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ABSTRACT. Microarrays do not yield direct evidence for functional connections between genes. However, tran-
scription factors (TFs) and their binding sites (TFBSs) in promoters are important for inducing and coordinating
changes in RNA levels, and thus represent the first layer of functional interaction. Similar to genes, TF's act only in
context, which is why a TF/TFBS-based promoter analysis of genes needs to be done in the form of gene(TF)-gene
networks, not individual TFs or TFBSs. In addition, integration of the literature and various databases (e.g. GO,
MeSH, etc) allows the adding of genes relevant for the functional context of the data even if they were initially missed
by the microarray as their RNA levels did not change significantly. Here, we outline a TF-TFBSs network-based
strategy to assess the involvement of transcription factors in agonist signaling and demonstrate its utility in deci-
phering the response of human microvascular endothelial cells (HMEC-1) to leukemia inhibitory factor (LIF). Our
strategy identified a central core of eight TFs, of which only STAT3 had previously been definitively linked to LIF in
endothelial cells. We also found potential molecular mechanisms of gene regulation in HMEC-1 upon stimulation
with LIF that allow for the prediction of changes of genes not used in the analysis. Our approach, which is readily
applicable to a wide variety of expression microarray and next generation sequencing RNA-seq results, illustrates
the power of a TF-gene networking approach for elucidation of the underlying biology.

Key words: microarray data analysis, high-throughput (HT) approaches, transcription factor-gene networking, transcription factor
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Microarrays record a snapshot of transcriptional changes
caused by the administration of drugs or agonists to cells
and define all changes, as far as the genome is covered
by the microarray design, regardless of whether they have
relevance to the functional actions of the drug or agonist
[1]. They provide long lists of genes that show changes in
steady-state RNA levels, but they do not yield direct evi-
dence for functional connections between genes and miss
even important genes if their steady-state RNA levels are
not significantly changed. However, as recently demon-
strated by results of the ENCODE project [2], functional
interactions of genes depend on a variety of functional
genomic elements with transcription factors (TFs) and
their binding sites (TFBSs) in promoters and enhancers,
and are important for inducing and coordinating changes
in RNA levels. Moreover, multiple databases and the
scientific literature provide huge amounts of functional
information on genes and their interactions, including TFs.

Therefore, an approach based on elucidation of TF/TFBS
interactions (i.e. networks) by promoter analysis of genes
with significantly changed transcripts is very well suited
to elucidate functional connections between significantly
changed genes in microarray data sets that might be missed
in any individual gene or factor oriented analysis.

Attempts to include additional data frequently make use
of pathways, GeneOntology (GO)-terms, or molecular
features such as TFBSs in the vicinity of genes, e.g.,
an approach focusing on transcriptional regulation by
transcription factor binding was recently described [3].
However, with the exception of pathways, all these
approaches just produce more lists, while missing a struc-
tured biological context. Another clear-cut lesson from
ENCODE, as well as many previous smaller scale studies,
is that neither genes nor TFs or their corresponding TFBSs
actinisolation, but are highly interconnected usually in the
form of gene-gene networks. Biological functionality only
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becomes apparent at the network level (pathways repre-
senting small networks themselves). Moreover, integration
of additional functional connections as taken from the lit-
erature and various databases (e.g. GO, MeSH, etc.) allows
for inclusion of genes relevant to the functional context of
the data even if they were initially missed because their
RNA levels do not change significantly. An integrative
approach has the additional advantage of compensating
for the intrinsic weaknesses of individual methods; enrich-
ment analyses are necessarily biased by uneven distribution
of knowledge; co-citation literature networks face the
same challenge and, in addition, inevitably contain vari-
able numbers of false positive connections. However, by
bringing several lines of evidence together outliers due to
erroneous results of one method are readily identified and
discarded. This rationale is based on “biological consis-
tency”, i.e. every finding in one area of analysis must also
be reflected in the results of other lines of evidence in order
to be accepted as real.

