

PROCEEDINGS

Enhancing Functional Stability of NiTi Tube for Elastocaloric Cooling Through Overstress Training

QiuHong Wang¹, Hao Yin^{1,*} and Qingping Sun^{1,2,*}

¹Department of Engineering Mechanics, School of Civil engineering, Wuhan University, Wuhan, 430072, China

²Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China

*Corresponding Author: Hao Yin. Email: yinhao@whu.edu.cn; Qingping Sun. Email: sunqingping@whu.edu.cn

ABSTRACT

Tubular NiTi is a promising candidate of eco-friendly solid-state refrigerant for elastocaloric cooling, but the severe functional degradation of NiTi material during cyclic phase transition (PT) is a key concern in the technology development. Here, plastic deformation of 6.7% is applied on the NiTi tube by overstress training under 1900 MPa for five cycles to improve the cyclic PT stability without losing cooling efficiency. It is found that after 106 compressive cycles under an applied stress of 1000 MPa, the overstress-trained NiTi tube exhibits small residual strain (0.5%), stable adiabatic temperatures drop ($T=11K$) and improved coefficient of performance (COP reaches 55), showing great potential for elastocaloric refrigeration. TEM observations show that the microstructure of the overstress-trained NiTi tube consists of 5-10 nm austenite (B2) and martensite (B19') nanodomains with near-saturated dislocations ($\rho \approx 5.153 \times 10^{16} \text{ m}^{-2}$). Such dislocation-enriched nanostructure effectively suppresses the further formation and motion of dislocation during the subsequent cyclic compression, thereby significantly enhancing the cyclic stability of the NiTi tube. The residual B19' nanodomains and dense dislocations change the PT mode from the nucleation-growth of the B19' phase to the direct growth, reducing the dissipation of the PT process and thus improving the COP of the NiTi tube. Our study provides an economic and effective method for ameliorating the severe functional degradation of bulk NiTi tubes used in solid-state refrigeration.

KEYWORDS

NiTi shape memory alloy; functional stability; elastocaloric effect; dislocation; residual martensite

Acknowledgement: The authors acknowledge financial support from Prof. Sun and Prof. Yin. We also thank Dr. Zhongzheng Deng for his helpful advice on the manuscript revision.

Funding Statement: This work was financially supported by the National Natural Science Foundation of China (project No. 11972263) and the Hong Kong Research Grant Council (project No. 16208420).

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

Copyright © 2025 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.