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ABSTRACT. Acute myeloid leukemia (AML) is characterized by bone marrow accumulation of immature leukemic
blast cells. Conventional AML treatment includes induction chemotherapy to achieve disease control, followed by
consolidation therapy with conventional chemotherapy or allogeneic/autologous stem cell transplantation (allo/auto-
SCT) to eradicate residual disease. Even younger patients receiving the most intensive treatment have a median,
long-term, AML-free survival of only 45-50%, highlighting the need for new treatment strategies. The important
role of the bone marrow cytokine network during disease development and treatment is suggested by several
observations, including: (i) the increased microvascular density (MVD) in leukemic bone marrow, (ii) experimental
evidence of cytokine-mediated crosstalk between leukemic and microvascular endothelial cells, (iii) the prognostic
impact of angioregulatory cytokine levels both in patients receiving conventional chemotherapy and allo-SCT, and
(iv) the experimental evidence for an antileukemic effect of cytokine inhibition in human AML. Several cytokines
are constitutively released by human AML cells, including interleukins, chemokines, vascular endothelial growth
factor (VEGF), hepatocyte growth factor (HGF) and angiopoietins. However, the cytokine system constitutes a
functional, interacting network, and recent evidence suggests that analysis of serum cytokine profiles rather than
the analysis of single cytokines should be used for prognostic evaluation of AML patients. We will discuss the role
of angioregulatory cytokines in leukemogenesis, including their direct effects on the leukemic cells, as well as their
indirect contribution to leukemogenesis through angioregulation and crosstalk between leukemic and neighboring
stromal cells. We shall also discuss the possibility of targeting angioregulatory cytokines as a part of the treatment
strategy in leukemia.
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Acute myeloid leukemia (AML) is the most common
myeloid malignancy, the median age at diagnosis being 65-
70 years [1]. The disease is heterogeneous with regard to
clinical and biological characteristics, although all patients
show a similar bone marrow accumulation of immature
leukemia blasts [1]. AML is usually an aggressive malig-
nancy; the median survival is only 2-4 months for patients
only receiving supportive therapy [2], and the disease-
free survival rate is only 40-50%, even for the younger
patients (<60-65 years of age) who can receive the most
intensive, antileukemic treatment [1]. However, the prog-
nosis after intensive therapy also differs between patients
[1], and analysis of cytogenetics and molecular genet-
ics is used to evaluate the relapse risk and decide the
optimal treatment for individual patient [1, 3-5]. Further-
more, AML bone marrow is an interacting network of
leukemic cells and nonleukemic stromal cells. Bone mar-
row microvessel density is increased in human AML, and
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the local cytokine network is probably important for this
disease-associated angiogenesis [6]. In the present article,
we review (i) how angioregulatory cytokines contribute to
leukemogenesis, (ii) the modulation of the angioregula-
tory cytokine network during antileukemic treatment, and
(iii) the possible targeting of angioregulatory cytokines in
AML therapy.

CLINICAL BACKGROUND - CURRENT
CHALLENGES IN AML THERAPY

The primary objective for the chemotherapy of AML is
to induce complete hematological remission (i.e. disease
control) through the initial induction treatment and there-
after to reduce the risk of relapse from residual disease
through consolidation therapy [7]. The induction treat-
ment is often an anthracycline combined with cytarabine
[7, 8]; both drugs cause DNA damage, thereby trigger-
ing programmed cell death. Attempts to improve the
induction treatment using other anthracyclines [7, 9], high-
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dose cytarabine [8], combination with additional cytotoxic
agents [9], or priming of the AML cells through the
administration of hematopoietic growth factor granulocyte
colony-stimulating factor (G-CSF) [10] or granulocyte-
macrophage colony-stimulating factor (GM-CSF) [11]
have generally failed even though the growth factor treat-
ment may have an effect in certain patient subsets [10, 11].
The consolidation therapy can be conventional, intensive
chemotherapy [12] or high-dose chemotherapy followed
by autologous or allogeneic stem cell transplantation
(auto-SCT or allo-SCT) [13, 14]. Allo-SCT is the most
powerful treatment, with antileukemic effects mediated
both by the pre-transplant, high-dose conditioning therapy
and by immune-mediated graft-versus-leukemia (GVL)
effects [7, 13, 15-17]. Allotransplantation is associated
with the high risk of early, transplant-related mortality, and
reduced-intensity conditioning (RIC) is now tried to reduce
this risk [18].

The most important improvements in the treatment of AML
over the last two decades have been effected by the optimal
use of well-known DNA-damaging drugs and improved
supportive care [17]. Specific therapeutic targeting of intra-
cellular signaling is now considered in AML treatment,
but the results from initial clinical studies of gemtuzumab
ozogamacin [19], FLT3 inhibitors [20], farnesyltransferase
inhibition [21], histone deactylase (HDAC)-inhibitors [22]
and bortezomib [23] have been disappointing. This is also
true for the majority of elderly patients >60-70 years of
age who often have more aggressive disease and cannot
receive the most intensive treatments [24, 25].

