

PROCEEDINGS**The Thermo-Mechanical Coupling Dynamic Analysis of Gear-Rotor-Bearing System with Multiple Dynamic Clearances****Yingxin Zhang^{1,2} and Shuai Mo^{1,2,*}**¹State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China²School of Mechanical Engineering, Guangxi University, Nanning, 530004, China

*Corresponding Author: Shuai Mo. Email: moshuai2010@163.com

ABSTRACT

To accurately describe the dynamic behavior of a gear-rotor-bearing system, it is essential to consider the interplay between thermal effects and dynamics. Therefore, this study develops a real-time coupling model that integrates thermal and dynamic aspects of the gear-rotor-bearing system, which captures the combined effects of various nonlinear factors, including dynamic clearances caused by thermal deformation, thermoelastic coupling stiffness, non-uniform load distribution in bearings, and multi-meshing state of gear. Building on this model, the study introduces a stepwise coupled thermodynamic and dynamic joint solution method, which is used to evaluate the effects of thermal influences on dynamic characteristics, including vibration amplitude, dynamic behavior, thermal sensitivity, and meshing quality. The results show that the significant role of thermal effects in the dynamic behavior of mechanical system cannot be ignored. This research improves existing dynamic modeling and analysis methods for gear systems, offering theoretical insights that enable designers to comprehensively evaluate engineering factors and explore potential performance enhancements in gears.

KEYWORDS

Gear dynamics; thermo-mechanical coupling; joint solution; multi- meshing states; multiple clearances

Funding Statement: This research is financially supported by Guangxi Science and Technology Major Program (No. AA23073019, No. AA24263074), National Natural Science Foundation of China (No.52265004), Guangxi Natural Science Fund for Distinguished Young Scholars (No. 2024JJG160014), Open Fund of State Key Laboratory of Intelligent Manufacturing Equipment and Technology (No. IMETKF2025021), Open Fund of High-end basic component innovation station (No. KY01080030124001), Open Fund for Academician Mao Ming's Workstation (No. XSJSFW-QNKXJ-202404-007), Technology Innovation Platform Project of China Aviation Engine Group Corporation (No.CXPT-2023-044), Open Fund for Innovation Workstation in the National Defense Science and Technology Innovation Special Zone (Xi'an Jiaotong University), and Innovation Project of Guangxi Graduate Education (YCBZ2024059).

Conflicts of Interest: The author(s) declare(s) no conflicts of interest to report regarding the present study.

Copyright © 2025 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.