthritis [52], cystic fibrosis, idiopathic fibrosis, acute pneumonia, and cancer associated with neutrophilia [42]. In particular, dramatically elevated levels of IL-2 have been observed in lung fluids of patients with early ARDS. IL-2 associated with GM-CSF and G-CSF significantly contributes to the inhibition of PMN apoptosis in bronchoalveolar lavage fluids of patients with ARDS [53]. Increased mucosal production of G-CSF is also related to a delay in PMN apoptosis in inflammatory bowel disease (IBD) [54], thus providing a possible mechanism for tissue accumulation of PMN in IBD. Enhanced PMN survival in airways has been reported in patients with cystic fibrosis and has been related to increased expression of G-CSF and GM-CSF [55]. Garlichs *et al.* [56] reported a pronounced delay of PMN apoptosis in patients with unstable angina and acute myocardial infarction (ACS) associated with increased serum levels of IFN- γ , GM-CSF, and IL-1 β . Serum from ACS patients inhibits apoptosis of PMN from healthy controls. Inflammatory cytokines (IL-6, IL-8) during cardiopulmonary bypass prolong the functional lifespan of PMN through modulation of apoptosis and potentiate the inflammatory response observed after coronary bypass operation [57]. Thus, the ability of various proinflammatory molecules to delay PMN apoptosis is likely to be important in the initiation of pathological inflammatory responses.

Based on these observations, hematopoietic growth factors, especially G-CSF and GM-CSF, have been found to be effective in various pathological situations associated with neutropenia related to increased apoptosis. In particular, the increased PMN apoptosis reported in patients with community-acquired pneumonia is reversed by G-CSF treatment; prolonged PMN survival is associated with a sustained release of anti-inflammatory cytokines [58]. Similarly, PMN from children with cancer that have defective functional activity and accelerated apoptosis are corrected by G-CSF and GM-CSF *in vitro* [59]. Cyclic neutropenia, due to a mutation in the gene for neutrophil elastase (ELA2), is also effectively treated with G-CSF [60].

During the last decade, the use of non-human primate models has allowed investigation the events involved in SIV infection in terms of virus dynamics and immune responses [61-65]. We recently reported that PMN from

SIV-infected Rhesus macaques (RM), chronically infected with the virulent strain SIVmac251, display increased susceptibility to undergo apoptosis [66]. PMN apoptosis was significantly increased in RMs progressing faster to AIDS as compared to non-progressors RMs. PMN death was also occurring early after infection and was prevented by inhibition of calpain activation but not caspase activation [67]. Interestingly, levels of inflammatory cytokines IL-8 and IL-1 β that prevent *in vitro* PMN death, were lower during the chronic phase in RMs progressing towards AIDS. Thus, this decrease in inflammatory cytokines might lead to an abnormal tendency of PMN to die. However, further studies are necessary to evaluate the *in vivo* effect of anti-apoptotic cytokines in non-human primate models as a preclinical phase for HIV-infected individuals.

Finally, individuals with TNFR-associated periodic syndrome (TRAPS) have a defect in the TNFR and, therefore, diminished PMN apoptosis [68]. Patients with TRAPS experience recurrent attacks of fever lasting >1 week that is associated with abdominal pain, severe arthromyalgias, rash, and periorbital edema. However, TRAPS has not been associated with increased infections [68].

CONCLUSION

Because PMN are the most abundant leucocytes in the circulation, and as they provide a primary, innate immune defense against a wide range of microbial infections before the development of a specific immune response, understanding the mechanisms that control their exhaustion in the bone marrow, trafficking and survival may have potential benefits for human diseases.

Disclosure. Funding from the ANRS to JE supported this work.