LEUKEMOGENESIS - THE CONTRIBUTION
OF ENDOTHELIAL CELLS AND
ANGIOREGULATORY CYTOKINES TO AML
DEVELOPMENT

Evidence for angiogenesis as a part of
leukemogenesis in human AML

Angiogenesis is regulated by the balance between pro- and
antiangiogenic cytokines [26]. Cancer-associated angio-
genesis was originally described in solid tumors [27], but
recent studies suggest that angiogenesis is also important
for disease development and chemosensitivity in dif-
fusely infiltrating bone marrow malignancies. Firstly, bone
marrow MVD is often increased in hematological malig-
nancies, especially in patients with advanced stage disease
[28]. Secondly, antiangiogenic treatment causes vascular
disruption and has antileukemic effects [29]. Thirdly, the
cytokine crosstalk between leukemic and microvascular
endothelial cells can increase the proliferation of both the
endothelial [30] and leukemic cells [31]. Finally, the use
of magnetic resonance imaging of the bone marrow vas-
cularity may be used in the prognostic evaluation of AML
patients [32].

Expression of cytokines by bone marrow endothelial
cells

Endothelial cells show constitutive or inducible expres-
sion of various chemokines and adhesion molecules; diffe-
rent expression patterns are seen in various vascular beds
and this seems to depend on both signals from the local
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microenvironment and on epigenetic differences [33]. The
bone marrow contains small blood vessels (i.e. the sinu-
soids) that have unique structural and functional properties
[34]. Primary bone marrow endothelial cells (BMECs)
express adhesion molecules such as E-selectin and CD31
(PECAM) [34, 35], which have been reported to play
a role in the homing of hematopoietic progenitor cells
[36-38]. In addition, BMECs express several cytokines,
cytokine receptors and adhesion molecules that promote
hematopoiesis and are also involved in stem cell mobi-
lization [35, 39, 40]. Some of the molecules expressed by
primary BMECs and cell lines are shown in table 1, and in
particular CXCL12 and stem cell factor (SCF) are impor-
tant for the maintenance of hematopoietic stem cells (HSC)
in bone marrow niches (see below).

The vascular stem cell niche

Bone marrow niches are specialized microenvironments
involved in the maintenance of hematopoietic stem cells
(HSCs). Most studies of HSC niches have focused on
the endosteum because osteoblasts and osteoclasts seem
to have a regulatory role, either directly or indirectly in
HSC self-renewal [41]. More recent studies of HSCs have
shown that areas adjacent to sinusoids may constitute an
HSC niche, which has been termed the vascular niche
(or perivascular niche). Firstly, a large proportion (about
60%) of purified HSCs, identified by the signaling lym-
phocyte activation molecules (SLAM) family markers,
were found to reside in close association with sinusoidal
endothelium [42]. Secondly, endothelial cells express seve-
ral molecules that play a role in hematopoiesis [43], and
several factors released by endothelial cells may contribute
to HSC maintenance. Studies by Butler er al. [44, 45]
have suggested that the ability of endothelial cells to sup-
port HSC expansion and self-renewal is orchestrated by
angiocrine factors, including Notch ligands and stem cell
factor (SCF). A recent study also implicated a role for
endothelial cells in HSC maintenance through SCF pro-
duction [46], and HSC activity seems to be increased in
mice after activation of AKT1 in endothelial cells [47].
Thirdly, endothelial cells may constitute a site of dif-
ferentiation for hematopoietic cells. A study by Avecilla
et al. [48], showed that BMECs promote megakaryocyte
maturation and platelet production through chemokine-
mediated signaling involving CXCL12 and FGF-4. Finally,
endothelial cells have been shown to play an important role
in HSC engraftment after SCT, which seems to depend
on VEGFR2-signaling [49]. Another study also implied
that VEGF-induced upregulation of Tie-2 expression was
involved in regeneration of vasculature and hematopoietic
recovery after bone marrow suppression [50]. Thus, these
studies suggest an important role for endothelial cells in
HSC maintenance and hematopoietic regeneration in vivo
through secretion of soluble factors.

Bone marrow niches regulate HSC self-renewal, prolife-
ration, differentiation and quiescence, although the exact
function of the vascular niche is currently under debate.
Endothelial cells can promote HSC maintenance, how-
ever as HSC traffic in and out of the vasculature, it has
been suggested that sinusoidal endothelium functions as a
temporary place of residence where HSC proliferate and
differentiate before entering circulation. Sinusoidal blood
vessels are found in the central region of the marrow, but
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Table 1
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Expression of various molecules by human BMEC.