We developed a widely applicable strategy, entirely focus-
ing on TF and TFBSs-centered networks, complemented
by expression profiling information gathered from the
literature. Other approaches report as the final results GO-
terms, pathways, and associated TFBSs. These are only
“stepping stones” in our strictly context/network-oriented
approach. One of the most important principles of this
strategy is to complement findings from expression data
with conclusions drawn from our network approaches (bio-
logical consistency between data and knowledge-based
analyses). We applied this strategy to elucidate the poten-
tial involvement of transcription factors in the regulation
of genes in response to leukemia inhibitory factor (LIF)
in human microvascular endothelial cells (HMEC-1). We
were able to identify a central core of eight TFs based
on multiple lines of evidence, most likely involved in
the regulatory network of LIF-induced gene expression
changes in HMEC-1 cells, although initially almost 100
TFs showed significant expression changes (one line of
evidence). We also found potential molecular mechanisms
of gene regulation in HMEC-1 cells upon stimulation with
LIF that allowed prediction of changes of genes observed
on the microarray, but not used in the analysis. This clearly
demonstrates the power of a TF-gene networking approach
for the elucidation of the underlying biology. Our approach
is widely applicable to high-throughput analyses of tran-
scriptional changes such as all expression microarrays, as
well as all pertinent, next generation sequencing (NGS)
applications (ChIP-seq, RNA-seq, bisulfite-resequencing),
where the possibility of reducing the amount of data to a
biologically-linked, small network is especially important.

MATERIALS AND METHODS'

Materials

Cell culture reagents were obtained from Invitrogen (Carls-
bad, CA, USA). Epidermal growth factor was from BD
Biosciences (Franklin Lakes, NJ, USA), hydrocortisone
from Sigma-Aldrich (St. Louis, MO, USA), recombinant
human LIF from Millipore (Billerica, MA, USA), and fetal
bovine serum (SH30070.03) from Thermo Fisher Scien-
tific (Waltham, MA, USA).

1 Cf. Annex 1.
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Experimental design

HMEC-1 cells were obtained from the Centers for Disease
Control and Prevention (CDC), and grown in MCDB 131
with 15% fetal bovine serum (FBS), 10 ng/mL epidermal
growth factor, 1 pg/mL hydrocortisone, 10 mM glutamine,
and antibiotic-antimycotic. Cells were grown in 100 mm
dishes to near confluency and incubated in medium with
0.5% FBS for 12-15 hours before being used in experi-
ments. Cells were dosed with vehicle or 2 ng/mL LIF for
90 min at 37°C, placed on ice, and washed 2x with 10 mL
ice-cold Hanks’ buffered saline solution.

Microarray analysis

RNA was isolated using the RNAquous-4PCR Kit from
Applied Biosystems (Foster City, CA, USA). RNA
quality was established using the NanoDrop 3300 Flu-
orospectrometer (Thermo Scientific) and Agilent 2100
Bioanalyser. Only samples with a 260/280 ratio close to
2 and an RNA Integrity Number (RIN) value >9 were
processed for microarray analysis. Microarray process-
ing was performed by the core facility of the University
of Mississippi School of Medicine using Agilent tech-
nology and whole human genome slides. Cy3 and Cy5
dye swap and background correction were applied. Genes
were considered downregulated with treatment-to-control
ratios <0.5, and up-regulated with treatment-to-control
ratios >2. Image processing was performed using Ima-
Gene (version 8.0.1), and statistical analysis done using
the R statistical program (version 2.10.1). Array signals
for six replicates (channel median values) were calculated
by first subtracting the local background mean followed
by normalization using LOESS (within array) and quan-
tile (between arrays) algorithms. P values for differential
expression were determined using the R/Bioconductor
package limma, which incorporates both Bayesian and
linear modeling methods and is routinely used in microar-
ray data analyses [4]. In the calculation of signal values for
each probe, there was a subtraction of the local background,
which is the recommended procedure to remove bias (e.g.,
one array or part of an array was not washed as well after
hybridization). This is thought to represent somewhat of a
trade-off with reduced bias and lower variability for highly
expressed genes, but with higher variability for genes with
low expression. For that reason, we used an unadjusted
p-value <0.05 as significance threshold. Annotation for
the probe sets on the array was obtained from the Gene
Expression Omnibus (GEO) at the NCBI, using acces-
sion number GPL4133 and from the Agilent internet site
(http://www.chem.agilent.com/cag/bsp/gene_lists.asp).

