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Cytokines modulate neutrophil death
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ABSTRACT. Polymorphonuclear neutrophils (PMN) are terminally differentiated cells with a short life span, in
the blood circulation. The prolongation of the life span of PMN is critical in their effectiveness against patho-
gens, in particular in the tissues. This review summarizes the effect of cytokines on PMN apoptosis and points
to some examples of pathological situations characterized by inappropriate cytokine production associated with
dysregulation of PMN apoptosis.
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Polymorphonuclear neutrophils (PMN) are key compo-
nents of the first line of defense against bacterial and fungal
pathogens. They contribute to the early, innate response by
rapidly migrating to inflamed tissues, where their activation
triggers microbicidal mechanisms such as the release of pro-
teolytic enzymes and antimicrobial peptides, as well as the
rapid production of reactive oxygen species (ROS) in what
is called the oxidative burst. ROS are essential for bacterial
killing and also potentiate inflammatory reactions [1].
PMN are usually short-lived cells, which die spontaneously
by necrosis or apoptosis. Apoptotic PMN are recognized
and phagocytosed by macrophages, a process that is essen-
tial to resolve inflammation [2]. In fact, this phagocytic
removal of intact, apoptotic neutrophils prevents them
from releasing their cytotoxic content into the extracellular
environment, which would occur if the cells died by necro-
sis [3]. The prolongation of PMN life span is critical in their
effectiveness against pathogens. Shortened PMN survival
due to apoptosis may contribute to susceptibility to severe
and recurrent infections, in some pathological situations,
through neutropenia [4, 5]; in addition, down-regulation
of the pro-inflammatory capacity of PMN has been reported
during apoptosis [6]. In contrast, inappropriate PMN sur-
vival and persistence at sites of inflammation are thought
to contribute to the pathology of chronic inflammatory dis-
eases [7, 8]. Thus, programmed death in PMN needs to be
well regulated in order to provide an appropriate balance
between their immune functions and their safe clearance.
In this context, it has been shown that cytokines have a
crucial role in determining PMN cell survival. This
review gives an overview of the cell signalling involved
in cytokine modulation of PMN death.

MOLECULAR MECHANISMS
OF NEUTROPHIL APOPTOSIS (FIGURE 1)

Role of caspases

PMN apoptosis involves the activation of a family of cys-
teine proteases, called caspases, which cleave cellular sub-
strates at an obligatory aspartic acid within a preferred
sequence [9]. Caspase activation is a central event in apo-
ptosis, and results in the proteolytic degradation of multiple
substrate proteins that contribute to the apoptotic pheno-
type. PMN express a variety of regulatory and effector
caspases, including caspases-1, -3 and -8 [10, 11]. PMN
contain barely detectable levels of cytochrome c; however,
the trace amount of cytochrome c present in PMN is both
necessary and sufficient for caspase activation [12]. More
recently, it has been proposed that cathepsin D, a serine
protease localized in the azurophilic granules, mediates
caspase-8 activity [13].

Role of calpains

Calpains are also cysteine proteases present in isolated
PMN [14]. The level of calpastatin, a highly specific
calpain inhibitor, decreases during PMN death, leading
to a drastic enhancement of the calpain-1 activity. Acti-
vated calpain-1 cleaves, in turn, the proapoptotic mole-
cule Bax into an active fragment [15]. Furthermore,
it has been reported that calpain mediates the cleavage
of Atg5, an autophagy-related gene required for the
formation of autophagosomes, switching autophagy to
apoptosis [16].
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Members of the Bcl-2 family

It is now generally agreed that PMN do not express the anti-
apoptotic protein Bcl-2, but they do express mRNA for the
anti-apoptotic proteins, Mcl-1, A1 and Bcl-xL [17, 18].
Mcl-1 and A1 proteins are expressed in PMN, and their
levels decrease prior to the onset of apoptosis [17, 18].
Mcl-1 and A1 proteins have very short half-lives (approxi-
mately 2-3 h), whereas the half-lives of the pro-apoptotic
proteins such as Bax, Bak and Bad, are relatively long. In
the absence of de novo synthesis of Mcl-1 and A1, the
activity of the longer-lived pro-apoptotic proteins prevails
and tips the balance towards apoptosis.

Members of the TNF family

The TNFR is a transmembrane protein containing
an extracellular TNF-binding domain and a TNFR-
associated death domain (TRADD) in the cytoplasmic
region of the protein [19]. PMN express two TNFRs,
TNFRSF1A (55-R, CD120a, or TNFRI) and TNFSFR1B
(75-R, CD120b, or TNFRII), and each has a slightly dif-
ferent role in PMN apoptosis [20]. Gon et al. showed that
TNFRI is required for TNF-α-mediated PMN apoptosis,
and its ability to promote apoptosis is enhanced by
TNFRII [21]. Blocking TNFRI, but not TNFRII, with
specific antibodies inhibits neutrophil apoptosis [21].
Additional work using TNFR-selective mutants, has
shown that TNFRI is dominant [22]. Moreover, the
ability of TNF-α to induce PMN apoptosis was reported
to be linked to ROS production. Indeed, PMN from
patients with chronic granulomatous disease, character-

ized by a defect in ROS production, fail to undergo apo-
ptosis in the presence of high concentrations of TNF-α
[20, 23].

