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ABSTRACT: Feature selection (FS) plays a crucial role in medical imaging by reducing dimensionality, improving
computational efficiency, and enhancing diagnostic accuracy. Traditional FS techniques, including filter, wrapper, and
embedded methods, have been widely used but often struggle with high-dimensional and heterogeneous medical
imaging data. Deep learning-based FS methods, particularly Convolutional Neural Networks (CNNs) and autoen-
coders, have demonstrated superior performance but lack interpretability. Hybrid approaches that combine classical
and deep learning techniques have emerged as a promising solution, offering improved accuracy and explainability.
Furthermore, integrating multi-modal imaging data (e.g., Magnetic Resonance Imaging (MRI), Computed Tomography
(CT), Positron Emission Tomography (PET), and Ultrasound (US)) poses additional challenges in FS, necessitating
advanced feature fusion strategies. Multi-modal feature fusion combines information from different imaging modalities
to improve diagnostic accuracy. Recently, quantum computing has gained attention as a revolutionary approach
for FS, providing the potential to handle high-dimensional medical data more efficiently. This systematic literature
review comprehensively examines classical, Deep Learning (DL), hybrid, and quantum-based FS techniques in medical
imaging. Key outcomes include a structured taxonomy of FS methods, a critical evaluation of their performance
across modalities, and identification of core challenges such as computational burden, interpretability, and ethical
considerations. Future research directions—such as explainable AI (XAI), federated learning, and quantum-enhanced
FS—are also emphasized to bridge the current gaps. This review provides actionable insights for developing scalable,
interpretable, and clinically applicable FS methods in the evolving landscape of medical imaging.

KEYWORDS: Feature selection; medical imaging; deep learning; hybrid approaches; multi-modal imaging; quantum
computing; explainable AI; computational efficiency; dimensionality reduction
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1 Introduction
In artificial intelligence-driven medical imaging, FS is an essential component since it enables the

management of a substantial quantity of high-dimensional imaging data, enhancing diagnostic accuracy
and interpretability. In the first part of this section, we will present the idea of FS, discuss its significance in
medical imaging, and then examine the many FS approaches currently in use. These methods include those
based on classical techniques, deep learning methods, fusions of classical and deep learning methods, and
quantum mechanics. In addition, it details the primary research questions, the aims of the investigation, and
the study’s contribution. At the end of the section, the structure of the paper is presented to the readers to
direct them through the topics contained within the remaining sections of the publication.

1.1 Motivation and Objectives
Medical imaging has become an indispensable tool in modern diagnostics, offering rich data for the

detection and treatment of various diseases. However, the high dimensionality and heterogeneity of medical
image data pose significant challenges for effective analysis and interpretation. This study is motivated by
the need to optimize medical image analysis workflows through advanced feature selection (FS) techniques
that enhance accuracy, efficiency, and interpretability. The primary objectives of this review are: (1) to classify
and evaluate classical and deep learning-based FS methods used in medical imaging; (2) to explore hybrid
and quantum-enhanced FS approaches; and (3) to highlight future directions for clinically applicable and
computationally scalable FS strategies.

1.2 Context
Medical imaging is essential to contemporary medicine since it assists in disease detection, diagnosis,

and treatment planning. The use of modern imaging modalities, including MRI, CT, PET, ultrasound, and
X-ray, results in the production of a large quantity of high-resolution anatomical and functional data [1].
Because these datasets are high dimensional, redundant, and noisy, it is necessary to employ appropriate
methodologies to process them using the machine learning models that are currently accessible [2]. AI-
driven techniques, in particular, ML and DL, have brought about a revolution in the field of medical
image analysis [3]. However, these techniques are severely impacted by the curse of dimensionality, which
significantly impacts computational inefficiency, lack of generalization, and consequences of interpretability.
FS algorithms have recently been proposed as a fundamental preprocessing step in medical image analysis
to address these issues [4].

The procedure known as FS is designed to pick the most pertinent and informative characteristics within
the dataset while simultaneously removing irrelevant or redundant features [5]. FS improves diagnostic
accuracy, reduces computing costs, and offers insight into the operation of AI-based diagnostic systems,
ultimately making the systems more clinically viable and efficient [6]. Traditional FS methods, such as
filter, wrapper, and embedding methods, have been utilized in a significant amount of feature optimization;
however, they are confronted with the challenge of scaling with huge, high-dimensional imaging datasets
features [7]. Approaches to FS based on deep learning, such as CNN, Autoencoders, and Transformers,
intrinsically learn the distinguishing features from the medical image and perform better than other
methods [8]. The drawback of this, however, is that deep learning models are challenging to comprehend,
which leads to a lack of confidence in their application in clinical settings.

Despite this, hybrid FS techniques, which combine traditional FS methods with methods based on deep
learning, have gained popularity to overcome the constraints discussed earlier [9]. These methods aim to
achieve equivalent FS efficiency, good model interpretability, and diagnostic accuracy [10]. This makes them
more suitable for clinical applications in the real world. With medical imaging expanding into differences
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of multi-modal data integration (for example, integrating MRI, CT, and PET), FS is also confronted with
other issues, such as combining and aligning multiple modalities, which calls for more sophisticated selection
algorithms [11]. These challenges underscore the need for advanced solutions in the field of medical imaging.

As the field of quantum computing continues to advance, new FS approaches that use quantum
principles have evolved, offering the exciting possibility of providing high-dimensional medical data that can
be analyzed more effectively [12]. Even though there are still outstanding problems regarding the practical
implementations of quantum FS-based approaches, these challenges include scalability and independent
clinical validations [13]. Nevertheless, many significant issues still exist, such as the absence of standard eval-
uation benchmarks and the lack of comprehension of interpretability, ethics, and computational resources.
Solving these problems will improve the reliability and uptake of AI-driven FS techniques for use in clinical
settings and raise their transparency.

Considering the growing importance of FS in AI-driven medical imaging, this review aims to:

• To analyze existing FS techniques applied in medical imaging, focusing on classical, deep learning-based,
hybrid, and quantum FS approaches.

• To compare the effectiveness of different FS methods regarding accuracy, computational efficiency, and
clinical interpretability.

• To explore the role of FS in multi-modal medical imaging and the challenges associated with fea-
ture fusion.

• To investigate the emerging applications of quantum-based FS and their potential advantages over
classical methods, offering hope for significant improvements in medical imaging.

• To highlight the key challenges, ethical considerations, and future research directions in AI-driven FS
for medical imaging.

To achieve these objectives, this review addresses the following research questions:

• RQ1: How have classical FS techniques evolved, and what are their limitations in handling high-
dimensional medical imaging data?

• RQ2: To what extent do deep learning-based FS methods improve diagnostic accuracy, and how do they
compare in terms of interpretability?

• RQ3: How can hybrid FS techniques integrate classical and deep learning methods to enhance clinical
decision-making?

• RQ4: What role does FS play in multi-modal medical imaging, and how can feature fusion strategies be
optimized?

• RQ5: How does quantum computing revolutionize FS in medical imaging, and what are its potential
applications?

• RQ6: What are the key challenges, ethical considerations, and open research problems in AI-driven FS
for medical imaging?

This study provides a comprehensive, structured analysis of FS techniques in medical imaging, making
the following key contributions:

• Systematic categorization and comparison of FS methods, covering classical, deep learning, hybrid, and
quantum-based approaches.

• Critical evaluation of FS techniques regarding accuracy, computational efficiency, and interpretability.
• Discuss multi-modal FS strategies, focusing on feature fusion and dimensionality reduction challenges.
• Explore quantum computing applications in FS and assess their feasibility for real-world

implementation.
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• Identification of key challenges, ethical considerations, and open research problems in AI-driven FS for
medical imaging.

In addition, this study is a helpful resource for researchers, AI practitioners, and healthcare professionals
interested in understanding the current status of FS in medical imaging, the obstacles it faces, and the trends
expected to emerge.

Here is how the remainder of this paper is structured. A complete discussion of feature selection
strategies is presented in Section 2. Section 3 describes the systematic literature review process, including
the inclusion criteria, the search technique, and the data extraction. Techniques are broken down into four
categories: classical, deep learning, hybrid, and quantum-based methods, and a comparison of these methods
is also included. In the final section, Section 4, the proposed study explores the difficulties and potential
future research opportunities associated with applying FS to medical imaging. These problems include the
incorporation of multi-modal data, the interpretation of medical imaging models, the resolution of ethical
concerns, and the spending of computational resources. In conclusion, Section 5 brings the study to a close
by providing a list of the most critical points and a summary of the potential paths the research could take
to establish frameworks for artificial intelligence-driven medical imaging.

1.3 Research Gap
Despite the significant advancements in classical and deep learning-based feature selection methods,

several limitations remain. Classical techniques often struggle with high-dimensional, multi-modal datasets,
lacking the flexibility to adapt to complex spatial and semantic features present in modern medical images.
Deep learning-based methods, while powerful, are frequently criticized for their black-box nature and
require large amounts of labeled data. Furthermore, limited attention has been paid to privacy-preserving
and quantum-enhanced FS frameworks, which are critical in emerging clinical applications. Finally, while
hybrid FS strategies have shown promise, systematic evaluations comparing their efficacy across imaging
modalities are scarce. These gaps underline the need for a comprehensive review that bridges classical, deep
learning, and quantum paradigms to guide future research in this domain.

2 Literature Review
Selecting features through FS reduces medical imaging dataset dimensions by maintaining only the most

important diagnostic features for classifying diseases. The three categories of classical FS techniques include
filter, wrapper, and embedded methods, which provide specific benefits and constraints. Experimental
researchers have successfully used this approach for medical imaging investigations that involve labeling
tumors, spotting lesions, and making disease predictions. This part investigates original FS techniques,
including their mathematical frameworks and medical imaging applications.

Countervalue selection allows feature classification through statistical assessments that bypass machine
learning model operations [14]. The methods demonstrate computational efficiency and run independently
of classifiers, enabling them to effectively handle large medical imaging datasets [15]. The three standard filter
techniques for data selection are Pearson Correlation, Mutual Information, and Chi-square tests.

The analysis measures linear interconnections between two variables by using Pearson Correlation.
The FS system uses Pearson Correlation to locate important target-related features, removing unneeded
attributes [16]. The formula for Pearson Correlation coefficient r appears as follows in Eq. (1):

r =
∑n

i=1 (Xi − X) (Yi − Y)
√
∑n

i=1 (Xi − X)2
∑n

i=1 (Yi − Y)2
(1)
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where Xi and Yi represent the feature values and target labels, X and Y are their respective means, and n
denotes the total number of samples.

The absolute r value shows strong correlation levels when nearing +1 or –1, but low correlations exist
when values approach zero. Applying Pearson Correlation in medical imaging helps eliminate redundant
feature elements, thus maintaining independent features that matter for analysis [17].

Mutual Information provides an assessment of variable dependence through its evaluation of informa-
tion reduction when one variable becomes known [18]. It is defined as in (2):

I (X; Y) = ∑
x∈X
∑
y∈Y

P(x , y) log(P(x)P (y)
P (x , y) ) (2)

where:

• P (x , y) is the joint probability distribution of X and Y .
• P (x) and P (y) are the marginal probabilities of X and Y .

The Medical Imaging field benefits from MI-based FS because this approach optimizes the selection of
variables with complex nonlinear trends better than traditional methods, such as those used in tumor seg-
mentation procedures [19]. Categorical features and the target variable demonstrate statistical dependence
according to the Chi-square test [20]. It is computed in Eq. (3):

χ2 = ∑
(O − E)2

E
(3)

where:

• O represents observed frequency.
• E represents expected frequency.

The analysis of discrete feature selection tasks mainly employs this technique to identify significant
predictors of disease within medical images based on their histogram-based features [21]. Wrapper methods
execute a feature subset evaluation loop by running machine learning model training and validation
procedures across all combinations to select the subset demonstrating superior model performance [22].
Although such methods deliver optimized feature collections, their computational cost remains high.
Recursive Feature Elimination (RFE) and Forward/Backward Selection are among the preferred wrapper
approaches in feature selection applications [23]. Algorithm 1 has been included to illustrate the feature
selection process used in the study.

Algorithm 1: Recursive feature elimination (RFE)

Input: Feature set F = {f1, f2, ..., fn}, base model (e.g., SVM)
Output: Optimal feature subset F*
1. Train the base model on the full feature set F
2. Compute feature importance scores
3. Repeat:

a. Remove the least important feature
b. Retrain the model on the reduced set
c. Recompute importance scores

Until the desired number of features is reached
4. Return final selected feature subset F*
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The feature selection methodology, RFE, accurately produces an optimal set of features because it builds
upon a series of benefits. For datasets of all sizes, from small to medium, RFE provides an effective solution
to choose essential features that support model performance [24]. The main disadvantage of RFE is its
high computational burden, affecting its performance with large-scale datasets with numerous features. The
medical imaging field mainly utilizes RFE due to its vital function in identifying discriminative features for
applications such as tumor detection and Alzheimer’s disease classification to build more precise diagnostic
models [25].

A set of standard feature selection techniques include Forward Selection as well as Backward Selection.
Forward Selection starts by adding no features and continues by including new features individually to assess
their impact on performance at each selection step [26]. The feature selection process of Backward Selection
begins with all available features, which are then reduced one by one based on performance criteria [27].
The techniques are broadly used in cardiovascular disease prediction systems because they analyze ECG
features successfully [28]. These selection methods improve classification accuracy by choosing optimal
wavelet coefficients, leading to more accurate and efficient predictive cardiovascular condition diagnosis [29].
Embedded methods execute feature selection operations within their model training process by integrating
the selection procedure with model learning procedures. Massive medical imaging applications favor these
methods because they merge efficient performance for practical applications [30]. LASSO (Least Absolute
Shrinkage and Selection Operator) allows regression-based feature selection through L1 regularization until
coefficients reach absolute zero values, which selects the vital features alone [31]. The LASSO optimization
function is defined in Eq. (4):

min
⎛
⎝

n
∑
i=1
(yi − Xi β)2 + λ

p

∑
j=1
∣β j∣
⎞
⎠

(4)

where:

• yi represents the target variable.
• Xi represents the feature matrix.
• β represents feature weights.
• λ is a regularization parameter controlling sparsity.