Molecule expressed

Endothelial cell L

Growth factors and cytokines

investigated

G-CSF, GM-CSF, SCF, FGF, IL11, IL6, IL1-o, TGF-B,

Primary cells and cell line [39, 43, 146, 147]

Nitric oxide Cell line

IL5 after stimulation Primary cells [148]
Leukemia inhibitory factor (LIF) Primary cells [149]
Chemokines

CXCLI12, CXCL10", CXCL8, CCL5", CCL2 Cell line [150]
CXCLS, CCL3 Cell line [147]
Chemokines receptors

CCR3-4, CXCRI1-5 Cell line [150]

Adhesion molecules

CD29 (fibronectin receptor), CD49b/c/d

CD62e (E-selectin)”*, CD106 (VCAM-1)*, CD54 (ICAM-1), CD31 (PECAM-1),

Primary cells and cell line [146, 151]

* Inducible by inflammatory cytokines.

are also found near to the endosteum [51], and both these
areas are in close contact with other cell types includ-
ing CXCL12-abundant reticular (CAR) cells [52], which
express high levels of CXCL12, and these cells are thus
suggested to be key components of HSC niches. Taken
together, sinusoidal endothelium seems to be involved in
HSC maintenance, and regulation of hematopoiesis. How-
ever, it is still not known which cell types have the major
responsibility for creation of the niche, if there is cross-talk
between multiple niches, or if the functions of the niches
are unique [53].

Myoepithelial pericytes — a possible participant in
bone marrow angiogenesis?

Pericytes are important for small vessel stabilization; they
constitute a capillary-stabilizing network, and can be iden-
tified by their expression of a-actin, desmin, and the
receptor for PDGF-B [54]. These cells also seem to be
important for the control of endothelial cell differentia-
tion and proliferation [54]. Pericytes are also present in
normal human bone marrow, where they coat the microvs-
sels [55, 56]. The possible role of pericytes in AML
bone marrow has not been investigated, but cytokine-
mediated crosstalk in an interacting triangle of pericytes,
endothelial cells and leukemic blasts, may also be impor-
tant for leukemogenesis in human AML [57]. CXCL12 is
important both in AML development and pericyte differ-
entiation, and even though this chemokine is not released
by AML cells [58-60] it is present in the bone marrow
and may thereby induce pericyte differentiation, together
with the PDGF-AB release by primary human AML
cells [61].

Constitutive release of angioregulatory cytokines by
primary human AML cells

Primary human AML cells show constitutive release of
a wide range of angioregulatory cytokines, including
vascular endothelial growth factor (VEGF) [6, 62-66], hep-
atocyte growth factor (HGF) [67-72], several CCL and
CXCL chemokines [58, 59, 73-75], Angiopoietin (Ang)-
1 and Ang-2 [66, 69, 76-80]. The biological characte-
ristics and their possible importance in leukemogenesis

and chemosensitivity in human AML are summarized in
table 2. The levels of several angioregulatory cytokines
are associated with prognosis for patients receiving inten-
sive chemotherapy, an observation suggesting that they
are involved in the regulation of apoptosis and are impor-
tant for chemosensitivity. Primary human AML cells also
show constitutive release of several matrix metallopro-
teases (MMPs) and tissue inhibitors of MMPs (TIMPs)
that are involved angiogenesis through their role in matrix
degradation. However, these mediators also have addi-
tional effects and interact with the chemokine system
through their protease activity with cleavage and activation
[81, 82]. Some of the TIMPs also seem to act as signaling
molecules, independent of their protease inhibitory effect,
but it is not known whether these effects are important in
human AML. Finally, as summarized in table 2, specific
inhibitors of the proangiogenic cytokines have been deve-
loped; many of these are now in early clinical trials and
CXCLA4 inhibition is even used in routine clinical practice
as a stem cell mobilizer [83].

LEUKEMOGENESIS AND
CHEMOSENSITIVITY - THE SYSTEMIC
CYTOKINE PROFILE IN PATIENTS WITH
UNTREATED AML

Primary human AML cells show constitutive release of a
wide range of cytokines and chemokines, and increased
systemic (plasma/serum) levels of single cytokines are
associated with adverse prognosis, i.e. VEGF, HGF and
Ang-2 [64, 78, 79, 84-86] (table 2). However, cytokine
action is contextual and a part of the cytokine networks
[87]. It therefore seems rational to study cytokine networks
in addition to single cytokine levels. This has recently been
performed in untreated AML by Kornblau ez al. [88]. They
examined 290 patients, most of them below 60 years of age
who they received later intensive treatment than usual. Dis-
tinct, systemic cytokine- and chemokine signatures were
found, these were altered compared to healthy controls
and had prognostic impact; they were also associated with
remission rate (i.e. primary resistance), risk of later relapse
and overall survival. We have performed a similar study
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Angioregulatory cytokines constitutively released by primary human AML cells; biological and clinical relevance for human AML.