Regulatory network analysis

Figure 1 summarizes the strategies used for the analy-
sis of the significantly regulated genes. We separated up-
and down-regulated genes by GO and pathway-analysis
in order to find TFs specifically associated with up- or
down-regulation. The whole strategy is a combination of
five results originating from three independent lines of
evidence: a) mRNA values and their relative changes, b)
literature and pathway analysis, ¢) sequence-based pro-
moter analysis (figure I top “lines of evidence”). The only
experiment-specific data used were the list of significantly
regulated genes and their expression values. Our main
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focus was the analysis of TF genes and their potential tar-
gets in order to understand the transcriptional effects of
LIF treatment.

Analysis, downstream of the significant microarray sig-
nals, was carried out using the standard integrated analysis
package Genomatix Software Suite (Genomatix Software
GmbH, Munich, Germany) and the various databases and
software tools within this package, including : Gene-
ontology (GO)-analysis which was carried out with the
program GeneRanker using default parameters recom-
mended by the supplier. All literature-based analyses
were carried out using the Genomatix Pathways System
(GePS), which combines co-citation analysis from the
whole PubMed database with canonical pathway analysis.
GePS was used with the default parameters recommended
by the supplier. Promoters used for TFBSs analysis
were all extracted from the ElDorado genome database
(Release 12/2010) using the program Gene2Promoter.
The various promoter collections were then analyzed
using the program RegionMiner, which contains pre-
compiled databases of TFBSs match-numbers for whole
genomes and whole-genome promoter collections, and
for which over-representations and z-scores are automat-
ically calculated. We refer to whole-genome promoter
collections as the relevant background throughout this
study.

Promoter context is defined as sets of TFBSs that show
a specific organization within sequences: the individual
TFBSs (e.g. TFBSs A, B, and C) and their relative order
is conserved (A-B-C only, A-C-B rejected), and a flexi-
ble, but limited, distance range is allowed between the
individual TFBSs, which also must have a conserved
strand-orientation. In this way a complete framework of
three TFBSs would have the annotation A(+) - distance
range 1 - B(-) - distance range 2 - C(+) where + and -
symbolize the strand orientation of the individual TFBSs.
Such a framework needs to be found conserved in a mini-
mum number of sequences (sequence quorum), which can
be set as a user parameter. Throughout this study we used
the following parameters: minimum number of TFBSs in
a framework; 3, variation of distance range; 20 (in case no
results were found, this was increased to 30), minimum dis-
tance; 10, maximum distance; 200 (between TFBSs). The
sequence quorum was set high initially (no results), and
then reduced step-wise until frameworks of three elements
were found or the minimum quorum was reached with-
out finding frameworks. For each search, single TFBSs
identified as important in previous analyses were set as
mandatory elements, and all frameworks found with the
described settings were collected as framework sets and
the sets were then evaluated.

Evaluation for association of the frameworks with the
respective promoter sets was carried out using the pro-
gram Modellnspector as follows: each set was looked
at for matches in the promoters of the specific set that
the frameworks were derived from, various larger subsets
from the significantly regulated genes (such as network
genes, 3-and higher up-regulated genes, etc.). This was
compared to matching results obtained either from all
microarray-derived promoters or all promoters from the
human genome (automatically carried out by Modelln-
spector). The over-representation of the framework sets
in the specific promoter sets, as compared to random sam-
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pling of the genome, was calculated. These are the results
shown in the tables. For more detailed description of the
methodologies see [5].