LASSO is a popular medical imaging biomarker identification tool for early cancer detection and
Alzheimer’s disease progression assessment [32]. Random Forest as an ensemble learning method automati-
cally generates feature importance scores through its capability to measure how features reduce classification
errors [33]. Feature importance is calculated in Eq. (5):

I ( f j) = ∑
t∈T

∣T ∣
∣T ∣ΔGinit( f j) (5)

where

• I ( f j) is the importance score of feature f j.
• ΔGinit ( f j) represents the decrease in Gini impurity when splitting on feature f j.
• T is the set of all trees in the forest.

Random Forest-based FS offers several advantages, particularly in the context of high-dimensional
and multi-modal medical imaging datasets. The method shows effectiveness when dealing with extensive
complex datasets in numerous medical applications [34]. In medical imaging, where data is abundant,
feature selection is crucial to pattern identification and machine learning. In medical imaging, feature
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selection improves classification accuracy and simplifies data. These methods improve multi-sourced data
treatment and medical infection diagnosis [35]. Scientific studies confirm that Random Forest-based
FS produces successful results for brain tumor identification through feature prioritization of extracted
radiomics characteristics from MRI medical images. The method enhances the diagnostic model’s reliability
and interpretability to produce better decisions supporting medical settings [36].

FS methods provide efficient solutions that are easy to interpret while having medical imaging dimen-
sional reduction tasks. The filter methods of Mutual Information and Chi-square process fast calculations
that help identify features holding crucial statistical information. Extensive computation expenses character-
ize the model-specific performance optimization of RFE and Forward/Backward Selection methods because
they function as wrapper methods. The combination occurs in model training when using LASSO and
Random Forest Feature Importance, achieving precise predictions and optimal operational speed. Research
protocols based on these strategies achieve their goals even though complex multi-modal imaging data
creates challenges that inspire scientists to develop next-generation analysis methods using deep learning
frameworks and quantum-filtering techniques. Here’s a structured comparison table for classical FS methods
in medical imaging in Table 1:

Table 1: Comparison of classical FS methods in medical imaging

Category Method Advantages Disadvantages Applications
Filter Pearson

correlation [37]
Simple, fast; ignores

nonlinearities
Feature selection for

radiomics-based tumor
classification

Feature selection for
radiomics-based tumor

classification
Filter Mutual Information

(MI) [38]
Captures nonlinear

trends; costly in
high-dim data

Brain MRI segmentation,
lesion detection

Brain MRI segmentation,
lesion detection

Filter Chi-Square Test [39] Effective for categorical
data; not for

continuous features

Histopathology image
classification

Histopathology image
classification

Wrapper Recursive Feature
Elimination (RFE) [40]

Optimizes subsets;
computationally

intensive

ECG-based heart disease
classification, MRI-based

tumor segmentation

ECG-based heart disease
classification, MRI-based

tumor segmentation
Wrapper Forward selection [41] Improves model

efficiency; slow for
large sets

Feature selection in
CT-based lung cancer

detection

Feature selection in
CT-based lung cancer

detection
Wrapper Backward

selection [42]
Efficient

dimensionality
reduction; risk of early

feature loss

Cardiovascular disease risk
prediction using

ultrasound imaging

Cardiovascular disease risk
prediction using

ultrasound imaging

Embedded LASSO regression [43] Sparse selection;
sensitive to λ

Biomarker selection in
MRI-based Alzheimer’s

diagnosis

Biomarker selection in
MRI-based Alzheimer’s

diagnosis

Recent imaging technology relies on feature selection to screen relevant data without overfitting
or computation. This paper compares approaches based on computational efficacy, feature interaction,
and high-dimensional data, giving a model for clinicians and academics to co-develop new diagnostics
tools [44]. Random Forest-based FS offers several advantages, particularly in the context of high-dimensional
and multi-modal medical imaging datasets. The method effectively processes complex, voluminous data,
allowing for its use across various medical applications [45]. The explainable feature selection process is
vital to RF-based FS because it enables medical professionals to discern the most crucial features utilized
in diagnosis. Brain tumor diagnostic classification benefits from random forest-based FS through MRI scan
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radiomics features, providing accurate predictive assessments of tumor types [46]. This method enhances
the diagnostic model’s reliability and interpretability, supporting informed medical decisions in real-world
clinical settings.

Usually, features are extracted from the images followed by dimensionality reduction, applying an FS
technique to prune abundant features and superior classification performance results. Deep learning can
automatically extract hierarchical representations of medical images from neural networks without resorting
to handcrafted features and predefined statistical measures, as against the classical FS methods [47]. Three
DL based FS approaches, i.e., CNN-based FS, autoencoder-based FS, and transformer-based FS, along with
their methodologies and their applications in medical imaging, are explored in this section.

The ability to capture spatial hierarchies and extract discriminative features from raw image data has
particularly fueled recent advances CNNs as a tool for FS in medical imaging. CNN is a data-driven way
of constructing features, unlike the FS techniques in the existing literature, which rely on tailored feature
engineering [48]. These CNNs comprise a few layers, namely convolutional, pooling, and fully connected.
The feature extraction part in a CNN can be written directly in math form [49]. It is defined in Eq. (6) as
follows:

Fl = σ (Wl ∗ Fl−1 + bl) (6)

where:

• F represents the feature map at layer l ,
• Wl is the convolutional filter,
• denotes the convolution operation,
• bl is the bias term, and
• σ is the activation function (e.g., ReLU).

To eliminate irrelevant features, CNN-based FS techniques identify the most significant feature maps
at various convolutional stages [50]. Feature importance scores are computed from such methods as
Grad–CAM (Gradient-weighted Class Activation Mapping) or Layer-wise Relevance Propagation (LRP),
and the final feature set is selected based on those scores [51].

Since medical image analysis problems, such as brain tumor segmentation, diabetic retinopathy
detection, and histopathology image analysis, rely on CNN-based feature selection [52,53], it plays a vital
role in medical image analysis [54]. For brain tumor segmentation, CNN-based FS increases the tumor
identification accuracy, especially in MRI scans, by using the most relevant region of interest, thus increasing
the diagnosis and treatment planning precision and same is applied to detect diabetic retinopathy [55].
CNN-based FS is used in fundus images to identify the vascular abnormalities necessary for the early
diagnosis of diabetic eye disease and early intervention, which may help prevent vision loss [56]. For instance,
ensemble CNN models have recently shown enhanced classification accuracy in brain tumor detection tasks
using MRI scans [52]. Transfer learning-based CNN architectures like Mask R-CNN have been applied
to prostate segmentation with promising results [53]. Furthermore, CNN models extract high-level tissue
patterns, which are helpful for cancer classification in histopathology image analysis. CNN-based FS attends
to extreme regions in the images that would contribute the most to improving the accuracy and efficiency of
medical image interpretation in several applications [57]. Additionally, hybrid CNN approaches combined
with Bayesian methods have improved privacy-preserving feature extraction in smart imaging systems, such
as terahertz-based breast cancer detection [58].
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Another well-known deep learning approach for FS uses autoencoders (AEs), which are trained to learn
compact, low-dimensional feature representations while avoiding losing important information of the high-
dimensional medical imaging data [59]. The two main components they consist of are [60]

• Encoder: Compresses input data into a lower-dimensional latent space.
• Decoder: Reconstructs the original input from the latent space.

FS extends to using a probabilistic latent space, which in Variational Autoencoders (VAEs) helps
improve FS by embedding relevant medical information in the extracted features while filtering noise.
A VAE’s objective function is a reconstruction loss combined with a regularization term [61]. It explains
in Eq. (7) as:

L = Eq(z∣x)[log p(x∣z)] − DKL(q (z∣x)∥ p(z)) (7)

where:

• x is the input medical image,
• z is the latent feature representation,
• q (z∣x) is the encoder’s approximation of the posterior distribution,
• p (z∣x) is the decoder’s likelihood, and
• DKL is the Kullback-Leibler divergence [62], ensuring the latent space follows a normal distribution.

The sparse autoencoder model effectively reduces high-dimensional data with the least reconstruction
error when used unsupervised. It is superior to classical methods in classification problems, particularly
when the quantity of labelled data is limited [63]. The author of [64] enforce the sparsity constraint, the
sparsity by KL divergence through Eq. (8):

Ω =
h
∑
j=1

ρ log ρ̂ jρ + (1 − ρ) log (1 − ρ̂ j) (1 − ρ) (8)

where:

• ρ is the desired sparsity level,
• ρ̂ j is the average activation of neuron j,
• h is the number of hidden neurons.

VAE, SAE, and autoencoders are essential for improving disease prediction and detection in medical
diagnostics. In particular, autoencoders and CNN architectures have demonstrated utility in classifying
early-stage Alzheimer’s disease using PET and MRI modalities [65,66]. VAEs are utilized for Alzheimer’s
disease prediction by extracting relevant biomarkers from MRI scans to distinguish Alzheimer’s patients
from healthy individuals, enabling early detection and intervention [67]. It is also worth noting that recent
research has explored the use of voice biomarkers as prognostic indicators for neurological disorders,
such as Parkinson’s disease, demonstrating the potential of vocal features combined with machine learning
techniques for early diagnosis [68]. For COVID-19 detection, SAEs identify key features of the lungs in
chest X-rays or CT scans, allowing for effective and prompt diagnosis [69]. Additionally, in gene expression
analysis, autoencoders search for critical genetic features within a high-dimensional medical database to
identify genetic markers, which enhances our understanding of complex diseases. Deep learning models
significantly impact medical diagnostics, improving accuracy and efficiency [70]. Recently, Transformers,
particularly Vision Transformers (ViT), have been recognized as especially promising for medical imaging
because they can capture long-range dependencies of an entire image [71]. Unlike CNNs, which utilize local
receptive fields, ViTs analyze images in their entirety as sequences of patches and are capable of highlighting
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more global features [72]. ViTs segment an image into non-overlapping patches and then map these to a
sequence of feature vectors using a linear projection function [73]. Eq. (9) shows that:

Z = [Z1 , Z2, . . . , ZN] =Wp X + bp (9)

where:

• X is the input image,
• Wp and bp are learnable parameters,
• Z represents the transformed patch embeddings.

In transformers, the attention mechanism is helpful for FS because the importance scores of features
can be computed through the self-attention function [74]. As seen in Eq. (10):

Attention(Q , K , V) = softmax(QKT
√

dk
)V (10)

where:

• Q , K , V are query, key, and value matrices,
• dk is the scaling factor.

ViTs have shown promising potential in diverse medical imaging applications, such as representation
learning, segmentation, classification, regression, and so on, especially with their capability of modeling long-
range dependencies and global contextual features [75]. ViTs offer a significant contribution in brain tumor
segmentation because they extract global features from MRI scans to help locate the tumor boundary with
high precision, a requirement to accomplish an exact diagnosis and treatment planning [76]. Transformers
are excellent for skin lesion classification because they enable the selection of key diagnostic patterns in
dermoscopic images and thus better detect and classify various skin conditions like melanoma [77]. For
example, ViTs are suitable for biomedical 3D medical imaging since they can efficiently process and represent
complex structures, such as 3D CT scans. This capability improves the performance of deep learning models
and thus enhances the feature representation and implies better analysis of medical images and, hence, better
clinical outcomes. Fig. 1 shows the workflow of Deep Learning based workflow diagram and Table 2 shows
the performance of different deep learning feature search techniques.

Figure 1: Workflow of Deep Learning-Based Feature Selection (FS) Techniques. This diagram illustrates the typical
stages in DL-based FS, including raw medical image input, feature extraction via convolutional or transformer layers,
feature importance ranking, and the final selection of diagnostically relevant features used for classification or prediction
tasks
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Table 2: Performance comparison of deep learning FS techniques

FS technique Feature extraction
mechanism

Computational
complexity

Interpretability Key applications

CNN-Based
FS [58]

Hierarchical
features from

convolution layers

Moderate to High Low Tumor detection,
Retinopathy,

Histopathology
Autoencoder-

Based
FS [78]

Latent space
compression (AE,

VAE, SAE)

High Moderate Alzheimer’s,
COVID-19, Gene

expression
Transformer-Based

FS (ViTs) [79]
Global attention

across image
patches

Very High Moderate to
High

Brain tumor
segmentation, Skin
lesion classification,

3D CT/MRI
Transfer Learning

FS [80]
Pre-trained CNN

or ViT feature
encoders

Medium to High High to Low MRI-based
Alzheimer’s
classification

Foundation Model
FS

Universal
representations

from large
pretrained models

High High General-purpose
medical imaging,

Zero-shot diagnosis

Some recent advances in DL based FS techniques, including CNNs, Autoencoders, and Transformers,
are the application of these approaches in medical imaging, which increased feature extraction and selec-
tion considerably [81]. CNN-based FS uses convolutional layers to encode spatially meaningful features,
Autoencoders encode to compress the data and ensure the retention of vital parts of the information, while
Transformers encode to achieve global contextual feature extraction [82]. While there are advantages and
disadvantages to each method, combining multiple FS techniques in hybrid methods appears to have great
potential to increase accuracy in diagnostic models and reduce the black box characteristic.

Currently, FS in medical imaging is under development through hybrid approaches, which join classical
statistical measurement, deep learning architectures, and optimization algorithms [83]. These methods try to
overcome the deficiencies of the stand-alone FS techniques and enable their potential to improve accuracy,
interpretability, and computational efficiency. Finally, the three major hybrid FS strategies are Classical +
Deep Learning Approaches, Metaheuristic optimization-based FS, and Ensemble Learning for FS.