IN VITRO MODULATION OF PMN DEATH
BY CYTOKINES (TABLE 1)

Among the various pro-inflammatory cytokines, it has
been shown that in vitro IL-1β, IL-2, TNF-α, IL-15,
IFN-γ, G-CSF, GM-CSF and IL-18 can prolong PMN
survival [24, 25]. IL-8, a chemokine, has also been
shown to delay PMN apoptosis mediated by Fas and
TNF-α receptors [26, 27]. The reported effects of IL-6
on PMN apoptosis are however, more controversial
[28, 29]. In this context, G-CSF and GM-CSF exert
potent in vitro stimulatory effects on PMN from HIV-
infected patients at the late stage of the disease [30, 31].
Similarly, IL-15 significantly enhanced in vitro PMN func-
tional activity and decreased PMN cell death in PMN from
untreated advanced HIV-infected patients [32].
Notably, TNF-α has been shown to have both pro-
apoptotic and anti-apoptotic effects toward PMN. Van de
Berg et al. showed that this bipolar effect is concentration-
dependent [20]. At low concentrations (> 0.1 ng/mL),
TNF-α delays PMN apoptosis and elicits production of
proinflammatory cytokines, whereas at higher concentra-
tions TNF-α initiates apoptosis. Consistent with these
observations, high concentrations of TNF-α (10-100 ng/mL)
override the ability of IFN-γ and GM-CSF to delay
apoptosis [20].
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Figure 1
Biochemical pathways involved in the death of neutrophils.
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Enhanced expression of the anti-apoptotic protein Mcl-1 has
been implicated in GM-CSF and IL-15-delayed PMN apo-
ptosis[17,33-35].Whiletranscriptionalup-regulationofMcl-
1 is correlated with MAPK/Erk1/2 kinase activation [36],
increased translation of Mcl-1 has been shown to depend on
the PI-3K/Akt pathway [37]. Lyn kinase, Janus kinase/signal
transducerandactivatorof transcription,andCD137havealso
been reported to play prominent roles in GM-CSF-mediated
survival through increased-Mcl-1 expression [38-40]. Early
increases inMcl-1 expressionmay represent phosphorylation
or stabilization of Mcl-1 protein. Upregulation of the anti-
apoptotic protein A1 has also been shown to be involved in
GM-CSF-induced PMN survival [41].
Conversely, a decreased expression of the pro-apoptotic
protein Bax has been observed in aged PMN stimulated
with G-CSF, GM-CSF, IL-6 and IL-15, suggesting that the
anti-apoptotic effect of these cytokines is, in part, related to
the inhibition of Bax [42, 43]. Increased phosphorylation
of the pro-apoptotic molecule Bad has been shown to be
involved in PMN survival induced by GM-CSF [36, 44].
Phosphorylation results in the binding of Bad to the cyto-
plasmic 14-3-3 protein that interrupts the association
between Bad and Bcl-XL. Increased amounts of Bcl-XL

are then free to bind with Bax and prevent its proapoptotic
activity. Finally, increased Bax phosphorylation has also
been reported to regulate its activity, leading to increased
PMN survival following GM-CSF and G-CSF-treatment
[45]. The phosphorylation of Bad and Bax required
PI3K/Akt activation and appeared to be mediated by Akt
itself [44-46]. Moreover, death by neglect of PMN
involves upregulation of the pro-apoptotic BH3-only
member named Bim that is counteracted by GM-CSF [47].
Finally, G-CSF has also been recently reported to inhibit
PMN apoptosis by inhibition of post-mitochondrial

calpain activity upstream of caspase-3 [48]. Interestingly,
Lichtner et al. have reported that HIV protease inhibitors
reverse in vitro apoptosis of PMN from AIDS patients by
inhibiting calpain activity [49].

IN VIVO PMN DEATH AND IMMUNO-
MODULATINGEFFECTOFCYTOKINES (TABLE 1)