RESULTS

Differentially expressed genes: steady-state mRNA
levels of HMEC-1 cells were analyzed by microarray
assays for genes with significantly changing mRNA lev-
els in response to LIF treatment. LIF-treated cells were
compared to untreated control cells. Microarray files were
analyzed as described in Methods using the Bioconductor
package limma in order to find the significantly regulated
genes. We found a total of 1,171 genes significantly regu-
lated between the LIF-treated cells and the control: 589
genes were up-regulated and 582 genes were found to be
down-regulated. Out of the 1,171 genes 1,107 were anno-
tated, allowing GO and pathway analysis, which were the
first steps in our data analysis.

GO-term and pathway analysis: we had a total of 368
GO-terms from the significantly (p-value <e 0%) associated
biological processes. Table 1 shows the top ten GO-terms
according to their p-value. There is a clear preference for
kinase-cascade signaling in GO-terms, which is a hallmark
of multiple signal transduction pathways. Therefore, we
went on to pathway analysis as the third step using the
GenomatixPathwaySystem (GePS, Genomatix Software,
Munich) database/tool. Table 2 shows the six pathways that
were significantly associated with the 1,107 regulated (and
annotated) genes. Again, JAK-STAT regulation is evident
(IL7 signaling pathway). However, several other signaling
pathways are also found. There were seven transcription
factor families, i.e., TFs that are very similar and bind to
the same motifs, directly implicated by the six pathways
(API1, ETS, STAT, HNF, CREB, CEBP, DDIT3). This step
concluded the analysis of the knowledge—based and GO-
and pathway-based line of evidence.

TF-regulation analysis: this is another line of evidence
independent from the literature-based analyses shown
above, except for the literature-derived TF-gene anno-
tation. The only common starting point is the list of
significantly changed genes. GePS is also able to identify
genes for TFs and we used this feature to evaluate the num-
ber of TF genes that showed altered expression. We found
50 TF genes to be up-regulated among the 1,107 genes,
and 45 TF genes that were down-regulated. Merging results
from pathway and TF-regulation analysis showed that from
the pathway-associated TF genes, ETS and CEBP factors
were up-regulated, while AP1 and Jun (a CREB family
factor) were down-regulated, yielding a total of four dif-
ferentially expressed TFs so far supported by two lines
of evidence (expression data and pathway analysis). How-
ever, as many more TFs were regulated we also looked
for additional evidence of association of these factors with
regulated genes. This step concluded the analysis of the
knowledge—based lines of evidence.

Statistical promoter analysis for TFBSs: sequence-based
analyses have the advantage of being largely independent
of the above mentioned, heavily knowledge-dependent
methods. The genomic sequence (and thus the promo-
ters) is universal, entirely independent of literature, and
the detection of TFBSs is based on sequence patterns
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GO process GO-ID p-value Go Ge Gt
Enzyme-linked receptor protein signaling pathway GO:0007167 8.58 x ¢08 57 27.22 472
Transmembrane receptor protein tyrosine kinase signaling pathway GO:0007169 1.56 x 07 41 17.07 296
Prostate gland growth G0:0060736 2.13 x 7 7 0.58 10
Phosphate metabolic process G0:0006796 3.98 x e7 117 74.45 1291
Phosphorus metabolic process G0:0006793 3.98 x e’ 117 74.45 1291
MAPKKK cascade G0:0000165 431 x e 39 16.44 285
Phosphorylation GO:0016310 7.32¢07 104 64.82 1124
Regulation of cellular component movement GO:0051270 8.72 x &7 34 13.73 238
Regulation of MAPKKK cascade G0:0043408 9.07 x &7 26 8.99 156
Regulation of phosphorus metabolic process GO:0051174 9.46 x e’ 59 30.68 532

All associated GO-processes were ranked by their p-value. Go =number of genes observed in the significantly regulated genes belonging to the respective biological process,
Ge =number of genes expected in the significantly regulated genes belonging to the respective biological process by a random selection of the same size, Gt = total number of

genes belonging to the respective biological process.