The first one, Classical +Deep Learning FS, merges traditional statistical techniques and deep learning
models in feature selection in a way that preserves interpretability in the model [84]. A straightforward
solution to this issue is to combine Principal Component Analysis (PCA) with CNNs. PCA reduced
dimensionality by selecting the principal components, which were then fed to CNNs for feature extraction
and classification. So, this hybrid strategy is aimed to soften the constraints of the ‘curse of dimensionality’
and to maintain the most usable features for diagnosis [85]. A Genetic Algorithm (GA) with Deep Neural
Networks (DNN) represents another popular combination where GA is applied to select the feature subset
in simulating natural evolution. This algorithm sequentially selects relevant features according to a fitness
function to better generalize and scale down overfitting [86]. The expression of the feature selection process
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using GA and deep learning mathematically can be expressed in Eq. (11):

F∗ = arg max Fitness(F) (11)

where F∗ is the optimal feature subset, and the fitness function evaluates the classification performance using
selected features.

Since dimensional reduction of features has been shown to significantly impact the performance of these
models for brain MRI classification, lung nodule detection [87], and histopathology image analysis, these
hybrid techniques have proven successful. This review explores the use of DL in medical imaging, particularly
for brain tumor analysis, covering segmentation, classification, and prediction techniques. It summarizes key
contributions and provides a taxonomy of current research in the field. The article concludes by discussing
limitations and future research directions for DL in medical imaging [88].

A second powerful category of algorithms is feature selection based on metaheuristic optimization,
where nature-inspired algorithms perform the feature selection. This paper describes these techniques that
perform an intelligent search for the optimal feature subsets, which is superior to an exhaustive search [89].
One of the metaheuristic approaches that is mainly used is the GA, which uses selection, crossover, and
mutation operations to evolve an optimal feature subset. Particle Swarm Optimization (PSO) is an efficient
method by which FS is modeled as a swarm intelligence problem [90]. In PSO, particles (feature subsets)
adjust their positions on their own best performance and the best-known feature set. Removing redundant
or irrelevant features allows efficient convergence to an optimal solution [91]. Also, Ant Colony Optimization
(ACO) follows the foraging behavior of ants to find different feature subsets and refine the selection with
pheromone trails [92]. The PSO, which can be used for the FS, is represented mathematically in Eq. (12):

Vi (t + 1) = wVi (t) + c1r1 (Pibs − Xi (t)) + c2r2 (Gbs − Xi (t)) (12)

where:

• V i is the velocity of the particle,
• X i is the particle’s position in feature space,
• Pibs is the best position found by the particle,
• Gbs is the best global position among all particles,
• w, c1, c2 are weight and learning coefficients.

Due to their ability to enhance classification performance without an intensive computational burden,
these metaheuristic techniques have been extensively used in ECG-based heart disease detection, breast
cancer classification, and tumor segmentation in MRI.

Ensemble Learning for FS is the third major approach, aggregating multiple FS techniques for better
stability and generalization. Instead of using a single selection strategy, ensemble FS methods rely on several
models to find the most discriminative features [93]. Bagging-based FS is one frequently used technique
that uses bootstrap sampling to create multiple feature subsets and aggregates the selected features through
majority voting. Implementing this approach in Random Forest FS reduces variance (and thus overfitting),
which is usually what is done when implementing this [94]. Boosting-based FS is the other ensemble feature
selection strategy based on improving weak FS models sequentially by focusing on misclassified instances
to obtain a better fit and finally refined feature selection [95]. XGBoost FS is a well-known example of
such a technique that is efficient and scalable and has been adopted in medical imaging tasks [96]. Finally,
Stacking FS, which integrates multiple feature selection models and adopts a meta learner to learn which of
those existing feature selection models to use to find the final feature subset with the optimal tradë between
interpretability and predictive performance. Earlier, I adopted these ensemble FS techniques for multi-modal
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medical imaging where combining features from many imaging modalities (e.g., MRI, CT, PET) leads to
more accurate diagnostics.

Hybrid FS approaches best solve the challenges with high-dimensional medical imaging data. These
comprise classical methods in statistics, deep learning architectures, and metaheuristic optimization tools
combined for feature selection optimization, generalization of the model, and clinical interpretability [97].
Future research on some combination of the XAI frameworks and hybrid FSs should be carried out to help
ensure clinical utilization of such methods [98]. Moreover, it remains an open research challenge to provide
the scalability of quantum computing–based FS in hybrid frameworks and if it could indeed redefine feature
selection in medical imaging as shown in Fig. 2.

Figure 2: This figure illustrates the process of medical image data analysis, starting from preprocessing and feature
extraction to feature selection techniques. It highlights three types of feature selection methods—Wrapper-Based, Filter-
Based, and Embedded FS—which lead to selected features for model training and subsequent evaluation

Medical imaging is crucial in disease diagnosis, prognosis, and treatment planning. However, imaging
data alone is seldom sufficient to base clinical decisions. Medical imaging, which consists of integrating
different imaging modalities like MRI, CT, Positron PET, and US, offers an overall view of pathological
conditions [99]. This will capture different anatomical and functional characteristics, e.g., MRI offers
high soft tissue contrast, CT provides detailed bone structure, and PET provides metabolic activity [100].
Nevertheless, due to the large dimensionality, redundancy, and heterogeneity, when more than one data
modality is integrated, new challenges arise in the FS of multi-modal data. Thus, it is essential to learn the
most efficient FS techniques encompassing the most relevant features for each modality while maintaining
compatibility [101].
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To forcefully maximize the information extracted from multiple imaging sources but maintain collabo-
rative diagnostic acumen, use needs to be made of multimodal feature selection. Feature redundancy is one of
the significant challenges in multimodal imaging where the same or highly correlated features lie in different
modalities. Concatenating features from different modalities provokes too many dimensions, hindering the
performance of the machine learning models [102]. Also, other modalities may have various levels of noise,
resolution, or feature scales, which makes direct integration difficult. For FS techniques to be adapted to the
specific constraints of single and multimodal imaging, they must detect relevant features for the problem,
filter out redundant or conflicting information, and optimize the feature space to minimize run time and
preserve clinical interpretability [103].

Different fusion strategies are used to integrate multimodality features effectively. The fusion approaches
determine how information should be combined from various modalities and how much these FS methods
reduce dimensionality and increase model performance [104]. For instance, fusion techniques that incor-
porate anisotropic diffusion and cross bilateral filtering have shown promising results in retaining critical
anatomical details while suppressing noise across multiple imaging modalities, thereby enhancing diagnostic
accuracy [105]. In early fusion, raw features or the preprocessed (also called features) extracted using different
modalities are concatenated before applying the FS techniques. This approach enables the deep learning
models to learn cross-modal relationships from the beginning [106]. The three standard methods applied in
early fusion for FS are PCA, Autoencoders, and Deep Embedding Networks. This method results in such a
large dimension of the feature space that dimensionality reduction using Sparse Autoencoders or Variational
Autoencoders (VAE) [107] is required to retain only the key features.

Early Fusion, in which features F1 , F2 , . . . , F n . Different imaging modalities are concatenated into the
vector of features. According to Eq. (13):

F fso = f (F1) ⊕ f (F2) ⊕ . . . ⊕ f (F n) (13)

where:

• f (F1) represents the feature transformation function for each modality.
• ⊕ denotes the concatenation operation.

Classifier level fusion, or late fusion, refers to a fusion method where each modality is processed
separately and decisions are fused later. FS is applied on each modality in isolation, and then the results are
fused by an ensemble learning or voting mechanism [108]. Late fusion methods typically take advantage
which have several trained classifiers over different feature sets followed by a final decision-making. Late
fusion is still interpretable, but it may sacrifice cross-modal dependencies that may be helpful for more
effective feature extraction [109]. In Late Fusion, features are initially classified independently, and the last
prediction is a weighted sum of individual predictions [110]. As described in Eq. (14):

Pf inal =
n
∑
i=1

wi Pi (14)

where:

• pi is the prediction probability from the i-th modality.
• wi is the weight assigned to each modality’s classifier.
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Furthermore, in some recent works, hybrid fusion has been proposed, combining early and late
fusions. A common approach for fusion methods is to identify hybrid fusion, which tries to retain the
multimodal relationship while optimizing the feature selection in terms of efficiency [111]. Advanced cross-
modal learning techniques have been introduced to further improve FS in multimodal medical images.
These techniques take advantage of the relations between these modalities to better retrieve shared and
complementary features [112]. One of the most used approaches for multi-modal FS includes CNNs
and Recurrent Neural Networks (RNNs). Both CNNs and RNNs (particularly Long Short-Term Memory
(LSTM) and Gated Recurrent Units (GRU)) are effective at extracting spatial features from imaging data
and sequential dependencies in imaging data, respectively, where it is of interest to learn off of another
dimension (e.g., 4D cardiac MRI, fMRI). Cross-modal dependencies across different imaging modalities can
be effectively modeled by combining CNN and RNN architectures, improving FS [113].

Another important emerging technique relevant to the domain of feature selection is feature disentan-
glement. This approach aims to decouple high-level structural information (e.g., anatomical features) from
style-based or modality-specific variations (e.g., scanner noise, brightness), allowing only the structurally
informative components to be retained for downstream tasks. Feature disentanglement contributes to robust
model generalization and interpretability—two of the key goals of feature selection in clinical AI systems.
It is commonly implemented through variants of autoencoders or adversarial networks that enforce latent
space constraints to isolate distinct feature factors. For instance, disentangled representation learning has
been applied in brain MRI analysis to separate pathological features from confounding imaging attributes,
improving classification accuracy and reliability. This makes it a compelling complementary technique to FS,
especially in multi-institutional or multi-modal imaging studies.

Transformer-based architectures for multi-modal imaging have recently been revolutionized. These
self-attention mechanisms help ViTs and Multi Modal Transformers (MMTs) to model complex interaction
patterns across different modalities [114]. Due to its capability to learn efficient global feature dependencies,
Transformers can be used as an efficient feature selection method for tasks where such relations between
different imaging sources must be considered. Vision Transformers have been well applied in the classifi-
cation of brain tumors, the prediction of Alzheimer’s, and the diagnosis of lung cancer; the performance is
significantly improved through multiple modalities [115].

The emergence of Foundation Models—large-scale pretrained neural networks trained on massive and
diverse datasets—has introduced a paradigm shift in feature extraction and selection. In medical imaging,
models such as Vision Transformers (ViTs), CLIP, and Segment Anything Model (SAM) are increasingly
adopted as universal feature encoders. These models generate rich, high-level representations that can be
further refined through domain-specific feature selection techniques. Foundation Models reduce the need
for extensive task-specific training and improve the quality of initial features by embedding semantic,
spatial, and contextual priors. When coupled with classical or hybrid FS techniques, they enable better
generalization and performance on downstream tasks such as tumor classification, organ segmentation, and
disease progression modeling. Thus, Foundation Models serve not only as feature extractors but as enablers
of scalable, efficient, and transfer-aware feature selection pipelines in medical imaging.

However, the success of many different FS techniques for multimodal medical imaging presents
challenges. A lack of large-scale annotated multi-modal datasets, modality misalignment, and heterogeneous
data distributions constrain further progress in this domain. Future research should focus on:

To improve clinical trust in the automated decision-making systems, Explainable AI (XAI) techniques
must be developed for the multi-modal FS. When providing interpretable results, XAI can boost the
healthcare professionals’ confidence in AI-driven decisions by showing how multi-modal data (e.g., medical
images and patient records) contribute to the feature selection process [116]. Meanwhile, privacy-preserving
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multi-modal feature selection in distributed settings seems promising, and thus, it is investigated with
Federated Learning (FL) frameworks for such scenarios in parallel. The approach of FL allows models to
train on decentralized data while keeping patient privacy, which is essential to collaborative medical research,
while ensuring data security [117]. Blockchain integration in imaging-based AI has emerged as a potential
solution to secure data privacy, especially in neurology-related feature extraction pipelines [118]. Moreover,
utilizing Quantum Computing with multi-modal FS opens fascinating applications. Processing large-scale
imaging data in high dimensions is much more efficient using quantum algorithms, which can amplify this
capability to enhance selecting features in complex medical data sets. One such integration of quantum
computing can help provide more effective and scalable medical imaging and diagnostics [119]. For example,
recent work has demonstrated the effectiveness of hybrid classical–quantum neural networks in enhancing
Alzheimer’s disease detection from MRI scans. By combining classical deep learning (ResNet34) for initial
feature extraction with quantum variational circuits for dimensionality reduction and classification, these
models achieved notably higher accuracy than classical methods alone [120].

The field of multi-modal FS continues to evolve, and future advancements in hybrid AI models,
interpretable learning techniques, and computationally efficient FS strategies are necessary to continue to
develop its impact on real-world medical applications. Algorithm 2 has been included to demonstrate the
feature selection approach utilized in the study.

Algorithm 2: Multi-modal feature selection using genetic algorithm
Input:

• Multi-modal feature set F = Error! Bookmark not defined.
• Population size P
• Crossover rate Cr
• Mutation rate Mr
• Max generations G

Output:
• Optimized feature subset Fo pt

Steps:
1. Initialize a population of feature subsets randomly.
2. For each generation g in G:

○ Evaluate the fitness of each feature subset using a classifier (e.g., SVM, CNN).
○ Select the best feature subsets based on fitness scores.
○ Apply the crossover operation with probability.
○ Apply the mutation operation with probability Mr.
○ Update the population with new feature subsets.

3. Return the best feature subset Fo pt .

Fig. 3 shows the multi-modal pipeline for feature selection.
Feature disentanglement has emerged as a critical approach in enhancing generalization and inter-

pretability in medical image analysis. The goal is to separate meaningful anatomical or pathological features
from modality-specific variations such as noise, texture inconsistency, or acquisition artifacts. Recent
studies demonstrate that channel-level and depth-wise disentanglement strategies can significantly improve
downstream tasks like segmentation by isolating domain-invariant representations. For example, Hu et al.
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proposed a Contrastive Single Domain Generalization (CSDG) method that disentangles structure and
style representations using channel-wise contrastive learning, enabling segmentation models to generalize
better without requiring access to target-domain data [121]. Similarly, Wang and Ma introduced a depth
disentanglement strategy that decouples local and global feature dependencies in a multi-stage latent space,
facilitating fine-grained segmentation of small-scale anatomical structures [122]. These approaches highlight
how disentangled representations—focused on structurally relevant details—can serve as effective precursors
for robust feature selection. They also underscore the importance of combining spatial-channel attention and
detail enhancement modules to isolate noise-free, diagnostic features in high-dimensional imaging data.