REFERENCES

- Babior BM. Oxidants from phagocytes: agents of defense and destruction. *Blood* 1984; 64: 959.
- Greenberg S, Grinstein S. Phagocytosis and innate immunity. *Curr Opin Immunol* 2002; 14: 136.
- Savill J, Dransfield I, Gregory C, Haslett C. A blast from the past: clearance of apoptotic cells regulates immune responses. *Nat Rev Immunol* 2002; 2: 965.
- Alman M, Schierloh P, de la Barrera SS, et al. Mycobacterium tuberculosis triggers apoptosis in peripheral neutrophils involving Toll-Like Receptor 2 and p38 mitogen protein kinase in tuberculosis patients. *Infect Immun* 2004; 72: 5150.
- Ramirez MJ, Titos E, Claria J, Navasa M, Fernandez J, Rodes J. Increased apoptosis dependent on caspase-3 activity in polymorphonuclear leukocytes from patients with cirrhosis and ascites. *J Hepatol* 2004; 41: 44.
- Kobayashi SD, Voyich JM, Braughton KR, DeLeo FR. Down-regulation of proinflammatory capacity during apoptosis in human polymorphonuclear leukocytes. *J Immunol* 2003; 170: 3357.
- Haslett C, Savill JS, Whyte MK, Stern M, Dransfield I, Meagher IC. Granulocyte apoptosis and the control of inflammation. *Philos Trans R Soc London Biol Sci* 1994; 345: 327.
- Edwards SW, Hallett MB. Seeing the wood for the trees: the forgotten role of neutrophils in rheumatoid arthritis. *Immunol Today* 1997; 18: 320.
- Daigle I, Simon HU. Critical role for caspases 3 and 8 in neutrophil but not eosinophil apoptosis. *Int Arch Allergy Immunol* 2001; 126: 147.
- Yamashita K, Takahashi A, Kobayashi S, et al. Caspases Mediate Tumor Necrosis Factor- α -Induced Neutrophil Apoptosis and Downregulation of Reactive Oxygen Production. *Blood* 1999; 93: 674.
- Santos-Benito AM, Mollinedo F. Expression of genes involved in initiation, regulation, and execution of apoptosis in human neutrophils and during neutrophil differentiation of HL-60 cells. *J Leucoc Biol* 2000; 67: 712.
- Murphy BM, O'Neill AJ, Adrain C, Watson RWG, Martin SJ. The apoptosome pathway to caspase activation in primary human neutrophils exhibits dramatically reduced requirements for cytochrome c. *J Exp Med* 2003; 197: 625.
- Conus S, Perozzo R, Reinheckel T, et al. Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation. *J Exp Med* 2008; 205: 685.
- Knepper-Nicolai B, Ssvall J, Brown SB. Constitutive apoptosis in human neutrophils requires synergy between calpains and the proteasome downstream of caspases. *J Biol Chem* 1998; 273: 30530.
- Altnauer F, Conus S, Cavalli A, Folkers G, Simon HU. Calpain regulates bax and subsequent smac-dependent caspase-3 activation in neutrophil apoptosis. *J Biol Chem* 2004; 279: 5947.
- Yousefi S, Perozzo R, Schmid I, et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. *Nat Cell Biol* 2006; 8: 1124.
- Moulding DA, Quayle JA, Hart CA, Edwards SW. Mcl-1 expression in human neutrophils: regulation by cytokines and correlation with cell survival. *Blood* 1998; 92: 2495-502.
- François S, El Benna J, Dang PMC, Pedruzzi E, Gougerot-Pocidalo MA, Elbim C. Inhibition of neutrophil apoptosis by Toll-like receptor agonists in whole blood: involvement of the phosphoinositide 3-kinase/Akt and NF- κ B signaling pathways leading to increased levels of Mcl-1, A1 and phosphorylated Bad. *J Immunol* 2005; 174: 3633.
- Harper N, Hughes M, MacFarlane M, Cohen GM. Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis. *J Biol Chem* 2003; 278: 25534.
- van der Berg JM, Weyer S, Weening JJ, Roos D, Kuijpers TW. Divergent effects of tumor necrosis factor α on apoptosis of human neutrophils. *J Leukoc Biol* 2001; 69: 467.
- Gon S, Gatanaga T, Sendo F. Involvement of two types of TNF receptor in TNF- α -induced neutrophil apoptosis. *Microbiol Immunol* 1996; 40: 463.
- Murray J, Barbara JA, Dunkley SA, et al. Regulation of neutrophil apoptosis by tumor necrosis factor-alpha: requirement for TNFR55 and TNFR75 for induction of apoptosis *in vitro*. *Blood* 1997; 90: 2772.
- Maianchi NA, Roos D, Kuijpers TW. Tumor necrosis factor α induces a caspase-independent death pathway in neutrophils. *Blood* 2003; 101: 1987.
- Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. *Blood* 1992; 80: 2012.
- Hirata J, Kotani J, Aoyama M, et al. A role for IL-18 in human neutrophil apoptosis. *Shock* 2008; 30: 628.