Table 2
Six pathways associated with the differentially regulated genes.
Pathway p-value Input genes in pathway Gene IDs
PDGFR-alpha signaling pathway ~ 1.39E-03 ITGAYV, IFNG, SHF, JUN, CSNK2A1, PDGFRA, 3685, 3458, 90525, 3725, 1457,
CAV1 5156, 857
pertussis toxin-insensitive ccr5 2.42E-03 CCL2, CCRS5, JUN, CXCLI12 6347, 1234, 3725, 6387
signaling in macrophage
E-cadherin signaling events 5.25E-03 EPHA2, EXOC3, AKT1, HGF, IGF1, IGFIR, 1969, 11336, 207, 3082, 3479, 3480,
EFNAI 1942
IL-7 signaling pathway(JAK1 6.74E-03 IL7, RIPK3, AKT1, SYK, ZAP70, MAPK13, KIT, 3574, 11035, 207, 6850, 7535, 5603,
JAK3 STATS) BRAF, LCK, FGFR2, IRAK4, PRKCD, PIK3CD, 3815, 673, 3932, 2263, 51135, 5580,
FLT4, IGFIR, PAK2, CSNK1A1, CAMK2G, 5293, 2324, 3480, 5062, 1452, 818,
AKT2, PDGFRA, MAP3K2, ITK 208, 5156, 10746, 3702
ATF-2 transcription factor 6.94E-03 IFNG, POU2F1, SOCS3, JUN, CCND1, DUSPS8, 3458, 5451, 9021, 3725, 595, 1850,
network PDGFRA, BCL2, NOS2 5156, 596, 4843
TCR signaling in naive CD4+ 8.93E-03 VAV1, AKT1, ZAP70, LAT, FYB, LCK, LCP2, 7409, 207, 7535, 27040, 2533, 3932,
T cells PTPRC, DBNL, PTEN, ITK 3937, 5788, 28988, 5728, 3702

All associated pathways were ranked by their p-value as determined by the program GePS/GeneRanker (Genomatix Software, Munich). Input genes in pathways: these genes

were part of the list of regulated genes, as well as the pathway.

derived by sequence analysis. The only part where know-
ledge comes into play is the completeness of the library,
i.e. TF identification. TFs may act directly or indirectly
on genes and some may change transcriptional activity
without any apparent change in their own mRNA levels.
In order to estimate direct regulation by TFs we decided
to look at the other end of TF-mediated transcriptional
regulation namely the TFBSs in the promoters of diffe-
rentially regulated genes. If any particular TF is directly
involved in the regulation of a set of genes, then those
genes should contain at least one TFBS for such TFs. Thus,
TFBSs for factors prominently involved in mediating tran-
scriptional signaling might be statistically enriched in the
regulated promoters. Lack of overrepresentation does not
preclude a functional connection, but a positive result is
additional evidence for inclusion. We extracted all 5,371
promoters associated with the 1,107 regulated genes using
the Gene2Promoter tool (Genomatix Software GmbH,
Munich) and analyzed them for statistical overrepresenta-
tion of TFBSs with the MatBase Matrix Family Library
(Version 8.3, Genomatix Software GmbH, Munich). A

total of 53 TFBSs families were found to be overrep-
resented (as compared to a random sampling from all
promoters in the human genome, using a cutoff threshold
of a z-score of 2.00), 47 TFBSs families were in those pro-
moters that were up-regulated and six TFBSs families were
associated with up-regulated TF genes (HOMF (HMX1),
FKHD (FOXD1), BCDF (OTX1), CEBP (CEBPD), IRFF
(IRF1, IRF8), DMRT (DMRTB1).

In promoters from down-regulated genes, 35 TFBSs were
found to be significantly associated, six of which were also
associated with down-regulated TF genes FKHD (FoxP4,
FOXJ2), PARF (HLF), VTBP (TBP), NKXH (NKX2-2,
NKX2-3), HOXF (HOXD8), OCT1 (POU2F1). It became
evident that different factors belonging to the same TF
family (e.g. forkhead, FKHD) and their respective TFBSs
were associated with up- and down-regulated genes. It
also became evident that eight transcription factor families
showed up in at least two out of three analyses (fable 3).
Of the three that were not associated with a differentially
expressed TF gene (STAT, HOMF, HOXF), only STAT was
directly associated with one of the six associated pathways,
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Table 3
TFs prominently associated with significantly regulated genes.