[58, 59,73, 74] CCL3 Receptor: CCR5

angiogenic hematopoietic
cells; (ii) activation of
endothelial cell chemotaxis
and tubular formation; (iii)
stimulating angiogenic

growth factor signaling; (iv)

direct stimulating and
activation of RTKs

Cytokine Cytokine and cytokine Biological effects Role in AML Pharmacological
[REFS] receptors targeting
VEGF The VEGF family: Endothelial cells: support Release: Released by bone Neutralizing antibodies
[6, 62-66] VEGFA, VEGFB, growth, migration and marrow stromal cells, but also to VEGF or VEGFRs;
VEGFC, VEGFD and survival of endothelial cells  constitutive release by the AML Soluble VEGFRs or
placental growth factor mainly through ligation of cells for a subset of patients chimeric receptors that
Receptors: two related VEGFR2 Prognosis: high intracellular trap circulating VEGF
RTKs of VEGFRI and Vessels: critical for blood levels and serum levels are VEGFR TKIs.
VEGFR2 vessel formation and associated with adverse prognosis
regulation of vascular
permeability
HGF (MET Receptor: MET; HGF is Endothelial cells: supports ~ Release: bone marrow stromal Biological HGF/MET
ligand) the only ligand growth, migration, survival  cells, constitutive release by antagonists include
[67-72] Signaling: HGF ligation differentiation AML cells for a subset of patients  truncated or uncleavable
activates the RTK activity Prognosis: high serum levels are ~ HGF forms that
and initiates intracellular associated with adverse prognosis  antagonize full-length
signaling; the most HGF
important being PI3K and Neutralizing monoclonal
STAT pathways antibodies directed
against HGF or MET
Synthetic MET kinase
inhibitors that antagonize
intracellular ATP binding
CCL CCL1 Receptor: CCR8 Angiogenic chemokines: Constitutive release by primary ~ Broad-spectrum
chemokines CCL2 Receptor: CCR2 (i) recruitment of AML patients for most patients chemokine inhibitors

(e.g. NR58-3.14.3) and
more specific inhibitors
are under developing

CXCLS Receptor: CXCR1,2

Angiogenic chemokines:
(i) recruitment of
angiogenic hematopoietic
cells; (ii) activation of
endothelial cell chemotaxis
and tubular formation; (iii)
stimulating angiogenic

growth factor signaling; (iv)

direct stimulating and
activation of RTKs

Constitutive release by primary
AML patients for most patients

CXCL9-11 CXCL4 Receptor:
CXCR3B
CXCLO9-11 Receptor:

CXCR3B

Angiostatic chemokines:
(i) recruitment of T-cells
which induce expression of
angiostatic factors; (ii)

activation of endothelial cell

apoptosis and regression
Inhibition of angiogenic
growth factors; (iii) direct
binding and inhibition of
RTKs

Constitutive release by primary
AML patients for most patients

Angiopoietin 1/2
[66, 69, 76-80]

The Ang family: Ang
1-4, Angl and Ang?2 are
most relevant for
angiogenesis. Angl is a
Tie2 agonist, Ang?2 is
context-dependent Tie2
partial agonist/antagonist.
Receptor: Tiel and Tie2
are RTK receptors, Tie 2
is most relevant in
angiogenesis

Tie2 ligation by Angl
strengthens the interaction
between endothelial and
periendothelial cells, Ang2
disrupt these interactions.
Angl: Released by
non-endothelial cells and
binding Tiel and Tie2
Ang2: Released by
endothelial cells and
binding Tie 1

The prognostic impact of Ang2
is controversial: High protein
levels in bone marrow are
associated with good prognosis,
high mRNA expression in bone
marrow and high plasma levels
have an adverse prognosis. High
plasma levels are associated with
unfavorable outcome after
allo-SCT

Angl release: Low-risk NPM 1
mutations are associated with
high constitutive Angl release by
primary AML cells. Angl release
is further increased in the
presence of endothelial cells
Constitutive Ang2 release is
seen for a minority of patients

Selective Angl/Ang2 or
Tie2 antibodies:
Decrease angiogenesis
and inhibits tumor growth
in experimental models
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Table 2
(Continued)
Cytokine Cytokine and cytokine Biological effects Role in AML Pharmacological
[REFS] receptors targeting
MMPs MMP-2, MMP-7, Complex functions MMPs are both membrane MMP inhibitors
[81, 82] MMP-9, MMP-10: involved in proliferation, bound and secreted by AML (MMPIs): Decrease
Quantitative most antiapoptose, angiogenesis,  cells, secreted by stromal cells angiogenesis and inhibits
important in AML invasiveness and cytokine (MMP-2) tumor growth in vitro.
processing Limited in vivo results
TIMPs TIMP-1, TIMP-2: Inhibit MMP function, also TIMP-1 and TIMP-2 are Selective TIMP
[81, 82] Quantitative most involved in apoptosis and secreted by majority of AML antibodies
important in AML proliferation patient cells