26. Kettritz R, Gaido ML, Haller H, Luft FC, Jennette CJ, Falk RJ. Interleukin-8 delays spontaneous and tumor necrosis factor-alpha-mediated apoptosis of human neutrophils. *Kidney Int* 1998; 53: 84.

27. Leuenroth S, Lee C, Grutkoski P, Keeping H, Simms HH. Interleukin-8-induced suppression of polymorphonuclear leukocyte apoptosis is mediated by suppressing CD95 (Fas/Apo-1) Fas-1 interactions. *Surgery* 1998; 124: 409.

28. Afford SC, Pongracz J, Stockley RA, Crocker J, Burnett D. The induction by human interleukin-6 of apoptosis in the promonocytic cell line U937 and human neutrophils. *J Biol Chem* 1992; 267: 21612.

29. Biffl WL, Moore EE, Moore FA, Barnett CCJ. Interleukin-6 suppression of neutrophil apoptosis is neutrophil concentration dependent. *J Leucoc Biol* 1995; 58: 582.

30. Roilides E, Mertins S, Eddy J, Walsh TJ, Pizzo PA, Rubin M. Impairment of neutrophil chemotactic and bactericidal function in children infected with human immunodeficiency virus type 1 and partial reverse after in vitro exposure to granulocyte-macrophage colony-stimulating factor. *J Pediatr* 1990; 117: 531.

31. Vecchiarelli A, Monari C, Baldelli F, et al. Beneficial effect of recombinant human granulocyte colony stimulating factor on fungicidal activity of polymorphonuclear leukocytes from patients with AIDS. *J Infect Dis* 1995; 171: 1448.

32. Mastroianni CM, d'Ettorre G, Forcina G, et al. Interleukin-15 enhances neutrophil functional activity in patients with human immunodeficiency virus infection. *Blood* 2000; 96: 1979.

33. Derouet M, Thomas L, Cross A, Moots RJ, Edwards SW. Granulocyte macrophage colony-stimulating factor signalling and proteasome inhibition delay neutrophil apoptosis by increasing the stability of Mcl-1. *J Biol Chem* 2004; 279: 26915.

34. Epling-Burnette PK, Zhong B, Bai F, et al. Cooperative regulation of Mcl-1 by janus kinase/STAT and phosphatidylinositol 3-kinase contribute to granulocyte-macrophage colony-stimulating factor-delayed apoptosis in human neutrophils. *J Immunol* 2001; 166: 7486.

35. Pelletier M, Ratthe C, Girard D. Mechanisms involved in interleukin-15-induced suppression of human neutrophil apoptosis: role of the anti-apoptotic Mcl-1 protein and several kinases including Janus kinase-2, p38 mitogen-activated protein kinase and extracellular signal-regulated kinases-1/2. *Febs Letter* 2002; 532: 164.

36. Klein JB, Rane MJ, Scherzer JA, et al. Granulocyte-macrophage colony-stimulating factor delays neutrophil constitutive apoptosis through phosphoinositide 3-kinase and extracellular signal-regulated kinase pathways. *J Immunol* 2000; 164: 4286.

