

PROCEEDINGS

Mechanical Characterisation and Material Modelling of Human Aortas with Vascular Smooth Muscle Activation

Ivan Breslavsky^{1,*}, Giulio Franchini², Francesco Giovanniello³, Ali Kassab^{3,4}, Gerhard A. Holzapfel^{5,6} and Marco Amabili^{1,3}

¹Westlake University, School of Engineering, Hangzhou, 310030, China

²Technology Innovation Institute, Miral HQ, Abu Dhabi, UAE

³McGill University, Department of Mechanical Engineering, Montreal, H3A 0C3, Canada

⁴Centre Hospitalier de l'Université de Montréal, Research Center, Montreal, H2X 0A9, Canada

⁵Graz University of Technology, Institute of Biomechanics, Graz, 8010, Austria

⁶Norwegian University of Science and Technology, Department of Structural Engineering, Trondheim, 7491, Norway

*Corresponding Author: Ivan Breslavsky. Email: ibreslavsky@westlake.edu.cn

ABSTRACT

Despite the critical role of vascular smooth muscle (VSM) activation in the biomechanics of human aortas, comprehensive experimental data and corresponding active material models remain limited. This study addresses this gap by presenting a detailed mechanical characterisation of human descending thoracic aortas under both passive and VSM-activated conditions.

Specimens were obtained from thirteen heart-beating donors. Mechanical testing was conducted within hours of explantation. VSM activation was induced using potassium chloride and noradrenaline, and both isometric and quasistatic stress-strain responses were measured in circumferential and longitudinal tissue strips.

Dynamic mechanical testing under physiologically relevant cyclic loading and pre-stretch conditions revealed significant differences in viscoelastic properties between passive and active states. The data enabled the development of a novel constitutive model that captures both passive and active mechanical behaviour at all levels of activation of human aortic tissue.

This multiscale investigation emphasises the essential contribution of VSM activation to both static and dynamic aortic behaviour. The findings support the design of next-generation bioinspired aortic grafts that more closely mimic native tissue mechanics and contribute to blood pressure regulation.

KEYWORDS

Microstructural characterization; smooth muscle activation; mechanical material model; human aorta

Funding Statement: M.A. acknowledges financial support from the NSERC Discovery Grant, the NSERC Research Tools and Instruments Grant, and the Canada Research Chair program.

Conflicts of Interest: The author(s) declare(s) no conflicts of interest to report regarding the present study.

Copyright © 2025 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.