TFBS family TF/up (+) or down Pathway z-score all regulated z-score up-regulated z-score down-regulated

(-) regulated association promoters promoters promoters
OCT1 POUF2 + + 55 5.07 2.55
FKHD FOXD1 + - 7.4 5.31 4.92

FOXP4 -

FOXJ2 -
IRF IRF1 + - 5.59 3.32 4.9

IRF8 +
CEBP CEBPD + + 3.65 4.67 -
BCDF OTX1 + - 3.18 4.85 -
STAT - + 3.59 3.57 -
HOMF - - 8.03 7.3 4.33
HOXF - - 5.75 5.64 2.63

Column 1 shows the TFBS family of which the individual TFs shown in column 2 are members. Column 3 indicates whether the TF was directly implicated by an associated
pathway and columns 4 to 6 indicate the statistical over-representation of the respective TFBS family as compared to all promoters in the human genome. Only factors that

show at positive values in at least three columns are shown.

as well as being co-cited with LIF in the context of vas-
cular endothelium [6], resulting in a short list of six TFs:
FKHD, IRF, OCT1, CEBP, BCDF, and STAT (table 3).
So far the selection was based on a combination of classical
analyses essentially focusing on individual TFs. Next we
focused on functional connections between TFs not nec-
essarily restricted to these eight TFs in table 3, but using
them as a starting set.

Promoter context analysis of TFBSs (frameworks): the
presence of TFBSs is a physical phenomenon while the
organization of TFBSs into clearly defined groups (frame-
works) is connected to transcriptional function. Thus,
frameworks establish another line of evidence in addition
to the presence of TFBSs. Thus, we extended our anal-
ysis to find such TFBSs networks in regulated promo-
ters. Table 3 shows three forkhead factors, one of which
was up-regulated transcriptionally (FOXD1), while two
(FOXP4 and FOXJ2) were down-regulated. As all three
factors are able to bind to the same FKHD binding sites
(MatBase, Matrix Family Library Version 8.3, Genomatix
Software GmbH), this suggests that the transcription fac-
tors most likely act in different contexts with other factors.
Such contexts can be specifically addressed and elucidated
by promoter analysis for conserved TFBSs frameworks
(strand-, order- and distance-correlated sets of TFBSs) [5].
However, as there are 2,744 promoters associated with the
up-regulated genes (Gene2Promoter, Genomatix Software
GmbH, Munich), systematic analysis of all up-regulated
promoters could not be carried out owing to the technical
limitations of the software (limit is 1000 promoters due to
the combinatorial explosion of possible TFBSs combina-
tions). Therefore, we decided to select the subset of 764
promoters of three-fold or more up-regulated genes.

We analyzed these 764 promoters for frameworks of atleast
three TFBSs (essentially representing regulatory networks
with one molecular mechanism), where one of TFBS was
mandatory (exhaustively for all six TFBSs families corre-
sponding to the six most important TFs identified in this
study). Table 4 summarizes the results of these context
searches. Most framework sets show a modest association
with the selected promoter set (Z-score cutoff 2.00, pro-
moters of three-fold or more up-regulated genes) except

for one FKHD-group (3.13) and the STAT-group, which
has the highest association (>8-fold overrepresented).
However, none show an association with all regulated
microarray promoters (the STAT group being borderline
with 2.03). However, restriction to one model that also
contained a second associated TFBS (CEBP) resulted in
more selective results (table 4, last row). Interestingly, the
two TFBSs families HOMF and HOXF originally found
but discarded based on few lines of evidence, showed up
numerous times in the context of significant factors. Thus,
all six previously selected TFs, OCT1, FKHD, IRF, CEBP,
BCDF, and STAT were also supported by associated TFBSs
framework context (3-fold or more up-regulated promo-
ters).

Functional context analysis (TFBSs-frameworks) already
linked several TFBSs, even when based only on a statistical
selection (> 3-fold up regulated). Therefore, we expected
an approach based on a subset based on biologically linked
genes to confirm the results and perhaps be even more
successful.