Abbreviations: ATP, adenosine triphosphate; RTK, receptor tyrosine kinase; TKI, tyrosine kinase inhibitor; MET, Mesenchymal-epithelial transition factor; VEGF, VEGF

receptor

involving 82 unselected and untreated AML patients, but
we also included patients with AML relapse. Our patients
also had a higher median age and included 42 patients
above the age of 60 years who only received disease-
stabilizing treatment owing to their age and/or comorbidity
[89]. We could not investigate the possible prognostic
impact of the pretherapy cytokine profiles because of the
heterogeneity with regard to treatment regimen. Both our
study and the study by Kornblau ef al. compared prethe-
rapy AML serum profiles with healthy controls; the results
from these two AML studies are summarized in table 3.
The two studies had 23 overlapping cytokines; 14 of these
cytokines showed similar alterations in the two studies,
whereas differences were observed for nine mediators.
One possible explanation for this discrepancy between the
two studies could be the greater age of our patients; age-
dependent differences in serum cytokine levels in AML
have been described previously [84]. However, it should
be emphasized that the differences were seen mainly for
interleukins (IL2, IL4, ILS5, IL10, IL12) that showed simi-
lar low levels in both studies, however, these differences
were relatively small. Serum cytokine profiles have also
been investigated in patients with preleukemic myelodys-
plastic syndrome (MDS) and aplastic anemia [88, 90]. The
cytokine profiles in AML patients seem to differ from the
profiles both in MDS and aplastic anemia patients, but the
overall cytokine profile may have a diagnostic value in the
differentiation between aplastic anemia and hypoplastic
MDS [90].

THE CYTOKINE PROFILE FOR ACUTE
LEUKEMIA PATIENTS AFTER REMISSION
INDUCTION - PRETRANSPLANT CYTOKINE
PROFILES VERSUS RISK OF EARLY
COMPLICATIONS AFTER ALLOGENEIC
STEM CELL TRANSPLANTATION

The antileukemic effect of allo-SCT is due to the ablative
conditioning therapy, nonspecific graft-versus-host (GVH)
reactivity and specific GVL reactivity [91], but there is
still a risk of AML relapse [92]. Allotransplantation is, in
addition, associated with a relatively high non-relapse or
treatment-related mortality due to infection, severe graft-
versus-host disease (GVHD), and chemotherapy-induced
organ toxicity [13]. Cytokines are then important both for
the relapse risk, hematopoietic and immune reconstitution,

and development of post-transplant complications [93].
This is reflected in the significant correlations between
pretransplant serum levels of single soluble mediators and
prognosis, i.e. high pretransplant levels of angioregulatory
Ang-2, as well as its receptor Tie2 and adverse prognosis
after allo-SCT [79, 94]. In one of these studies, study serum
Ang-2 levels were determined for 90 patients with AML
or high risk MDS before allo-SCT [79]; the Ang-2 levels
were then a predictor for time-to-relapse, however, there
was no significant association with overall survival [79].
Increased pretransplant serum Tie2 levels seems to reflect
residual leukemic disease burden [94] and was an inde-
pendent predictor both for post-transplant AML relapse
and overall survival [94].

G-CSF-mobilized allogeneic peripheral blood stem cell
(PBMC) grafts contain an increased number of mature T
cells, but despite this, the incidence of T cell-dependent,
severe GVHD (especially acute GVHD) is not significantly
increased compared with bone marrow transplantation
(BMT) [95, 96]. An immunosuppressive effect of G-CSF
on donor T cells in the grafts probably contributes to a pro-
tective effect of G-CSF against GVHD, including both the
direct effects on the T cells and the indirect modulation of
T cell responsiveness through altered local cytokine net-
works [95, 97]. High pretransplant levels of HGF are also
associated with a reduced risk of severe GVHD [98], and
animal studies suggest that this cytokine has immunosup-
pressive effects in allotransplantation [99, 100].

The cytokine system constitutes an interacting functional
network [58, 88], and it may therefore be more rele-
vant to investigate cytokine profiles rather than single
cytokines. In a recent study we investigated the associa-
tions between pretransplant cytokine profiles and the risk
of post-transplant complications [98]. The use of hierarchi-
cal clustering allowed us to identified three distinct patient
subsets based on the pretransplant serum profile of 35
cytokines (fable 3) [98]. One of these subsets was charac-
terized by a low rate of severe, acute GVHD and early death
after transplantation, and the cytokine profile of these low-
risk patients was characterized by high levels of potentially
immunosuppressive HGF and G-CSF and, in addition,
high fibroblast growth factor (bFGF) levels and low levels
of the GVHD-associated soluble tumor necrosis factor
receptor 1 (TNFR1) [98]. Thus, the pretransplant cytokine
serum profile reflects the influence of pretransplant factors
on the risk of early post-transplant mortality These pre-
transplant profiles seem to reflect the specific biological
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Table 3
The serum cytokine profile in patients with acute myeloid leukemia; a summary of the results from previous studies comparing the systemic
cytokine profiles in AML patients with the cytokine profiles in healthy individuals [88, 89, 93]. 1 and | indicate increased or decreased values
respectively, compared to healthy controls.