The lifespan of PMN increases significantly once they
migrate out of the circulation and into the sites of inflam-
mation, where they encounter various pro-inflammatory
mediators. It has been extensively demonstrated that
delayed PMN apoptosis is associated with increased
pro-inflammatory cytokine levels in several diseases
such as acute respiratory distress syndrome (ARDS)
[50], sepsis [51], rheumatoid arthritis [52], cystic fibrosis,
idiopathic fibrosis, acute pneumonia, and cancer associ-
ated with neutrophilia [42]. In particular, dramatically
elevated levels of IL-2 have been observed in lung fluids
of patients with early ARDS. IL-2 associated with
GM-CSF and G-CSF significantly contributes to the
inhibition of PMN apoptosis in bronchoalveolar lavage
fluids of patients with ARDS [53]. Increased mucosal
production of G-CSF is also related to a delay in PMN
apoptosis in inflammatory bowel disease (IBD) [54], thus
providing a possible mechanism for tissue accumulation
of PMN in IBD. Enhanced PMN survival in airways has
been reported in patients with cystic fibrosis and has been
related to increased expression ofG-CSF andGM-CSF [55].
Garlichs et al. [56] reported a pronounced delay of PMN
apoptosis in patients with unstable angina and acute myo-
cardial infarction (ACS) associated with increased serum
levels of IFN-γ, GM-CSF, and IL-1β. Serum from ACS
patients inhibits apoptosis of PMN from healthy controls.
Inflammatory cytokines (IL-6, IL-8) during cardiopulmo-
nary bypass prolong the functional lifespan of PMN
through modulation of apoptosis and potentiate the
inflammatory response observed after coronary bypass
operation [57]. Thus, the ability of various proinflamma-
tory molecules to delay PMN apoptosis is likely to be
important in the initiation of pathological inflammatory
responses.
Based on these observations, hematopoietic growth fac-
tors, especially G-CSF and GM-CSF, have been found to
be effective in various pathological situations associated
with neutropenia related to increased apoptosis. In partic-
ular, the increased PMN apoptosis reported in patients
with community-acquired pneumonia is reversed by
G-CSF treatment; prolonged PMN survival is associated
with a sustained release of anti-inflammatory cytokines
[58]. Similarly, PMN from children with cancer that
have defective functional activity and accelerated apopto-
sis are corrected by G-CSF and GM-CSF in vitro [59].
Cyclic neutropenia, due to a mutation in the gene for
neutrophil elastase (ELA2), is also effectively treated
with G-CSF [60].
During the last decade, the use of non-human primate
models has allowed investigation the events involved in
SIV infection in terms of virus dynamics and immune
responses [61-65]. We recently reported that PMN from

Table 1
Inhibition of PMN apoptosis by cytokines

Cytokines able to
inhibit PMN
apoptosis

- IL-1β, IL-2, TNF-α, IL-15, IFN-γ, IL-8, IL-18,
G-CSF, GM-CSF [28-31]

Mechanisms 1) Effect on anti-apoptotic molecules
- Increased expression of Mcl-1 [17, 33-35]
- Increased expression of A1 [41]
2) Effect on pro-apoptotic molecules
- Decreased expression of Bax [42, 43]
- Increased phosphorylation of Bax or Bad
[36, 44] leading to decreased pro-apoptotic
activity of Bax
3) Post-mitochondrial control
- Inhibition of calpain activity [48]

Pathological
situations
associated with
delayed PMN
apoptosis and
increased levels of
pro-inflammatory
cytokines

- Acute respiratory distress syndrome [50, 23]
- Sepsis [51], acute pneumonia [42]
- Rheumatoid arthritis [52]
- Inflammatory bowel disease [54]
- Cystic fibrosis; idiopathic fibrosis [55, 56]
- Unstable angina and acute myocardial
infarction [57]
- Cancer associated with neutrophilia [42]

Therapeutic
administration
of G-CSF and
GM-CSF in
pathological
situations associated
with increased PMN
apoptosis

- Community acquired pneumonia [58]
- Cancer [59]
- Cyclic neutropenia [60]
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SIV-infected Rhesus macaques (RM), chronically infected
with the virulent strain SIVmac251, display increased sus-
ceptibility to undergo apoptosis [66]. PMN apoptosis was
significantly increased in RMs progressing faster to AIDS
as compared to non-progressors RMs. PMN death was
also occurring early after infection and was prevented
by inhibition of calpain activation but not caspase activa-
tion [67]. Interestingly, levels of inflammatory cytokines
IL-8 and IL-1β that prevent in vitro PMN death, were
lower during the chronic phase in RMs progressing
towards AIDS. Thus, this decrease in inflammatory cyto-
kines might lead to an abnormal tendency of PMN to die.
However, further studies are necessary to evaluate the
in vivo effect of anti-apoptotic cytokines in non-human
primate models as a preclinical phase for HIV-infected
individuals.
Finally, individuals with TNFR-associated periodic syn-
drome (TRAPS) have a defect in the TNFR and, therefore,
diminished PMN apoptosis [68]. Patients with TRAPS
experience recurrent attacks of fever lasting > 1 week
that is associated with abdominal pain, severe arthromyal-
gias, rash, and periorbital edema. However, TRAPS has
not been associated with increased infections [68].

CONCLUSION

Because PMN are the most abundant leucocytes in the
circulation, and as they provide a primary, innate immune
defense against a wide range of microbial infections
before the development of a specific immune response,
understanding the mechanisms that control their exhaus-
tion in the bone marrow, trafficking and survival may
have potential benefits for human diseases.

Disclosure. Funding from the ANRS to JE supported this work.
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