Figure 3: A multi-modal feature selection (FS) pipeline where features from multiple modalities, e.g., images, signals
are extracted and fused. The fused features undergo selection, followed by model training, evaluation, and the
generation of output predictions

The features of quantum computing generate opportunities to advance classical computing capabilities
toward solving feature selection problems in large-scale datasets with numerous dimensions [123]. Feature
selection processes using classical methods become unreliable when dealing with big databases since they
struggle under high computational demands for handling big feature dimensions and complex relationships
between features [124]. Quantum superposition, a fundamental principle of quantum mechanics that allows
a quantum system to be in multiple states at the same time, combined with quantum entanglement, a
phenomenon where the quantum states of two or more objects are linked together, provides the ability
to process large datasets in parallel and improve the optimization of complex problems [125]. Feature
selection through the classical method requires users to search various subsets within the feature space while
evaluating them. The standard function for optimization appears as follows:

Fitness(F) = Accuracy(F , Model) (15)

where F represents the selected feature subset, and “Accurac y” refers to the classification accuracy achieved
by a model (e.g., SVM or CNN) trained on these features.

Various proposals have been made for feature selection using quantum-based algorithms. Quantum
feature selection (QFS) offers several theoretical and practical advantages over classical FS methods,
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particularly in the context of high-dimensional medical imaging data. First, quantum parallelism allows
quantum algorithms to process multiple feature subsets simultaneously, significantly reducing the time
required for subset evaluation. Second, entanglement facilitates complex correlations between features to
be modeled more naturally, improving the relevance of selected features. Third, algorithms such as Grover’s
search provide quadratic speedups in exploring large feature spaces, which is especially valuable for real-time
diagnostic systems. These capabilities enable QFS to address the scalability and combinatorial complexity
challenges that often hinder classical FS approaches in medical imaging applications.

Quantum Genetic Algorithms (QGA) perform global searches more efficiently using quantum comput-
ing, giving them the advantage of better exploration of the feature space [126]. The fitness function for a QGA
is similar to the fitness function used in classical genetic algorithms. Still, it is expanded with the quantum
operations used for better exploration capability [127]. The quantum k-Nearest Neighbors (k-NN) leverages
quantum properties to accelerate distance computing and achieves better classification accuracy than the
classical k-NN algorithm [128]. The criterion for the quantum k-NN distance function is the Euclidean
distance, but quantum parallelism is utilized for faster computation. The relationship in Equation show
in (16):

d (F1 , F2) =
n
∑
i=1
(F1 − F2)2 (16)

where F1 and F2 and n is several features, and they are feature vectors. As an alternative to the quantum-
enhanced version, quantum gates were used to calculate the distance in parallel. As depicted in Eq. (17):

min
w ,b

1
2
∣w∣2 (17)

Subject to

yi (wT xi + b) ≥ 1,∀i = 1, . . . , n (18)

Furthermore, the Quantum SVM provides the integration of quantum mechanics to speed up the opti-
mization process, which is essential in high-dimensional feature space. One problem in SVM is optimizing
the margin when the support vectors in between are maximized [129]. The classical SVM optimization
problem is Quantum SVM, a quantum algorithm that uses quantum algorithms to obtain the minimum of
this objective function more efficiently, especially for high-dimensional data [130]. One significant benefit
of quantum FS over classical approaches is that it achieves substantial speedup when the dimensionality of
datasets is large. Parallelism in quantum algorithms means that they can process several features in parallel,
while the dimensionality of the data usually constrains classical methods [131]. It results in better searching
over the feature space and, hence, better time complexity. Usually, the classical feature selection involves
search over a feature space of size. N and requires O(N) steps.

However, with Grover’s search algorithm, we can search for such selected features in quantum computers
with a quadratic speedup,

√
O(N)∶

Classical search complexity∶O (N) , Quantum search complexity∶O (
√

N)

In addition, feature interactions are generally easy to compute on a quantum computer and, as a result,
can be represented and selected more efficiently than a classical computer. Quantum feature selection,
therefore, provides the opportunity to reduce the computational time significantly and even to achieve better
machine learning models’ overall performance when compared to classical models, when the domain of
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interest is medical imaging, genomics, or any other use case where data sets are massive. Fig. 4 illustrates the
conceptual diagram of quantum feature selection.

Figure 4: Conceptual diagram of quantum feature selection (FS). It shows the process starting from quantum data
input, followed by quantum feature selection, extraction algorithms, and representation. The selected features are then
used for model training and evaluation, ultimately leading to the output of the model

3 Methodology (Systematic Review Process)
The proposed study discusses a systematic review methodology we followed to comprehensively analyze

the role of FS in medical imaging in carrying out classical, deep learning based, hybrid, and quantum FS
techniques. This review uses a methodology that guarantees a structured, transparent, and reproducible
approach for recognizing, choosing, and refining the sought research articles.

3.1 Search Strategy
A structured search strategy was designed to ensure the acquisition of comprehensive coverage of FS

techniques in medical imaging. Peer-reviewed articles containing relevant information were searched from
multiple high-impact databases.

3.1.1 Data Retrieval and Keywords Used
Therefore, an approach to FS techniques in medical imaging is required to achieve a well-defined and

systematic search strategy. Various keyword combinations were chosen to cover multiple FS methodologies
and their applications over various medical imaging modalities. All the keywords, including “Feature
selection in medical imaging,” “Deep learning feature selection for medical images,” “Hybrid feature selection
in healthcare,” and “Quantum feature selection for medical imaging,” were searched to widen possible areas
of research.

Boolean operators (AND, OR) were further utilized to help refine the search and have greater precision
in filtering out relevant literature. For example, the query examples that were used (“Feature Selection” AND
“Medical Imaging” AND “Deep Learning”) guaranteed that such studies encompassed the utilization of
AI-based FS methods for diagnostic imaging. Moreover, research that combines classical, metaheuristic,
and deep learning based FS methods over different imaging modalities can be captured by queries such
as (“Hybrid Feature Selection” OR “Metaheuristic FS” AND “MRI” OR “CT” OR “PET”). Additionally,
grants were made to explore at the forefront of technologies by searching for studies that applied quantum
computing to solve high-dimensional medical imaging data with the search string (“Quantum Feature
Selection” AND “High-dimensional Imaging Data”).

By utilizing this structured search approach, high-quality and relevant studies that detail the evolution of
FS techniques, their effectiveness in medical imaging, and their future developability could also be extracted
as illustrates in Fig. 5.
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Figure 5: Process of executing a search string in a research database. The flowchart starts with predefined research
strings, which include keywords related to feature selection, medical imaging, deep learning, and various technologies.
The search is executed, and if the criteria are met, the initial studies are retrieved. If not, the search string is updated
accordingly to refine the search, continuing the process until the relevant results are found

3.1.2 Databases Searched
Therefore, a systematic search was performed across well-established electronic databases to ensure a

complete and well-structured review of FS techniques in medical imaging. A list of databases was developed
and selected with a significant amount of care, including work with biomedical applications, computational
support, and AI-based innovations in FS methodologies. As PubMed offers comprehensive coverage of
biomedical and clinical imaging research, all the FS techniques applied in the real healthcare setting will be
included. A search of IEEE Xplore was used to locate studies related to FS computational and engineering
aspects related to AI and machine learning based approaches. At the same time, ScienceDirect offered a
vast knowledge base on machine learning, deep learning, and AI-based FS methods used in diagnostics and
prediction modeling tasks.

Springer was also used to study research on advanced AI methods in FS, specifically to investigate hybrid
and deep learning-based approaches. MDPI was chosen as one of the best focuses on recent advances in
medical AI, including FS applications in various imaging modalities like MRI, CT, PET, and ultrasound.
Lastly, arXiv was used to investigate new FS methodologies that utilize quantum computing to deal with
high-dimensional medical imaging data.

The search was limited to studies published between 2015 and 2025 to keep the information current
and reliable and to include the latest FS techniques. This time frame was selected for examining the most
modern trends and technological novelties and measuring the latest breakthroughs in the FS methodologies,
including the classical statistical methods, the deep learning approaches, hybrid models, and such techniques
as quantum-based strategies.
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3.2 Inclusion and Exclusion Criteria
Predefined inclusion and exclusion criteria were applied to maintain the quality and relevance of

selected studies.

3.2.1 Inclusion Criteria
• Studies focusing on FS techniques applied to major medical imaging modalities (MRI, CT, PET,

Ultrasound, ECG).
• Publications between 2015 and 2025 to ensure the inclusion of the latest advancements.
• Peer-reviewed journal and conference papers from reputed sources.

3.2.2 Exclusion Criteria
• Non-English studies (to maintain consistency and accessibility).
• Papers focusing only on general AI-based medical imaging without FS techniques.

This rigorous selection process helped filter out studies that lacked experimental validation or did not
focus on FS techniques in medical imaging.

3.3 Data Extraction & Quality Assessment
To ensure high quality and completeness of the review, the evaluation of key aspects regarding how to

define the effectiveness and applicability of FS techniques in medical imaging was performed systematically.
For each selected study, crucial details were extracted, including the FS technique used, whether classical,
deep learning, hybrid, or quantum-based. Information about the datasets used in the studies was also
collected in case some studies covered public datasets like BraTS and CheXpert. In contrast, others might
have used custom dataset tools specific to their medical imaging task. The reported performance metrics
also constitute one of the essential aspects considered; these include standard evaluation measures such as
accuracy, AUC ROC, F1 score, and computational efficiency, enabling the comparison between several FS
techniques’ effectiveness.

Further, rigorous quality assessment was performed for the studies included to ascertain their reliability
and validity. This assessment was completed with several key criteria. Given priority to reproducibility: the
studies had to have publicly available code, datasets, or detailed methodological descriptions. Moreover,
the robustness of the FS techniques was another critical factor to include in the selection of studies,
which provided comparative performance evaluations instead of isolated case studies. Finally, the test was
conducted to assess the real-world applicability of FS methods by considering the studies to prove the
practical implementation of FS in clinical and diagnostic imaging.

Table 3 summarizes and tabulates a comparative overview of the selected studies to provide a structured
summary of the reviewed literature. It categorizes them according to applied FS techniques, analyzed
datasets, and reported performance metrics. The representation is structured, concise, and informative of
advancements and trends in FS for medical imaging and Fig. 6 illustrates the complete process from search
to selected studies.

Table 3: Summary of selected studies based on FS techniques, datasets, and performance metrics

Feature selection technique Imaging modality Dataset used Performance metrics
Filter-based FS (Chi-square,

Mutual Info)
MRI BraTS Accuracy, AUC-ROC

(Continued)
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Table 3 (continued)

Feature selection technique Imaging modality Dataset used Performance metrics
CNN-based FS X-ray CheXpert Sensitivity, Specificity

Hybrid FS (PCA + CNN) PET Custom dataset F1-Score, Computational time
Quantum FS (QAOA) Multi-modal

(MRI + CT)
Private dataset Feature reduction ratio, Model

eficiency

Figure 6: PRISMA flowchart, illustrating the systematic review process. It starts with database searching, where 660
records are identified using specific keywords. After removing duplicates, 433 records remain, followed by abstract
screening and full-text screening. Criteria are applied at each stage, resulting in 174 articles included for the final review,
while others are excluded based on inclusion and exclusion criteria
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Database searching identified a total of 660 records. These records were 433 after being deduplicated.
The screening that was done to remove the abstracts (n = 480, with extra cases of 47 unique records) removed
73 articles that fail the inclusion criteria. Of 374 articles identified through full-text screening there were 106
excluded, which meant that 174 of the articles were to be included in the eventual synthesis. Fig. 6 and Table 4
give a breakdown of the 200 full-text articles deemed ineligible during eligibility screening.

Table 4: Summary of selected studies

Stage Action n
Records identified Initial database search 660

Duplicates removed – 227
Records after deduplication – 433
Additional records searched Manual/database 47
Total for abstract screening – 480

Abstracts excluded Failed initial screening 73
Full-text assessed Eligibility review 374
Full-text excluded Did not meet inclusion criteria 200

Final articles included – 174

4 Challenges, Open Problems, and Future Directions
A lot of progress has been going in developing the existing FS techniques for the application in medical

image, but there are some critical challenges and open research problems still to be solved. Nevertheless,
deep learning and hybrid FS methods face their own limitation of high computational complexity and
scalability to wide ranges of problems making them hard to practice in the real-world applications.
Moreover, combining multi modal imaging data is challenging in terms of the redundant features of multiple
modalities, the alignment of different modalities, and cross modal learning. Theoretically, FS approaches
using quantum computing are quick, but have been held to be impractical on account of hardware and
algorithm shortcomings. To develop such FS+DB models, one needs to consider these FS challenges with a
multidisciplinary confluence, to have FS models that are efficient, interpretable, and scalable, and seamlessly
combined with the clinical workflow. This section explores key challenges, open problems, and potential
solutions that will define next generation AI driven medical imaging systems.

4.1 Computational Complexity & Scalability Issues
Although the FS is computationally demanding and a scalability challenge to incorporate in medical

imaging, the FS is hugely complex; Challenges exist between FS field and deep learning and hybrid
approaches, while great opportunity space exists for innovation and improving. This allows progress towards
the direction of the optimization of this integration process and enhancement of all our solutions. Due to
their nature, medical imaging datasets are naturally high-dimensional and expensive to process, train, and
even make inferences from. Deep FS methods based on CNNs, Autoencoders, and ViTs enjoy better feature
extraction performance. However, their feature extraction process tends to be heavy in memory usage and
consumes enormous energy and training time. These models come at a high computational burden, making
it difficult to use them in real-time medical applications that demand happening fast and efficiently [132].
Additionally, because the computational cost is based on feature fusion strategies, the problem of using multi-
modal medical imaging data. Deep learning Mechanisms of attention Deep learning can improve multimodal
picture fusion by considering fusion algorithms, modalities, and metrics. Researchers can use a graphical
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taxonomy and difficulties and areas of future research to better understand multimodal fusion problems and
choose appropriate approaches [133].