Cytokine serum profiles before and following antileukemic treatment
Cytokine Prechemotherapy Prechemotherapy Pre-allotransplant/Complete Post-allotransplant
profile [89] profile [88] remission profile [98] profile [98]
Patient number 82 AML 162 AML 27 AML 27 AML
100 MDS 13 ALL 13 ALL
4 Other 4 Other
Median age (range) 67 (27-90) 62 (21-86) 47 (18-61) 47 (18-61)
Chemokine
CCL2 - - - 4
CCL3 - ! ! 4
CCL4 . y . 4
CCLS - - nt nt
CCL11 - - 1 1
CXCL5 1 nt 1 -
CXCLS$/IL-8 1 2 1 2
CXCL10 1 4 - 4
CXCL11 - nt 1 1
Interleukins
IL-la 1 nt - -
IL-1B - - - -
IL-IRA - 0 1 !
IL-2 { - { T
IL-4 \ \ { -
IL-5 1 - nt nt
IL-6 t \ t -
1L-7 nt N nt nt
IL-9 nt - nt nt
IL-10 1 ! - 4
IL-12 1 nt nt
IL-13 - - nt nt
IL-15 nt 4 nt nt
IL-17 - - 1 -
Growth factors
EGF 1 nt - 1
bFGF - - nt nt
HGF 1 nt - 1
G-CSF 1 - 1 1
GM-CSF 1 4 A -
Leptin - nt - -
PDGF-BB nt N nt nt
TPO - nt - 4
VEGF - - -
Immunoregulatory cytokines
IFNy t \ { \
TNF-a - - 1 -
CD40-Ligand - nt 4 1
nt = not tested.
status of AML patients in complete hematological remis- chemotherapy. The TBI effect may at least partly be
sion because they are different both from the profiles caused by a transient activation of remaining host den-
described in untreated AML, patients with other hema- dritic cells and thereby presentation of alloantigens to
tological diseases (MDS and aplastic anemia) and from donor-derived immunocompetent cells [95]. A predomi-
the profiles detected three to six months after the allotrans- nantly immunosuppressive, pretransplant cytokine profile
plantation (fable 3) [88-90]. may then reduce the impact of these effects. Future studies
Other pretransplant factors are also associated with an should therefore try to clarify whether this altered pre-
increased risk of post-transplant complications, e.g. liver transplant cytokine network is only a marker or an effector
pathology, the use of total body irradiation (TBI) in pre- mechanism directly involved in the development of severe,

transplant conditioning, and the extent of pretransplant post-transplant complications.
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THE SYSTEMIC CYTOKINE PROFILE AFTER
ALLOGENEIC STEM CELL
TRANSPLANTATION -
CYTOKINE-MEDIATED EFFECTS ON
ANGIOREGULATION AND
IMMUNOREGULATION

Cytokines are key regulators of post-transplant, hemato-
logical and immunological reconstitution, defense against
infections and acute and chronic GVHD. The develop-
ment of GVHD seems to be a multistep process involving
cytokine release by sequential activation of monocytes and
T cells [101], and this is probably mediated and/or followed
by a general cytokine storm [95]. This observation also
illustrates the importance of studying broader cytokine pro-
files rather than single cytokines. However, some cytokines
seem to be of particular importance and to have a different
impact depending on the time of evaluation [93]; this is
true for HGF, where high pretransplant levels seem to be
associated with a decreased risk of acute GVHD and early
death [98-100], whereas high, post-transplant levels are
associated with increased risk of acute GVHD [102, 103].
Currently, there is no validated, diagnostic biomarker for
chronic GVHD with diagnostic, prognostic or predictive
value [104]. We compared the pre- and post-transplant
cytokine profiles in 26 patients tested three to six months
after allo-SCT. The post-transplant profiles differed from
healthy controls and thus did not represent a normaliza-
tion of the systemic cytokine network [98]. The most
striking difference was a late, post-transplant increase in
several chemokines [98]. Furthermore, Paczensky et al.
screened a biomarker panel to distinguish acute GVHD
(a distinct clinical picture developing during the first 100
post-transplant days) from non-GVHD complications after
allo-SCT [102]. They detected 35 biomarkers that dif-
fered significantly between patients with and without acute
GVHD. When using a validation group of 424 patients and
logistic regression analysis, they detected four biomarkers
that could be used to identify patients with GVHD, i.e.
IL-8/CXCLS8, TNFR1, HGF and IL-2Ra [102]. All four
markers had previously been associated with the develop-
ment of GVHD [103, 105-107], and the combined use of
these markers increased the diagnostic potential compared
with the use of single markers [101]. These observations
further support the hypothesis that cytokine profiles can be
used for prognostic and diagnostic evaluation of allotrans-
planted patients