37. Schubert KM, Duronio V. Distinct roles for extracellular-signal-regulated protein kinase (ERK) mitogen-activated protein kinases and phosphatidylinositol 3-kinase in the regulation of Mcl-1 synthesis. *Biochem J* 2001; 356: 473.

38. Wei S, Liu JH, Epling-Burnette PK, et al. Critical role of Lyn kinase in inhibition of neutrophil apoptosis by granulocyte-macrophage colony-stimulating factor. *J Immunol* 1996; 157: 5155.

39. Heinisch I, Daigle I, Knopfli L, Simon HU. CD137 activation abrogates granulocyte-macrophages colony-stimulating factor-mediated anti-apoptosis in neutrophils. *Eur J Immunol* 2000; 30: 3441-6.

40. Yasui K, Sekiguchi Y, Ichikawa M, et al. Granulocyte macrophage-colony stimulating factor delays neutrophil apoptosis and primes its function through Ia-type phosphoinositide 3-kinase. *J Leukoc Biol* 2002; 72: 1020.

41. Chuang PI, Yee E, Karsan A, Winn RK, Harlan JM. A1 is a constitutive and inducible Bcl-2 homologue in mature human neutrophils. *Biochem Biophys Res Commun* 1998; 249: 361.

42. Dibbert B, Weber M, Nikolaizic WH, Vogt P, Schoni MH, Blaser K. Cytokine-mediated Bax deficiency and consequent delayed neutrophil apoptosis: a general mechanism to accumulate effector cells in inflammation. *Proc Natl Acad Sci USA* 1999; 96: 13330.

43. Ottanello L, Frumento G, Arduino N, et al. Differential regulation of spontaneous and immune-complex-induced neutrophil apoptosis by proinflammatory cytokines. Role of oxidants, Bax and caspase-3. *J Leukoc Biol* 2002; 72: 125.

44. Cowburn AS, Cadwallader KA, Reed BJ, Farahi N, Chilvers ER. Role of PI3-kinase-dependent Bad phosphorylation and altered transcription in cytokine-mediated neutrophil survival. *Blood* 2002; 100: 2607.

45. Gardai SJ, Hildeman DA, Frankel SK, et al. Phosphorylation of Bax serine184 by Akt regulates its activity and apoptosis in neutrophils. *J Biol Chem* 2004; 279: 21085.

46. Maianski NA, Mul FP, van Buul JD, Roos D, Kuijpers TW. Granulocyte colony-stimulating factor inhibits the mitochondria-dependent activation of caspase-3 in neutrophils. *Blood* 2002; 99: 672.

47. Andina N, Conus S, Schneider EM, Fey MF, Simon HU. Induction of Bim limits cytokine-mediated prolonged survival of neutrophils. *Cell Death Differ* 2009; 16: 1248.

48. van Raam BJ, Drewniak A, Groenewold V, van den Berg TK, Kuijpers TW. Granulocyte colony-stimulating factor delays neutrophil apoptosis by inhibition of calpains upstream of caspase-3. *Blood* 2008; 112: 2046.

49. Lichtner M, Mengoni F, Mastroianni CM, et al. HIV protease inhibitor therapy reverses neutrophil apoptosis in AIDS patients by direct calpain inhibition. *Blood* 2006; 11: 781.

50. Ware LB, Mattay MA. The acute respiratory distress syndrome. *N Engl J Med* 2000; 342: 1334.

51. Taneja R, Parodo J, Jia SH, Kapus A, Rotstein OD, Marshall JC. Delayed neutrophil apoptosis in sepsis is associated with maintenance of mitochondrial transmembrane potential and reduced caspase-9 activity. *Crit Care Med* 2004; 32: 1460.

52. Weinmann P, Moura RA, Caetano-Lopes JR, Pereira PA, Canhão H, Queiroz MV. Delayed neutrophil apoptosis in very early rheumatoid arthritis patients is abrogated by methotrexate therapy. *Clin Exp Rheumatol* 2007; 25: 885.