However, one of the significant challenges for deep learning-based FS techniques is that the computa-
tional cost of those methods is very high because many parameters are used in deep architectures [134]. For
example, the mathematical representation of the complexity of the based FS model can be represented as the
following in Eq. (19):

CFS =
L
∑
l=1

O ( fl ⋅ k2
l ⋅ cl ⋅ hl ⋅wl) (19)

where L denotes the number of layers, fl represents the number of filters in the l-th layer, k2
l corresponds to

the kernel size, cl denotes the number of input channels, and hl , wl signify the height and width of the feature
map, respectively. The development speed of computational needs escalates exponentially due to longer
network depths, thus making standard computing inadequate unless accompanied by high-performance
GPUs or TPUs. Excessive memory needs and massive storage demands intensify computational obstacles.
Intermediate feature maps generated from the deep learning models are large, thus resulting in enormous
memory consumption. This is exacerbated in real-time medical applications where inference speed is the
most critical parameter [135].

FS techniques struggle with scale-up potential in situations involving multi-modal imaging data anal-
ysis. Combining machine learning with multimodal fusion strategies in human activity recognition using a
state-of-the-art convolutional network architecture and a large dataset. The results show a clear performance
improvement from multi-modal fusion and a substantial advantage from an early fusion strategy [136]. The
processing requirements of multi-modal feature selection rise significantly because of differences between
modalities and domain alignment requirements, which causes existing deep learning-based FS methods to
be impractical during large-scale clinical deployment [137].

Researchers have explored solutions, such as lightweight deep learning models, federated learning,
and quantum computing, to overcome these computational limitations. Implementing the MobileNets and
EfficientNets lightweight CNN architectures resulted in substantial parameter reduction while maintaining
the performance level of FS. Depth-wise separable convolutions strengthen the computational efficiency of
a lightweight CNN-based FS approach, which is shown mathematically in Eq. (20):

CDW = O (
L
∑
l=1

k2
l ⋅ cl ⋅ hl ⋅wl + fl ⋅ cl ⋅ hl ⋅wl) (20)

The optimized formulation eliminates calculation redundancy and focuses on the computational path’s
most crucial feature extraction layers. As such, lightweight models represent a good tradeoff of computation
demand vs FS accuracy and are better suited to real-time medical imaging applications.

Moreover, federated learning is another emerging approach to alleviating computational bottlenecks in
FS by providing a decentralized learning paradigm for distributed model training across various institutions.
Unlike transferring the entire medical imaging dataset to a central server, FS is done locally on distributed
nodes in federated learning. This reduces the computational and communication costs while keeping the
patient private [138]. In particular, this approach is most useful in healthcare applications where data sharing
restrictions must be considered and HIPAA and GDPR compliance is of the essence. Besides achieving
scalability, Federated FS models further enable learning collectively over distinct medical centers in a way
that reduces the generalizability burden at the cost of computing [139].
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Besides classical and deep learning-based FS techniques, quantum computing has recently become
a new hope for high-dimensional feature selection. Quantum FS techniques take advantage of quantum
parallelism to process large-scale medical imaging datasets quickly [140]. Quantum Variational Circuits
(QVCs) allow quantum-based FS to be mathematically formulated in Eq. (21).

∣Ψ⟩ = Uθ ∣0⟩⊗n (21)

where ∣Ψ⟩ represents the quantum state encoding feature selection, Uθ denotes the unitary transformation
optimized for feature selection, and ∣0⟩⊗n signifies the initial quantum state for n Qubits. On the other hand,
classical FS methods suffer from exponential growth in complexity due to a possible exponential increase in
the data. Quantum annealers for feature selection in light-weight medical imaging collections. Linear Ising
penalties with subsampling and thresholding increase stimulation in simplified use situations, with decent
results but uncertain future applicability due to hardware limits [141]. However, quantum FS is still in its
infancy and is hindered by practical hardware issues, noise sensitivity, and the fact that the current quantum
processors do not scale to acceptable sizes.

Fig. 7 depicts the computation efficiency of classical, deep learning-based, and quantum FS candidates,
showing the impact of different FS strategies on computational complexity.

Figure 7: Feature selection methods based on computational efficiency. Classical FS methods are fast and simple but
may sacrifice accuracy, while deep learning FS methods offer higher accuracy at the cost of increased complexity.
Hybrid FS methods combine both approaches, and quantum FS, still in an experimental stage, promises potential future
speedups

This shows that although classical FS techniques are efficient in computation, they are not as capable
as the DF extraction of advanced methods. However, for DL-based FS methods, though effective, the
computational scalability becomes an issue for their deployment. The hybrid FS models achieve the best
tradeoff between good features of classical and deep learning. Federated learning increases scalability, but in
terms of privacy, it inherits the complexity of the distributed networks. However, quantum FS is theoretically
promising but limited in its practical implementation and current hardware limitations.

Significant challenges to overcome deal with the computational complexity and scalability for FS to
reach its full potential in medical imaging. These are very powerful when it comes to neural network-based FS
methods, which are also very expensive to compute and, in such cases, require specially optimized techniques
such as lightweight architectures, federated learning, or even hybrid methods for reducing computational
costs. Furthermore, quantum computing is anticipated to be highly useful in high-dimensional feature
selection, but more studies are needed to determine its practical adoption. We will then see interdisciplinary
synergies between AI, distributed computing, and quantum technologies endeavouring to improve the
computational efficiency and scalability of FS methods to be helpful for the clinic.



2372 Comput Mater Contin. 2025;85(2)

4.2 Interpretability & Explainability in FS
Medicine has begun to revolutionize diagnostic accuracy and efficiency using the recent development

of AI-based FS approaches. Nevertheless, in the current situation, all these AI-driven FS techniques usually
perform well in indicating diagnosis potential. Yet, they are not transparent in clinical practice, restricting
their usage in real medical applications [142]. Deep learning models’ inherent complexity and opaqueness
make them unusable for most healthcare professionals as they are not interpretable, causing them to lack
trust and acceptance. In particular, this is a critical issue in healthcare, as incorrect patient care and outcomes
depend directly on decisions made using AI models. However, the bridge of this gap has been constituted as
a key research area to integrate interpretability and explainability into the FS models [143].

To address the interpretability challenge in AI-based FS, Explainable AI (XAI), SHAP (Shapley Additive
Explanations), Grad-CAM (Gradient-weighted Class Activation Mapping), Hybrid FS, etc., have been
proposed in the literature. XAI frameworks are aimed to help make the decision process of machine learning
models understandable to humans. SHAP is one of the popular methods within XAI that assigns a value for
each feature based on its contribution to the model’s prediction [144]. The equation to calculate the SHAP
value in Eq. (22):

φi ( f ) = ∑
S⊆N

∣N∣!
∣S∣! (∣N∣ − ∣S∣ − 1)! [f (S ∪ {i}) − f (S)] (22)

where φi ( f ) represents the SHAP value for feature i, and f (S) is the model prediction with a sub-
set S of features. This allows quantification of each feature that affects the final output of the model,
addressing prioritization for clinicians to understand the most influential variables and making the decision
process transparent.

Besides being a key tool for improving model interpretability, another essential tool is Grad-CAM,
especially in medical imaging tasks. Grad-CAM gives an intuitive means to visualize the areas of the image
that most influence a CNN’s prediction (i.e., those with the strongest and highest activation) [145]. The
equation of Grad-CAM in Eq. (23):

Grad-CAM (x) = ReLU(∑
k

αk Ak) (23)

In this equation, Ak denotes the feature map from the convolutional layer and is ak . Each feature map
is assigned a gradient-based weight. The weight produces a heatmap showing which regions in the image are
key to the model’s decision, so clinicians can visually see what parts of an image caused the model to make
its decision in Eq. (24):

αk =
Z
∑
i=1
∑

j

∂Aki j

∂yc
(24)

Here, yc is the class score for category c, and Z is the total number of pixels in the feature map. This
method is beneficial in CNN-based FS models for medical imaging as it allows clinicians to interpret why
certain features were chosen in a deep learning framework.

Improving the interpretability of AI-based FS Hybrid FS techniques, which are combinations of classical
feature selection methods and deep learning models, also has a specific role in improving the interpretability
of AI-based FS. For instance, the dimensionality of high-dimensional medical images can be reducedwith
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Principal Component Analysis (PCA), and features can be found using CNN. The PCA in Eq. (25) shows as:

XPCA = XW (25)

The transformed dataset X is generated from the original dataset X by multiplication with the second
matrix W of eigenvectors (principal components). By this hybrid approach, we bridge between regular
statistical features and recent deep learning features to select such features efficiently and interpretably.
Additionally, given that there is a Hybrid FS, genetic algorithms (GA) can be utilized to achieve such
optimization by modeling the natural evolutionary processes. Therefore, the GA fitness function is defined
in Eq. (26) as:

f (S) =
N
∑
i=1

accuracy (Si) (26)

where f (S) is the fitness score for the selected feature subset S, and accuracy (Si) represents the performance
of a model trained on the feature subset Si . This method can determine the most critical features, improve
the model’s interpretability, and retain its high accuracy.

In the end, for AI-based FS methods to be clinically applied, they must also be capable of being
interpreted and explained. The SHAP, Grad-CAM, and Hybrid FS approaches, along with XAI, provide
promising ways of improving transparency. This will help clinicians know when to trust and use the AI model
appropriately in decision-making. By combining these two techniques, an AI-driven FS system can be made
both high-performance and clinically viable, leading the way for their wider adoption in healthcare.

Table 5 presents the advantages and limitations of each method.

Table 5: Comparison of interpretability methods in FS

Method Description Advantages Limitations
XAI [146] AI techniques for making

decisions more
transparent.

Improves interpretability
and provides clear

explanations.

It can be computationally
expensive and may not
fully explain models.

SHAP [147] Assign importance scores
to features.

Precise feature
importance works across

models.

Computationally
intensive, lacks visual

representation.
Grad-CAM [148] Highlights important

image regions in CNN
decisions.

Provides visual
explanations.

Limited to CNNs, only
works on images.

Hybrid FS [149] Combines classical FS
with deep learning.

Balances accuracy and
interpretability.

It may not continually
optimize performance.

Integrating preprocessing and spatially aware decomposition techniques for feature selection has
become increasingly important in handling high-dimensional and complex datasets. Preprocessing methods
such as data decomposition, spatial interpolation, and dimensionality reduction have proven effective in
managing data nonlinearity and spatial dependencies, particularly in domains such as air quality pre-
diction and medical imaging [150]. Advanced feature selection strategies now incorporate multi-criteria
evaluation—e.g., minimizing redundancy while maximizing discriminative power—to enhance both inter-
pretability and accuracy [151]. Spatially aware methods, such as relation-aware wrapper techniques, utilize



2374 Comput Mater Contin. 2025;85(2)

graph- or tree-based structures to model relationships among features and samples, yielding more relevant
and stable feature subsets [152]. These approaches have demonstrated success in medical applications,
including breast cancer segmentation, where context-aware spatial decomposition has been used to improve
the relevance of extracted features. Furthermore, synergistic frameworks that combine feature selection
with distributed classification mechanisms address the computational and heterogeneity challenges posed by
large-scale medical data, enabling scalable and efficient model training [153,154]. Hybrid and metaheuristic
algorithms—particularly those employing particle swarm optimization or evolutionary multitasking—also
contribute by enabling robust search across large feature spaces while facilitating knowledge transfer between
related tasks [150,151,155]. These integrated strategies collectively improve classification performance, reduce
model complexity, and support scalable analysis pipelines for both centralized and distributed medical
imaging scenarios. Despite these advances, ongoing research is needed to balance computational efficiency,
interpretability, and robustness to heterogeneous or streaming data, which remain open challenges in
modern FS applications.

To complement the detailed discussion of feature selection techniques, we provide an additional
comparative summary of representative state-of-the-art works in Table 6. This table highlights the diversity
of FS approaches across modalities and their associated evaluation metrics, offering a concise overview of
recent advances in the field.

Table 6: Comparative summary of additional state-of-the-art FS works in medical imaging

Ref. FS
methodology

Imaging
modality

Dataset
used

Performance
metrics

Key contribution

[53] CNN +
Grad-CAM

MRI (Prostate) Private
dataset

Accuracy,
Visual

relevance

Visual interpretability via
region localization

[66] Autoencoder
(AE/VAE)

PET, MRI ADNI Accuracy,
Sensitivity

Biomarker extraction for
Alzheimer’s detection

[43] LASSO
Regression

MRI ADNI AUC,
Sensitivity

Sparse FS for Alzheimer’s
progression

[120] Hybrid
(ResNet34 +

QVC)

MRI Alzheimer’s
dataset

Accuracy,
Feature

reduction

Hybrid classical-quantum
FS for brain imaging

[86] GA + DNN MRI, CT
(Multimodal)

Custom
dataset

Accuracy,
F1-score

Metaheuristic
optimization in hybrid FS

4.3 Multi-Modal Feature Selection Challenges
There is great potential in integrating multi-modal data in medical imaging with EEG, MRI, Ultrasound,

and other standard medical imaging modalities such as MRI, CT, PET, etc., to make more accurate diagnoses
and better inform clinical decision making. However, even with the multi-modal FS amenable to many
challenging problems, challenges related to the use of such issues in real-world scenarios need to be
addressed [156]. Adaptive feature extraction Deep learning may learn adaptive feature extraction by learning
detailed patterns in varied datasets. Multimodal deep learning incorporates other sensory modalities because
it is hard to extract useful information from unstructured data [157]. As a result, the two modalities
represented by these features often have different resolutions, sampling rates, and structural representations,
making them difficult to combine because they may not align with each other across modalities [158].
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This challenge becomes more pronounced in multi-modal biomedical data, where visual (e.g., MRI) and
non-visual (e.g., lab tests, genomics) data require distinct preprocessing pipelines and semantic alignment.
To address this, recent work has focused on deep learning-based multimodal fusion strategies, offering
principled frameworks for reconciling heterogeneous biomedical data [159].