AUTOLOGOUS STEM CELL
TRANSPLANTATION - ANGIOREGULATORY
EFFECTS OF STEM CELL MOBILIZATION
AND HARVESTING

Autologous stem cell transplantation can be used in the
post-remission consolidation treatment of AML [14]. The
angioregulatory cytokine network has not been investi-
gated in detail in AML patients receiving auto-SCT, but
a recent study examined the effects of peripheral blood
stem cell harvesting on serum cytokine levels in patients
with multiple myeloma (MM); these observations may also
be relevant in AML [108]. This study showed that the
stem cell harvesting procedure altered the plasma cytokine
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profile with (i) a significant and relatively large increase
in HGF levels immediately after stem cell apheresis, this
increase persisting for more than 24 hours; (ii) the aphere-
sis decreased Ang-1 and VEGEF levels but increased the
levels of endocan which is a microvascular endothelial cell
marker; (iii) the procedure did not alter the levels of Ang-
1, Ang-2, VEGF, angiogenin or bFGF. These observations
suggest that stem cell harvesting can alter angioregulation,
but it is not known whether similar alterations would have
any clinical impact in AML.

THE CYTOKINE NETWORK IN HUMAN AML -
ANGIOREGULATION, IMMUNOREGULATION
AND FUTURE ANTILEUKEMIC THERAPY

Angioregulatory cytokines seem to have important direct
and indirect effects in the regulation of AML cell prolife-
ration, and the use of cytokine inhibitors in the treatment of
AML is therefore considered. In contrast to other hemato-
logical malignancies where antiangiogenic drugs are used
in their routine treatment (e.g. bortezomib, thalidomide and
lenalidomide treatment in myeloma [109]), the use of such
drugs in the treatment of AML is not established, even
though several antiangiogenic strategies are now being
investigated in preclinical studies and clinical trials of
human AML (figure I).

Direct targeting of angiogenic factors — results from
clinical studies involving single agent therapy

Bevacizumab is a VEGF-A-specific, recombinant, mon-
oclonal antibody that had a limited clinical effect in two
studies including patients with refractory AML [110, 111].
Sunitinib is a VEGF RTK inhibitor that, in addition,
inhibits KIT and FLT3-initiated signaling. This drug also
seems to have a limited effect in AML with complete or
partial remissions of short duration, but only for a minor-
ity of patients [112, 113]. HGF/MET inhibitors [72] and
targeting of Ang/Tie2 [114] have not been examined in
clinical AML studies. MMP inhibitors have also been con-
sidered as possible targets in antiangiogenic therapy [82],
but so far they have only been tried in the treatment of
solid tumors with initial results having been disappointing
[82]. Thus, antiangiogenic therapy alone seems to have
limited antileukemic effects and future clinical studies in
human AML should rather focus on combination therapy,
e.g. combination with conventional intensive therapy or
new targeted therapy.

Therapeutic targeting of endothelial cells — vascular
disrupting agents

Another possible strategy is to destabilize cancer-induced
microvessel networks through selective targeting of prolif-
erating endothelial cells [115]. Vascular disrupting agents
target microvessels by direct binding to microtubules in
endothelial cells; the intention is then to cause a rapid and
selective vascular shutdown in the malignant microenvi-
ronment and thereby induce secondary cancer cell death
due to ischemia [115]. The effects of these agents seem
to be, at least, partly mediated through inhibition of the
tubulin skeleton [115]. The possibility of systemic toxic-
ity due to general endothelial cell damage or endothelial
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Figure 1
Cytokine-mediated crosstalk between endothelial and AML cells; possible strategies for targeted therapy. The figure illustrates the
crosstalk, and the different strategies to inhibit this system. Various cytokines are released by AML cells into the extracellular space. This release
is mediated through aberrant activation of intracellular signaling systems, including (i) the intracellular signaling pathway PI3K-AKT-mTOR,
(ii) the transcription factor NF-kB and (iii) the molecular chaperone HSP90. All these system can be inhibited by specific inhibitors. Once
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several approaches, including directly binding of neutralizing antibodies,
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dysfunction needs to be further investigated [116], but fos-
bretabulin/CA4P [115] and its analogue OXi4503 have
shown promising preclinical results [29, 117]

Inhibition of cytokine-dependent angiogenesis through
targeting of intracellular signaling

Pharmacological targeting of intracellular signaling offers
the possibility to inhibit the AML cells as well as AML-
supporting stromal cells, including endothelial cells [118].
Several strategies are considered and we will discuss
NF-«kB, heat shock protein (HSPs) and PI3K-mTOR
inhibition (figure I). NF-kB is a group of transcription
factors involved in several processes that are important
in leukemogenesis, including inflammation, angiogene-
sis and cytokine release [119]. The NF-kB system in
leukemic cells can be modulated by extracellular fac-
tors, e.g. TNF-a release by neighboring immunocompetent
cells [120] or by a hypoxic bone marrow microenvi-
ronment that leads to local chemokine release [119]
that will affect cell trafficking in the leukemic bone
marrow. Furthermore, the chemokine receptors CXCR4
and CX3CR1 become up-regulated in primary human
AML cells during conventional in vivo chemotherapy
even though IKK/NF-kB cascade genes become down-