53. Lesur O, Kobis A, Hermans C, Fülop T, Bernard A, Lane D. Interleukin-2 involvement in early acute respiratory distress syndrome: relationship with polymorphonuclear neutrophil apoptosis and patient survival. *Crit Care Med* 2000; 28: 3814.

54. Ina K, Kusugami K, Hosokawa T, et al. Increased mucosal production of granulocyte colony-stimulating factor is related to a delay in neutrophil apoptosis in Inflammatory Bowel disease. *J Gastroenterol Hepatol* 1999; 14: 46.

55. Sada S, Soong G, Greenberg S, Prince A. Bacterial stimulation of epithelial G-CSF and GM-CSF expression promotes PMN survival in CF airways. *Am J Respir Cell Mol Biol* 2002; 27: 561.

56. Garlich CD, Eskafi S, Cicha I, et al. Delay of neutrophil apoptosis in acute coronary syndromes. *J Leukoc Biol* 2004; 75: 828.

57. Chello M, Mastorobero P, Quirino A, et al. Inhibition of neutrophil apoptosis after coronary bypass operation with cardiopulmonary bypass. *Ann Thorac Surg* 2002; 73: 123.

58. Droemann D, Hansen F, Aries SP, *et al.* Neutrophil apoptosis, activation and anti-inflammatory cytokine response in granulocyte colony-stimulating factor-treated patients with community-acquired pneumonia. *Respiration* 2006; 73: 340.

59. Lejeune M, cantinieaux B, Harag S, Ferster A, Devalck C, Sariban E. Defective functional activity and accelerated apoptosis in neutrophils from children with cancer are differentially corrected by granulocyte and granulocyte-macrophage colony stimulating factors in vitro. *Br J Haematol* 1999; 106: 756.

60. Dale DC, Bolyard AA, Aprikyan A. Cyclic neutropenia. *Semin Hematol* 2002; 39: 89.

61. Ling B, Veazey RS, Luckay A, *et al.* SIV(mac) pathogenesis in rhesus macaques of Chinese and Indian origin compared with primary HIV infections in human. *AIDS* 2002; 16: 1489.

62. Hurtrel B, Petit F, Arnoult D, Muller-Trutwin M, Silvestri G, Estaquier J. Apoptosis in SIV infection. *Cell Death Differ* 2005; 12 (Suppl 1): 979.

63. Viollet L, Monceaux M, Petit F, *et al.* Death of CD4⁺ T Cells from Lymph Nodes during Primary SIVmac251 Infection Predicts the Rate of AIDS Progression. *J Immunol* 2006; 177: 6685.

64. Monceaux V, Viollet L, Petit F, *et al.* CD4⁺ CCR5⁺ T-Cell Dynamics during Simian Immunodeficiency Virus Infection of Chinese Rhesus Macaques. *J Virol* 2007; 81: 13865.

65. Cumont MC, Diop O, Vaslin B, *et al.* Early divergence in lymphoid tissue apoptosis between pathogenic and nonpathogenic simian immunodeficiency virus infections of nonhuman primates. *J Virol* 2008; 82: 1175.

66. Elbim C, Monceaux V, François S, Hurtrel B, Gougerot-Pocidalo MA, Estaquier J. Increased neutrophil apoptosis in chronically SIV-infected macaques. *Retrovirology* 2009; 29: 1.

67. Elbim C, Monceaux V, Mueller YM, *et al.* Early divergence in neutrophil apoptosis between pathogenic and non-pathogenic SIV infections of non-human primates. *J Immunol* 2008; 181: 8613.

68. D'Osualdo A, Ferlito F, Prigione I, *et al.* Neutrophils from patients with TNFRSF1A mutations display resistance to tumor necrosis factor-induced apoptosis. *Arthritis Rheum* 2006; 54: 998.