Another critical challenge arises from incomplete or missing modalities, which can occur due to
technical limitations, motion artifacts, or modality-specific acquisition constraints. When feature selection
(FS) algorithms operate under such conditions, they risk introducing biases or disproportionate weighting
of partial data, ultimately degrading model performance.

As a result, some solutions to solve these problems are suggested by enhancing integration and selection
of multimodal dataset features. Graph Neural Networks (GNNs), Bayesian Fusion, and Self-Suppressed
Learning are promising techniques to handle different resolutions of the modalities and missing modality in
multimodal FS scenarios.

This work demonstrates that with a powerful tool, GNNs, such relationships in data can be effectively
modeled, and projects such as modeling relationships in multimodal medical images have shown GNNs to
be powerful. GNNs are suitable for multimodal data because each modality can be considered a node in
the graph, and the relation between different features across the modalities can be represented as the edge
within these nodes. In general, GNNs are applying for learning the representation of nodes for capturing the
local and global dependencies by aggregating the information from the neighbor nodes. This is the equation
corresponding to graph convolution operation in GNN shows in Eq. (27):

h(k+1)
v = σ

⎛
⎝ ∑u∈N(v)

W(k)h(k)
u + b(k)⎞

⎠
(27)

where:

• h(k+1)
v is the updated feature representation for node v at the k + 1−th iteration,

• N (v) represents the neighbors of node v,
• W(k) is the weight matrix for the k−th layer,
• b(k) is the bias term, and
• σ is an activation function (e.g., ReLU).

Considering the multi-modal FS, GNNs can map to combine multi-modal features over which modali-
ties vary. Dependencies are captured between the features, even when resolutions are different or modalities
are missing. GNNs lend themselves better to fusing the information more effectively, which is very important
when dealing with complex medical image analysis tasks.

Bayesian Fusion is another approach to dealing with the resolution and missing modality challenge
in multi-modal FS. This approach considers feature selection as a probabilistic model and computes the
probability of various feature subsets based on the available data on all the modalities. Bayesian fusion helps
combine data uncertainly and variably between modalities. The general formulation of such Bayesian fusion
model is shown in Eq. (28):

p (F∣M) = p (M) p (M∣F)
p (F) (28)

where:

• p (F∣M) is the posterior probability of the feature set F given the modality set M,
• p (M) p (M∣F) is the likelihood of observing the modalities M given the features F,
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• p (F) is the prior probability of the feature set,
• p (M) is the marginal likelihood of the modalities.

This method uses Bayesian inference to consider the uncertainty in the data caused by missing
modalities and different resolutions, and hence, it provides more precise feature selection in multi-modal
data sets.

This problem can also be addressed using Self-Supervised Learning (SSL). In contrast, SSL techniques
present little burden on the availability of labeled data and utilize the structure of the data itself to produce
meaningful representations of input features. SSL can learn features from the available modality even if some
modality is missing or incomplete by exploiting the complex and inherently existing relationships among
the data. In SSL, the general objective of the function is to minimize the reconstruction error between the
original and predicted data, which can be stated in Eq. (29) as:

LSSL = ∑
i
∣xi − x̂i ∣2 (29)

where:

• xi is the original data point (e.g., a modality),
• x̂i is the predicted data point after applying the SSL model,
• ∣.∣2 represents the squared Euclidean distance (or some other appropriate loss function).

In the sense of multi-modal FS, SSL could be employed to extract representation from incomplete data,
whereas it infers missing information from one modality using the other available media. The main strength
of this approach is that when training data is scarce and imaging modalities are unavailable.

In short, solving the problem of resolving different resolutions and missing modalities in multi-modal
feature selection can be facilitated by techniques like GNNs, Bayesian Fusion, and Self-Supervised Learning.
Bayesian Fusion modulates data fusion and Uncertainty; GNNs can capture the relationship between
different modalities; Self-Supervised Learning can generate robust feature representation even without
entirely being given information. These solutions improve the effectiveness of multi-modal FS methods so
that they can deliver more accurate and reliable diagnostic tools in the presence of real medical imaging data
complexities. Fig. 8 illustrates the multimodal features selection with techniques.

Figure 8: Key challenges in multi-modal feature selection, including high dimensionality, feature redundancy, modality
alignment issues, and computational complexity. It also presents corresponding solutions and techniques, such as
dimensionality reduction, feature fusion strategies, cross-model learning, and efficient feature selection methods
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To facilitate a comprehensive understanding, Fig. 9 presents a taxonomy diagram summarizing the
main categories of feature selection techniques covered in this review.

Figure 9: Taxonomy diagram summarizing the main categories of feature selection techniques

4.4 Ethical & Bias Concerns
By adopting AI-based FS models is occurring amongst ethics and bias in healthcare. These have

shown tremendous promise in boosting diagnostic accuracy with significant reduction in computational
Overhead and self execution of difficult acquired manual tasks in medicine [160]. However, AI FS models



2378 Comput Mater Contin. 2025;85(2)

can themselves accidentally perpetuate exactly these racial dimensions of healthcare systems (and of our
current world) if we fail to consider them. This is likely because these models were trained on historical bias,
but disparities in healthcare make historical data a poor representation of the patient base in the future. Such
biases can introduce suboptimal (and in some cases harmful) decision-making into subsequent deployment
of these AI models into the clinic to assist in disease diagnosis or prediction of patient outcomes [161].

For demonstration, let’s say an AI FS model has been trained mainly on data for demographics, say
white or male patients, and when our trained model doesn’t work correctly or if not, even wrongly do
it while practicing on other races or similar gender groups. The issue is that being trained on a limited
set of a few subsets of the population, such as medical images, essential features that may be critical for
the underrepresented group in the medical image may be missed. However, there might be misdiagnoses,
delayed treatment, and illness-related healthcare delivery disparities.

With the proposed bias-aware FS techniques, the risk of forming prejudice on algorithms is reduced
through AI model training. Thus, the purpose of imposing fairness constraints is to discover and fix the bias
introduced into the feature selection process. Still, we want to pick the features to be used in our model that
bring accurate results and do not worsen the existing data bias. The most common method of addressing
demographic parity is explicitly penalizing feature subsets to get biased prediction distributions to guarantee
that the holdem decisions by the model are fair and comparable between demographic groups. The bias aware
FS can be mathematically defined as follows in Eq. (30).

Ltotal = Laccuracy + Lfairness (30)

where:

• Ltotal is the total loss function, combining both accuracy and fairness objectives,
• Laccuracy is the traditional loss function that measures model performance (e.g., classification accuracy),
• Lfairness represents the fairness penalty, which quantifies how much bias is introduced in the feature

selection process, and
• L is a regularization parameter that controls the trade-off between accuracy and fairness.

Fairness constraints incorporate fairness considerations by bias-aware FS methods, which aim to
guarantee that the features selected for the model do not perpetuate harmful biases that cause unfair or
discriminatory outcomes.

Diverse datasets can also be an essential solution in dealing with the bias in AI FS models. When
training data sets cannot be guaranteed to include the population, one must ensure they are representative
to avoid reinforcing biases in the final model. Especially in the case of medical imaging datasets, the dataset
must contain demographic groups that cover a wide range of races, genders, age groups, and socioeconomic
statuses. Having various datasets helps the model learn to distinguish features that are not biased toward
any specific group, and these learnt features help the generalization and fairness of the model when applied
in clinics.

One challenge is creating diverse datasets: creating datasets from underrepresented populations, such
as demographics typically underrepresented in healthcare datasets, is logistically difficult and resource-
intensive. However, collecting datasets for building AI FS models that are accurate and fair for all patients
must be more inclusive, including ensuring access to healthcare for all demographic groups.

Besides bias-aware FS and diverse datasets, AI regulation policies regulate bias in deploying AI systems
in health care. Governments and regulatory bodies can create rules for the ethical use of AI in the healthcare
sector in the most apt manner. The regulations may include auditing AI models for biases, instructing
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healthcare professionals to be trained to trust the results provided by the AI models properly, and ensuring
the AI models are updated with new data and evolving social norms [162].

For example, data collection, processing, and usage for training AI should be transparent via policies.
Further, frameworks for auditing AI systems for fairness, accountability, and transparency (FAT, or Fairness,
Accountability, and Transparency) would be introduced to detect and tackle biases in the model. The
regulatory framework could also require it to enforce the continued monitoring of deployed models to
prevent the introduction or perpetuation of new bias over time. The regulatory equation that aims to ensure
AI fairness and accountability could go as follows in Eq. (31).

AI Fairness = Bias Reduction
Bias Detection + Ethical Oversight

(31)

where:

• Bias Reduction refers to the efforts made to minimize bias during the training and deployment of the
AI model,

• Bias Detection involves monitoring AI models post-deployment for emerging biases, and
• Ethical Oversight represents the ongoing review and regulation of AI models to ensure compliance with

fairness standards.

Finally, a multi-faceted approach is advocated to mitigate the ethical and biases issues in AI-driven FS
for healthcare, ranging from regulatory to organizational and technical matters. FS methods in the presence
of bias assist in removing discrimination from feature selection so that the resulting model is not more
favorable towards one demography than the other. Diverse datasets are key to training AI models on datasets
that represent all the groups proportionally, and AI regulation policies constitute provoking the ethical use
of AI to prevent unintentional reinforcement of biases. These strategies are necessary to guarantee that AI
healthcare systems will be effective and equitable, thus producing equitable treatment for all patients as
illustrated in Table 7.

Table 7: Ethical considerations in AI-based FS

Ethical
concern

Description Proposed
solutions

Impact on FS Challenges

Bias in
data [163]

Skewed training data
can exacerbate racial,

gender, and other
demographic biases in

AI FS models.

Bias-aware FS
techniques

Diverse datasets

Ensures model
fairness and

prevents
discrimination.

Challenges include
gathering varied data

and balancing bias
during training.

Fairness and
equity [164]

Biased feature
selection or training

data causes
demographic
disparities in
performance.

Fairness-aware
loss functions
Fairness audits

Ensures model
projections are

fair across
demographics.

Multiple-criteria
fairness definition and

measurement.

(Continued)
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Table 7 (continued)

Ethical
concern

Description Proposed
solutions

Impact on FS Challenges

Transparency
and explain-
ability [165]

AI models, intense
learning, are often
viewed as “black

boxes” with unclear
decision-making

processes.

XAI
frameworks

SHAP,
Grad-CAM,
Hybrid FS

Improves the
trust and

interpretability
of AI systems in
clinical settings.

Balancing model
performance with

explainability,
especially in complex

models.

Data
privacy [166]

Patient data used for
AI FS might be

sensitive and subject
to privacy concerns.

Data
anonymization

Federated
learning

Secure data
sharing

protocols

Ensures that
patient data is

protected while
still allowing
for functional
AI training.

Ensuring compliance
with privacy

regulations, such as
HIPAA.

Regulatory
compli-

ance [167]

AI models may not
meet fairness, safety,
and efficacy norms in

clinical settings.

AI regulation
policies

Regular audits
for fairness and

compliance

This framework
ensures that AI
models fulfill

healthcare and
ethical

requirements.

Clear regulatory
frameworks that adapt
to new technologies.

Accountability
[168]

Assigning blame for
healthcare AI model

errors.

Clear
accountability

protocols
Human-in-the-

loop
models

Holds clinicians
accountable for

ultimate
judgments,

even with AI.

Determining who is
responsible when

AI-driven decisions
cause harm.

4.5 Future Directions: Quantum-Driven Feature Selection
Quantum Computing has shown great promise in delivering transformational technology among the

domains of AI, in one of the domains such as FS in medical imaging. However, classical FS techniques
find difficulty in dealing with the ultra-high dimensionality and with data sets that are very large in size,
making quantum-enhanced methods promising work in the future. The implication is that with quantum
computing, we can process a vast amount of data in parallel and solve complex optimization and intricate
feature interactions much more effectively than with classical approaches. But as the progress continues with
quantum computing, we anticipate quantum-driven FS techniques for similar purposes and gaining even
more capabilities for these AI models in medical imaging and genomics and other data-rich domains.

Secondly, because SVM machines can support the separation of data points, they are very much used
in feature selection, classification, and regression tasks. However, these can be spoiled when dealing with
high-dimensional spaces due to the computational cost of solving the optimization problems caused by
the explosion of the feature space. Quantum-escalated SVMs use quantum parallelism and quantum kernel
strategies from quantum registering to perform the optimization and arrange more quickly.
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The quantum-enhanced SVMs involve a quantum algorithm to get quantum computation of the inner
product (or kernel) of data points and perform the calculation in a much higher dimension feature space.
This kernel trick is written mathematically and is called the quantum kernel method in the quantum world
illustrates in Eq. (32).

K (x , y) = ∣⟨ψ (x)∣ψ (y)⟩∣2 (32)

where:

• K (x , y) is the kernel function between data points x and y,
• ∣ψ (x)⟩ and ∣ψ (y)⟩ are quantum states corresponding to the data points.

The power of this quantum kernel is to implicitly map data from the input space into a higher
dimensional kernel feature space, which allows SVMs to perform nonlinear separation more efficiently.
Quantum computing can make SVMs faster, less resource-consuming, and suitable for FS tasks in medical
imaging and other complex domains like fraud detection.

Feature selection becomes a powerful application of neural networks, in particular in the depth of deep
learning. However, their high computational cost in the application to large datasets and complex networks is
a problem. Quantum-enhanced Neural Networks (QNNs) try to benefit from quantum circuits to accelerate
the training and improve the feature extraction capability of neural networks. Quantum circuits can process
data in parallel and perform multivariable operations on a massive dataset with an efficiency that defies
classical neural networks.