regulated [121]. In addition, systemic chemokine levels
are also altered in AML patients during/following conven-
tional chemotherapy [84]. Similar effects to conventional
chemotherapy with increased chemokine release together
with decreased CXCR4 expression by primary AML cells,
but with increased levels of active NF-kB, have also
been observed after in vitro treatment with the proapop-
totic protein kinase C agonist Ingenol-3-angelate (PEP00S)
[122]. Finally, several other angiogenic factors (e.g. VEGF,
IL-8/CXCL8 and MMP-9) are also regulated by NF-
kB and their constitutive release by malignant cells is
thereby suppressed by NF-«kB-inhibition [82, 123-126].
Even though a detailed understanding of the molecular
mechanisms of thalidomide, lenaladomide and bortezomib
in AML is not available, these drugs may inhibit angio-
genesis through NF-«kB inhibition in myeloma treatment
[109, 119], and similar effects may be operative in AML
[119, 127].

Heat shock proteins (HSPs) are a group of proteins that
show low expression under physiological conditions, but
increased levels are triggered during environmental stress,
i.e. malignant transformation [128]. HSPs are usually
cytoplasmic proteins that can be released extracellularly
as soluble, biologically-active forms [129, 130]. They
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function as molecular chaperons and are important for
the stabilization of several client proteins. HSP90 seems
especially important in the regulation of cell proliferation,
survival and adaptation to unfavorable microenviron-
ments [128]. HSP90 inhibition probably targets multiple
proangiogenic regulators and may thus have direct,
inhibitory effects on leukemic cells and additional, indirect
antileukemic effects through inhibition of angiogenesis
by the targeting of client proteins [75, 128, 131-133].
Firstly, the HIF/VEGF axis is usually up-regulated dur-
ing angiogenesis [134], and several key mediators of this
pathway, including hypoxia inhibitory factor (HIF) and
the VEGF receptor, are HSP90 client proteins [131]. Sec-
ondly, HSP90 is important for the stabilization of AKT;
this kinase mediates phosphorylation and activation of
NO synthase (NOS) that is important for the activa-
tion of endothelial cells [131]. Thirdly, HSP90 inhibition
can reduce the constitutive release of several proangio-
genic factors by human AML cells [132], and the HSP90
inhibitor SNX-2112 suppresses endothelial cell organiza-
tion into capillary tubes through inhibition of AKT/NOS
[135]. Clinical trials of HSP90 inhibitors in AML are in
progress [136, 137]; it will then be important to evaluate
the contribution of both the direct and indirect antileukemic
effects during in vivo treatment [133, 138].

The PI3K-mTOR pathway seems important in angiogene-
sis: (i) PI3K activation and phosphorylation is probably
important for VEGF receptor activation [139]; (ii) Angl
can phosphorylate and activate Tie2 in a PI3K-dependent
manner and survival, and migration of endothelial cells is
thereby induced [139], and (iii) mTOR seems important
for angiogenesis by acting as a switch in endothelial cell
metabolism and their proliferation is thereby supported
[140]. Thus, PI3K-mTOR inhibition seems to mediate
antiangiogenic effect through several molecular mecha-
nisms [141]; similar effects are seen in AML [142] and an
alteration of local angioregulatory cytokine profiles seems
to be important [143].

Targeted therapy after remission induction through
modulation of the cytokine network

New targeting therapies with antiangiogenic effects are
currently being considered in human AML. The clinical
experience so far is limited, but the scientific basis for
simultaneous inhibition of several intracellular signaling
systems with effects on both AML and endothelial cells
is emerging. Whether these strategies should be incorpo-
rated in consolidation chemotherapy or as a post-transplant
maintenance treatment remains to be clarified. It may also
be possible to combine such strategies with conventional
chemotherapy, but future studies will be needed to clarify
this question. The question of post-remission treatment is
difficult especially in elderly patients where the value of
intensive consolidation treatment has been questioned and
two-cycle regimens have thus been developed [144]. How-
ever, even for the patients included in this last study, with
a relatively low median age of 69 years, treatment-related
mortality was 10%. Another study has compared an inten-
sive strategy consisting of a single, intensive consolidation
course versus a prolonged, but less intensive outpatient
strategy; the decreased intensity regimen showed improved
survival with decreased mortality [145]. Cytokine target-
ing including antiangiogenic strategies should therefore
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be investigated further, in addition to long-time mainte-
nance treatment, especially for the large group of elderly
patients.

CONCLUDING COMMENTS

AML is an aggressive malignancy; even younger patients,
who can receive comparatively high levels of inten-
sive chemotherapy, have a relatively low, long-term,
disease-free survival. For the large group of elderly
patients affected, intensive strategies are not possible
because of high, treatment-related mortality. Cytokine-
directed, antiangiogenic therapy may be tried in order to
increase the antileukemic effects of conventional intensive
chemotherapy. This would serve as a possible low-toxicity
treatment in elderly, AML patients or as a post-transplant
immunomodulatory/antileukemic strategy.
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