In QNNs, quantum gates replace classical operations, enabling the network to deal with an exponentially
greater superposition of data at a computational power. A quantum neural network can be represented in
general structure in Eq. (33) as:

output =
N
∑
i=1

ai ∣ψi⟩ (33)

where:

• ai represents the weights of the quantum circuit,
• ∣ψi⟩ is the quantum state corresponding to the input feature.

Since quantum entanglement and superposition are utilized, QNNs can better extract the right features
from high-dimensional data than classical networks. Thus, because of the simpler QNNs, FS processes are
accelerated with high accuracy, particularly in large-scale medical image tasks.

Cluster or clustering is another feature selection technique, mainly for unsupervised learning problems
by not having labels. Quantum clustering uses the fact that certain operations can be performed in super-
position on a quantum computer, and thus, several cluster configurations can be explored simultaneously.
Quantum K-means is a quantum algorithm that utilizes entanglement and superposition to perform
clustering much faster than a classical clustering could, particularly in high-dimensional spaces. It gives a
representation of the quantum version of the K-means algorithm in Eq. (34) as:

Distance = ∣⟨ψ (x)∣ψ (μ)⟩∣2 (34)

where:

• ψ(x) and ψ (μ) are the quantum states of the data point and the cluster centroid, respectively,
• The distance metric is computed as the overlap between these quantum states.
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With the progress of quantum computing technology, it would likely be a vital medical imaging tool
with applications such as novel approaches to FS and ultimately revolutionizing how AI can be harnessed in
healthcare. Fig. 10 illustrates the quantum feature selection workflow for medical imaging.

Figure 10: Quantum feature selection workflow applied to medical imaging. It highlights steps such as using a medical
imaging dataset, encoding features with quantum state representation, applying quantum feature selection techniques
like Grover’s Algorithm, and integrating quantum-classical models. The final goal is to select an optimal feature subset
and apply it to AI models, enhancing diagnostic accuracy in medical imaging

By processing large numbers of potential cluster configurations in parallel, thanks to quantum cluster-
ing, it is faster converging, and thus, more accurate and efficient features can be selected. In particular, this
is very advantageous for medical imaging when the data is noisy, high dimensional, and often complex, and
finding the correct clusters or groups of features is crucial to improving diagnostic accuracy.

Finally, in summary, quantum-driven feature selection has much room for mitigation of the limitations
of classical FS methods, particularly in the bed of medical imaging. Future FS models can analyze more exten-
sive and complex datasets with greater computational efficiency using the quantum-enhanced algorithms
such as Quantum Enhanced SVMs, Quantum Neural Networks, Quantum Clustering, etc. The advancements
expected in these areas will help usher in AI models capable of helping process all these medical imaging
data more efficiently, improving both diagnosis speed and accuracy, as well as patient outcome.

5 Discussion and Recommendation
From classical statistic techniques to mainly hybrid and quantum-assisted techniques, along with deep

learning, FS problems in medical imaging have been addressed. A review of this set of FS methodologies is
provided in this study, and their strengths, limitations, and future research directions are given. Although
deep learning and hybrid FS methods are shown to have better accuracy and feature extraction efficiency than
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the classical techniques, the former methods still face the challenge of issues related to their interpretability,
computational complexity, and scalability. However, the practical implementation of FS in the sensible world
of medical imaging to date is only possible because of hardware constraints and slow algorithmic maturity.
This paper concludes by synthesizing the significant findings of the review, points to challenges of recent FS
techniques, and indicates future research directions to bridge gaps.

It turns out that the classical FS methods (filter, for example, mutual information, Pearson correlation;
wrapper: recursive feature elimination; embedded: LASSO, decision tree feature importance) are still in favor
of implementation because they are easier to interpret, much more efficient from the computational point
of view, and easy to implement. However, since these could not handle high-dimensional and multimodal
medical imaging data, AI-based FS techniques came into existence.

FS with deep learning, especially with CNN, Autoencoders, or Transformers, has dramatically improved
the extraction and selection of the features. We propose hierarchies of such a model that automatically learn
memo hashes and hierarchies of memo hashes without manual feature engineering. However, since they are
black boxes, the interpretability to clinicians to trust and validate AI-based FS decisions is an issue. Moreover,
these models are computationally heavy, making them unwieldy to use in a clinical setting in real time due to
the need for high-performance hardware (GPUs or TPUs) and a performant hyperparameter configuration.

Hybrid FS approaches, which mainly contain classical and deep learning methods, have been suggested
to counter these things. These methods extend the best of FS techniques in two directions: (i) such models
generalize better than FS techniques or AI-driven models, and (ii) the models are interpretable compared
to AI-driven models. However, when used to apply to a large-scale, multimodal imaging dataset, the hybrid
methods are constrained by scalability and computational optimization issues.

In particular, quantum computing is also demonstrated as a new approach to FS, deep learning, and
hybrid methods. Usually, Quantum Feature Selection (QFS) utilizes quantum parallelism and quantum
entanglement to use a high-dimensional dataset. Although quantum FS has the theoretical advantage of
exponentially improving computational efficiency, its realization in practice faces hardware limitations,
quantum noise, and the absence of clinically validated quantum algorithms.

In addition, the studies show that although deep learning and hybrid FS methods need to be further
studied, they could significantly improve the efficiency of feature extraction and predictive accuracy over the
classical FS methods. On the other hand, classical FS methods are based on preassigned statistical measures.
In contrast, AI-driven approaches can learn complex feature representations in an automatic fashion from
medical imaging datasets and understand the underlying complex patterns in medical imaging databases.
However, they incur this advantage on computational efficiency and interpretability.

Deep learning based FS is faced with the challenge of a blackbox, and medical professionals can hardly
explain to what extent the selected features are valuable and why we should exclude other features. To increase
transparency, various explainable AI (XAI) techniques, such as SHAP (Shapley Additive Explanations),
Grad-CAM (Gradient-weighted Class Activation Mapping), and Layer-wise Relevance Propagation (LRP),
have been determined. These methods, though, are not used widely in clinical decision-making because
feature selection is not justified.

Additionally, unlike deep learning based FS, using classical FS approaches is a costly operation,
computationally speaking. As an example, the computational complexity of CNN-based FS models is
illustrates in Eq. (35):

CFS =
L
∑
l=1

O ( fl ⋅ k2
l ⋅ cl ⋅ hl ⋅wl) (35)
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where L is the total number of layers, fl represents the number of filters, k2
l is the kernel size, and hl , wl

denote the feature map dimensions. This equation summarizes how deep architectures exponentially boost
the computation demands, making real-time applicability for medical purposes intractable unless special
hardware is considered.

Deep learning-based FS is also pursued to increase scalability. This entails utilizing lightweight CNN
architectures, e.g., MobileNets and EfficientNets, to reduce the number of trainable parameters while
maintaining FS accuracy. The depth-wise separable convolution is utilized to mathematically optimize the
computational efficiency of lightweight FS models. Recent studies have also demonstrated that lightweight
CNNs, including MobileNet, can accurately classify multiple stages of Alzheimer’s with high accuracy,
improving clinical interpretability and efficiency [65]. It illustrates in Eq. (36) as:

CDW = O (
L
∑
l=1

k2
l ⋅ cl ⋅ hl ⋅wl + fl ⋅ cl ⋅ hl ⋅wl) (36)

This alleviates computational load by performing no redundant calculations and enables lightweight
models to be used for real-time FS in resource-constrained environments.

Federated Learning-Based FS is another promising solution. In this approach, feature selection is
performed in a decentralized manner, so sensitive patient data does not have to be transferred to centralized
servers. This approach enables several healthcare institutions to contribute to FS tasks securely without
significant computational burdens.

Namely, quantum computing provides an entirely disruptive approach to FS with an exponential
speedup over classical FS techniques. Quantum Feature Selection (QFS) considers multiple feature sets to
evaluate in the superposition and entanglement by the computer to diminish computational time. Quantum
FS can be mathematically represented in Eq. (37) as:

∣Ψ⟩ = Uθ ∣0⟩⊗n (37)

where ∣Ψ⟩ represents the quantum state encoding selected features, and Uθ is the optimized unitary
transformation applied for FS. Quantum classical FS could be more efficient with big multimodal imaging
data, unlike classical portable FS, which has scalability issues with high-dimensional data sets.

However, the implementation of quantum FS in practice is still hindered by practical limitations
of the current hardware. However, the existing quantum processors are insufficient in qubits, have high
noise sensitivity, and are unsuitable for large-scale medical imaging adoption. Hybrid quantum classical FS
approaches involving the use of quantum computing along with the deep learning frameworks could be
intermediate steps to apply FS in the clinical setting.

5.1 Related Surveys and Positioning
Although several reviews have addressed feature selection or related concepts in medical imaging, none

to date provide a comprehensive, systematic review covering classical, deep learning-based, hybrid, and
quantum-based feature selection across multi-modal imaging. This subsection highlights selected works and
clarifies the unique contribution of this review.

Several recent works provide valuable insights (Table 8):

• [13] Bolón-Canedo and Remeseiro (2019): General FS methods applied in medicine including signals
and microarrays, but not focused on imaging FS paradigms.
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• [35] Naheed et al. (2020): Broad FS coverage for medical imaging, lacks modern methods like federated
or quantum FS.

• [44] Zang et al. (2023): Radiomics-focused FS taxonomy but no integration of hybrid, quantum, or
federated FS.

• [168] Kaur and Bohmrah (2025): Review of hybrid deep neural networks and metaheuristic optimization
for disease detection. Focuses on hyperparameter tuning and hybrid DNNs, lacks taxonomy or modality-
wide FS review.

• [169] Perniciano et al. (2024): Focuses on radiomics, especially SVM and LASSO usage. Imaging-centric
but not taxonomy-rich.

• [170] Zouache et al. (2023): Focuses on multi-objective feature selection using Firefly Algorithm (FA)
and PSO for COVID-19 detection with CNNs on X-ray images.

• [171] Focus on FS and classification in RNA-Seq using XGBoost and DT for pipeline analysis with limited
FS taxonomy.

• [172] Tumor subtype diagnosis using multi-omics and imaging with Filter, Wrapper, and Embedded
methods in ML, limited by a narrow biological scope.

• [173] Focus on disease-specific FS applications without broader methodological scope.

Table 8: Comparison of our review with prior surveys on feature selection in medical imaging

Ref. Year Focus area Imaging
modalities

FS categories
covered

Novel aspects Limitation

[13] 2019 General FS in
medicine

Imaging +
non-imaging

Filter, Wrapper,
Embedded

Intro to FS for
medical apps

No DL or modality
focus

[35] 2023 Feature selection in
machine learning

X-ray images Multi-objective
feature selection

FA, PSO, and
quantum

computing
[44] 2023 Radiomics CT, MRI Filter, Wrapper,

Embedded
Radiomics FS

taxonomy
No hybrid or
emerging FS

[168] 2025 DNN +
metaheuristics

General DL +Hybrid Hyperparameter
optimization

No classical or
quantum FS

[169] 2024 Feature selection
and classification in

Radiomics

Radiological
images (e.g.,

CT, MRI,
Ultrasound)

Dimensionality
reduction,

Classification
accuracy

SVM classifier and
LASSO feature

selection; focus on
ensemble and

hybrid methods

High-
dimensionality;

algorithm stability
study needed

[170] 2024 Multi-objective
feature selection for

COVID-19
detection

X-ray images Dimensionality
reduction,

Classification
accuracy

Combination of FA
and PSO with

quantum
computing,

Limited to X-ray
images, potential

computational
complexity

[171] 2024 FS + classification RNA-Seq XGBoost, DT Pipeline analysis Limited FS
taxonomy

[172] 2025 Tumor subtype
diagnosis

Multi-omics +
imaging

Filter, Wrapper,
Embedded

ML +multi-omics Narrow biological
scope

[173] 2024 COVID-19
diagnosis

Chest CT scans Cuckoo search
optimization

algorithm,
XGBoost

High classification
rate

Dependent on
feature type

Our
Review

2025 FS in medical
imaging

MRI, CT, US,
X-ray, PET

Classical, DL,
Hybrid, Quantum

First to include
quantum,

federated, ethical
analysis

—
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The unique contributions of this review are:

• Taxonomy-based comparison across classical, deep learning, hybrid, and quantum FS paradigms.
• Inclusion of multi-modal imaging and challenges such as multi-omics fusion and feature disentangle-

ment.
• Discussion of ethical, privacy-preserving, and federated learning FS aspects.
• Presentation of a PRISMA-based systematic review methodology.
• Comparative focus on interpretability, efficiency, and clinical applicability.

Table 9 presents a comparative summary of the key strengths, limitations, and clinical considera-
tions across classical, deep learning, hybrid, and emerging feature selection (FS) techniques discussed in
this review.

Table 9: Comparative summary of feature selection techniques

FS method Strengths Limitations Clinical
applicability

Interpretability

Filter Methods Fast, computationally
efficient, independent

of ML models

Ignores feature
interaction; less

effective for complex
imaging tasks

High (simple
diagnostics)

High

Wrapper
Methods

Higher accuracy;
model-specific
optimization

Computationally
expensive; prone to

overfitting

Moderate Medium

Embedded
Methods

Balance of
performance and
efficiency; good

model integration

Model-dependent;
may miss global

optima

Moderate to
High

Medium

Deep Learning
FS

Automatic feature
learning; high

predictive accuracy

Black-box nature;
high hardware
requirements

Limited
(real-time use)

Low

Hybrid FS Combines
interpretability and
accuracy; balances

trade-offs

Scalability issues on
large/multimodal

datasets

Moderate Medium to
High

Lightweight DL
(e.g.,

MobileNet)

Efficient, scalable;
optimized for edge

devices

Slight drop in
accuracy; still needs

tuning

High
(point-of-care)

Low

Federated FS Privacy-preserving;
suitable for

multi-institutional
data

Communication
overhead;

synchronization issues

Growing Medium

Quantum FS Theoretical
exponential speed-up;

handles
high-dimensional data

Experimental phase;
hardware and
algorithmic
immaturity

Future potential Currently low

(Continued)
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Table 9 (continued)

FS method Strengths Limitations Clinical
applicability

Interpretability

Explainable AI
(XAI)

Enhances
transparency of

DL-based FS

Not yet widely
validated or

standardized in
clinical use

Promising High (if
integrated well)

5.2 Feature Selection Techniques by Imaging Modality
Table 10 summarizes the most commonly used feature selection (FS) techniques applied across vari-

ous medical imaging modalities, along with representative applications. This structured overview aids in
understanding the domain-specific relevance and adoption trends of FS methods in medical image analysis.

Table 10: Feature selection techniques by imaging modality

Imaging modality Common FS methods Applications
MRI PCA, LASSO, Autoencoders,

CNN-based FS, Quantum FS
Brain tumor classification, Alzheimer’s

detection
CT Recursive Feature Elimination, Random

Forest Importance, CNNs
Lung nodule detection, liver tumor

segmentation
X-ray Chi-square, ReliefF, Transfer Learning

with FS
COVID-19 detection, Pneumonia

classification
Ultrasound (US) Mutual Information, Gabor Filters,

Wrapper Methods
Breast lesion classification, fetal

abnormality detection
PET LASSO, SHAP-based FS, Federated FS

using Tree Models
Cancer staging, brain metabolic analysis

5.3 Recommendations for Future Research
The findings have been reviewed to show that although there has been considerable progress in applying

FS methods in medical imaging, there are still several significant challenges in this area. Future works focused
on interpretability, computational efficiency, ethical issues, and the coupling of new technologies, such as
quantum computing, will help make FS a more practical choice in clinical settings. This leads to the following
recommendations across these medical imaging FS methodologies that, in particular, provide a structured
roadmap for how one might advance onto these FS methodologies, specifically, more interpretable, more
computationally efficient, and more ethical and future technology sound.

Nevertheless, one of the main barriers toward clinical deployment of deep learning is the lack of
‘interpretability’ in deep learning based FS. Most FS models, such as those derived from Convolutional neural
networks (CNNs), Autoencoders, and Transformers, are black box systems, and it is challenging to grasp the
reason for including or discarding which feature. Future research should be dedicated to increasing the FS
model transparency and trust of FS models based on XAI techniques. SHAP (Shapley Additive Explanations),
Grad CAM (Gradient-weighted Class Activation Mapping), or hybrid FS models are not interpretable by
a few clinical validation studies. Therefore, for these techniques to be effective and readable to medical
professionals, they should be standardized in future work.
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Additionally, future FS models that use such a structure must contain domain-specific knowledge to
increase their interpretability. Data-driven, existing deep learning-based FS techniques select the features
based on their correlations with the prediction tasks, which could be caused by some anomalies and have
no clinical significance. By using the medical knowledge of radiomic features and human-in-the-loop AI
systems, the FS model transparency can be strengthened while ensuring the selected features comply with
clinical frameworks for making a decision.

While the diagnostic ability and feature extraction capability of deep learning FS techniques are
substantially improved, the major drawbacks are high computational cost and scalability issues preventing
their practical deployment in real-time medical applications. The construction of lightweight FS architectures
(MobileNets and EfficientNets) that reduce the trainable parameters but do not significantly affect perfor-
mance is adopted to improve the computational efficiency. Depthwise separable convolutions are adopted in
these architectures to reduce computational complexity and maintain the capacity for discriminative feature
selection. To this end, these architectures should be optimized for mobile and edge computing with real-time
point of care ultrasound (POCUS) analysis and mobile ECG-based heart disease classification.

In addition, federated learning based FS is an important area for research in the future because it
is helpful for distributed learning with confidential preservation, where one learns across several datasets
without pooling them in centralized storage. It is essential in healthcare because patient privacy regulations
(HIPAA, GDPR) apply when you share data. Fortunately, with FS techniques, researchers can federate
learning with FS and utilize multi-institutional medical imaging databases with data privacy and security in
mind. Nevertheless, the federated FS models should be optimized towards efficient communication to avoid
bandwidth costs without compromising model performance.

The medical imaging datasets, however, suffer from a common problem: they are imbalanced and often
contain demographic bias, which leads to real-world FS models that are neither generalized nor fair. More
accurately, the FS techniques may choose the significant lures in the overrepresented patient groups but fail
to detect the diagnostic patterns about the patient groups that constitute the minority, and such bias can
influence clinical outcomes. In the future, research centers should be trained on diverse and representative
datasets, i.e., have a variation in age, gender, ethnicity, and disease subtypes.

There is, however, an acute need to accelerate the process of regulatory guidelines for the ethical use of
AI in medical imaging on aspects of FS model fairness, transparency, and accountability, among others. Yet,
the current rules for utilizing FS techniques in light of AI have not been completely developed. However,
the World Health Organization (WHO) and the FDA are discussing regulative AI frameworks in healthcare.
Future research includes developing auditable FS models, wherein explaining what decides selected features
in a given model aids conformance to ethical AI principles.

Quantum computing offers the potential for computationally efficient FS research compared to classical
methods in an almost exponential fashion. Quantum Feature Selection (QFS) can process high-dimensional
data in polynomial time using quantum superposition and entanglement, making it an attractive prospect
for solving multimodal medical Imaging using quantitative methods. Practical realization, however, still
represents a daunting problem due to faults in qubits, restrictions in hardware, and algorithms that are still
a work in progress.

Future work in this area involves developing hybrid quantum-classical FS models due to incorporating
quantum-assisted FS methods into existing AI frameworks. As an instance, VariationalQC VQCs can, for
example, be used to optimize FS processes but have to be validated on actual-world medical imaging data
sets. At the same time, Grover’s Search Algorithm can be applied to optimize FS processes but must also
be validated on real-world medical imaging data sets. The quantum enhanced FS can be mathematically as
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follows:

∣Ψ⟩ = Uθ ∣0⟩⊗n (38)

where ∣Ψ⟩ represents the quantum state encoding feature selection, Uθ is the unitary transformation
optimized for FS, and ∣0⟩⊗n denotes the initial quantum state with n Qubits. Such a formulation implies
a significant reduction in the computational complexity of quantum algorithms that implement FS, but
practical deployment involves substantially upgrading quantum hardware.

Future work on quantum FS will include using quantum error correction techniques to improve the
noise and decoherence issues in the hardware. One proposed way to address the issue of quantum fault
tolerance to general programming (i.e., for use in FS tasks in medical imaging) is using quantum error-
correcting codes (QECCs) such as Shor’s Code and Surface Code. Nevertheless, these methods are still in the
early experimental phases, leaving many studies to be done in the direction of scalable quantum architectures
that can tackle many feature selection tasks.

For future research in FS for medical imaging, better explainability, improved computational efficiency,
reduced bias, and advanced methodologies that leverage quantum computation are necessary. Standardiza-
tion and clinical validation of explainable AI techniques should be done to enable greater transparency and
trust in FS models. Lightweight FS architectures and federated learning are enabled for efficient computation
to perform FS in real time for clinical applications. Fairness in AI-driven FS techniques is vital to address
bias and ethical concerns, especially when addressing patient groups not well-represented in the data. Lastly,
quantum computing features a revolutionary use for FS, which, however, still needs to mature hardware and
algorithmically before seeing any use in real-world medical image processing workflows.

In addition to SHAP and Grad-CAM, LIME (Local Interpretable Model-agnostic Explanations) offers
another potent approach to explainability-driven feature selection [174]. LIME works by perturbing input
features and observing the corresponding changes in model predictions, thereby constructing a locally
interpretable approximation of the model’s behavior. This technique is particularly beneficial in identifying
which features have the greatest influence on individual predictions, making it highly suitable in patient-
specific diagnostic scenarios. However, its reliance on surrogate models and sensitivity to sampling methods
can sometimes limit its reliability in high-dimensional medical imaging data. Future research should explore
how LIME can be integrated with domain-specific constraints to ensure that the explanations it produces
are not only technically valid but also clinically meaningful. In particular, combining LIME with structured
prior knowledge (e.g., known radiomic markers or anatomical relevance) may improve both interpretability
and trustworthiness of the FS process in real-world medical settings.

5.4 Limitations of Proposed Study
Even though the current review adheres to such stringent methodological standards, it is important

to point out that it does have a few drawbacks. To begin, studies that are not conducted in English are
going to be disregarded; as a result, there is a risk of bias in language, and the research as a whole would
be unable to capture literature that is relevant and was published in other languages. Second, the sources
that contained grey literature, such as technical reports, preprints, and dissertations, were not included. This
may have resulted in the absence of explanations for new work that was not specifically documented. Third,
despite the fact that the selection of the study and the extraction of the data were carried out independently
by two reviewers, there was no calculation of inter-rater concordance measures (such as the Cohen Kappa
statistic). This is a feature that, if calculated, would have increased the reliability of the selection process. The
fact that the use of automation tools was purposefully omitted throughout the screening process is another
evidence that this choice was made. Despite the fact that this choice has the ability to reduce the amount
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of human error, it was decided to employ manual validation in order to obtain full coverage. Fourth, there
is no implementation of meta-analysis, which limits the ability to quantitatively evaluate heterogeneity and
variation in impact sizes across the studies that have been found.

6 Conclusion
Feature selection is a rapidly evolving field in medical imaging, where deep learning and hybrid

methods are increasingly surpassing classical approaches. Although classical techniques are affordable and
interpretable, they often lack the capacity to process high-dimensional and heterogeneous imaging data
effectively. In contrast, deep learning-based feature selection models—particularly CNNs, autoencoders,
and transformers—can learn complex, higher-order imaging features. However, these methods tend to be
less interpretable, computationally intensive, and difficult to scale in clinical environments. Hybrid feature
selection approaches, which integrate classical and AI-driven methods, offer a middle ground by enhancing
feature generation while maintaining a degree of interpretability. Yet, their clinical integration remains
constrained by high computational demands and the challenges associated with feature fusion in multimodal
imaging applications. A significant insight from this review is the potential of quantum computing to
revolutionize feature selection. QFS leverages quantum superposition and entanglement to reduce the
computational complexity of classical FS methods. Although promising in theory, QFS still faces practical
challenges, including limitations in current quantum hardware, lack of algorithmic maturity, and the need
for robust clinical validation. Nonetheless, hybrid quantum-classical frameworks may offer a transitional
path toward integrating quantum FS with existing AI-driven systems. Future research should prioritize
the development of robust and explainable AI-based FS models that can deliver both performance and
transparency for clinical decision-making. There is a growing need for computationally efficient solutions,
such as lightweight FS architectures and federated learning frameworks, especially in privacy-sensitive
healthcare environments. Moreover, fairness-aware FS algorithms—coupled with demographically represen-
tative datasets—must be explored to address bias and equity concerns. Finally, the high scalability potential
of quantum FS models makes them attractive candidates for future multimodal imaging applications. By
addressing these technological and ethical challenges, feature selection techniques can be more seamlessly
integrated into clinical AI systems, ultimately improving diagnostic accuracy, computational efficiency, and
trust in real-world medical settings.

Abbreviations and Notations
Abbreviation Full Form
ACO Ant Colony Optimization
AUC-ROC Area Under the Receiver Operating Characteristic Curve
BraTS Brain Tumor Segmentation (dataset)
CheXpert Chest X-ray dataset
CNN Convolutional Neural Network
CT Computed Tomography
DL Deep Learning
ECG Electrocardiogram
EEG Electroencephalogram
FAT Fairness, Accountability, and Transparency
FS Feature Selection
GA Genetic Algorithm
GDPR General Data Protection Regulation
Grad-CAM Gradient-weighted Class Activation Mapping
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GRU Gated Recurrent Unit
GNN Graph Neural Network
HIPAA Health Insurance Portability and Accountability Act
KL divergence Kullback-Leibler Divergence
k-NN k-Nearest Neighbors
LASSO Least Absolute Shrinkage and Selection Operator
LRP Layer-wise Relevance Propagation
LSTM Long Short-Term Memory
MI Mutual Information
ML Machine Learning
MRI Magnetic Resonance Imaging
PCA Principal Component Analysis
PET Positron Emission Tomography
POCUS Point of Care Ultrasound
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PSO Particle Swarm Optimization
QAOA Quantum Approximate Optimization Algorithm
QFS Quantum Feature Selection
QGA Quantum Genetic Algorithm
QNN Quantum Neural Network
QSVM Quantum Support Vector Machine
QVC Quantum Variational Circuit
ReLU Rectified Linear Unit
RF Random Forest
RFE Recursive Feature Elimination
SAE Sparse Autoencoder
SHAP Shapley Additive Explanations
SSL Self-Supervised Learning
SVM Support Vector Machine
US Ultrasound
VAE Variational Autoencoder
ViT Vision Transformer
VQC Variational Quantum Circuit
WHO World Health Organization
XAI Explainable Artificial Intelligence
XGBoost Extreme Gradient Boosting (algorithm)

Symbol Meaning
Xi , Yi Feature values and target labels
X̄ , Ȳ Mean of feature and target values
n Number of samples
r Pearson correlation coefficient
I(X; Y) Mutual Information between variables X and Y
P(x, y), P(x), P(y) Joint and marginal probabilities
χ2 Chi-square statistic
O, E Observed and expected frequencies
β Feature weight vector
λ Regularization parameter (LASSO)
Fl Output feature map at layer l in a CNN
Wl Convolutional weights at layer l
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σ Activation function (e.g., ReLU)
q(z∣x), p(z∣x) Posterior and likelihood in VAEs
DKL Kullback–Leibler divergence
Z Transformer patch embeddings
Q, K, V Query, Key, and Value matrices (transformer attention)
F* Optimal feature subset
Vi , Xi Velocity and position in PSO
Gbs, Pibs Global and individual best solutions (PSO)
d(F1, F2) Distance between feature vectors
Pi, wi Prediction and weight in late fusion
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