The following analysis is currently only possible using
the Genomatix solution, which is commercial. However,
as also indicated in figure 1, this analysis is optional and
essentially supports the findings achieved without it, albeit
in amuch faster time and with many fewer interactive steps.
Pathway network analysis: we used another selection
method that is more biology-oriented. Based on the ini-
tially associated pathways and the regulated genes, the
new pathway-network tool determines a subset of genes
that link those pathways into a network with optimal co-
citation connectivity, i.e. the network of genes has the
highest number of co-citation-based edges (normalized for
gene count). This is motivated by best-knowledge based
biological connections, bypassing any fold-change-based
criteria and should be more biologically correlated to LIF
action than the 3-fold or higher sub-sections, as expression
values represent only one of three selection criteria (path-
ways, co-citations, and expression changes). The network
method is entirely data-driven, and requires no more input
than the complete list of all regulated genes (Hahn et al.
in preparation). A network of 335 genes was defined (as
detailed in Methods) by this method, 190 of which were
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Table 4

Framework analysis of the six associated TFBSs families.
Framework set 3 and more All microarray All genome 3up All microarray
mandatory TFBSs up-regulated promoters (5371) promoters (82703) overrepresentation overrepresentation
in bold promoters (764)
DMRT-HOMF-OCT1 36 153 1990 1.96 1.2
PDX1-OCT1-HOXF 39 129 1655 2.55 1.2
MYT-OCT1-HOXF
CDXF-HOMF-FKHD 25 76 870 3.13 1.26
IRFF-HOMF-BRNF 23 84 897 2.80 1.44
X-CEBP-FKHD-X 144 531 6316 2.46 1.29
BCFD-OCT-FKHD 119 457 5855 2.33 1.26
STAT-set 36 60 454 8.78 2.03
CEBP-BRNF-STAT 9 11 (allup) 120 Na 2.76

Column 1 shows the main TFBSs determining the Framework sets as automatically determined by FrameWorker (Genomatix Software GmbH, Munich). Columns 2 to 4 show
the number of promoters matched by the whole sets of frameworks in the three respective promoter collections, and columns 5 and 6 show the respective over-representation

with respect to all human promoters.

up-regulated, connecting all six, significantly associated
pathways into one network. We then applied the exact same
strategy as for the unselected and the 3-fold-up-regulated
genes to the analysis of the network-selected genes.
GO-term analysis comparison: all together the network
was significantly associated with 988 GO-terms (as com-
pared to 368 for all regulated genes). Table 5 shows that
several GO/Medical Subject Heading (MeSH) terms sig-
nificantly associated with both gene groups (all regulated
and network-selected genes) show a dramatically lower
p-value in the network genes than in all regulated genes,
suggesting a sharper focus on the corresponding biology
by the network selection.

Pathway analysis

The 190 up-regulated genes of the network were signifi-
cantly associated with 10 pathways (table 6). These 10
pathways are related/overlap as can be seen from the fact
that there were six genes shared by five out of 10 path-
ways (SOCS3 ZAP70, ITK, PDGFRA, PRKCD, SYK).
Promoter modeling of this set of six genes most common
to the 10 pathways revealed also a strong association with
STAT and FKHD TFBSs (data not shown).

Statistical promoter analysis for TFBSs

The 190 up-regulated genes in the network were associ-
ated with 18 TFBSs (data not shown), and although there
were only 49 down-regulated genes, they were associated
with 17 TFBSs (data not shown). As shown in table 7,
the network analysis so far identified eight TFs supported
by at least two out of four lines of evidence (TF mRNA
regulation, network pathway association, TFBSs associ-
ation with up and/or down-regulated network promoters).
Notably, there is an overlap of five factors (in bold) already
identified by the same approach in all regulated genes. Join-
ing all lines of evidence, including the network analysis, all
together alist of eight TFs emerged, confirming the initially
detected OCT1 and adding SP1 to the list (table 8).

Promoter context analysis of TFBSs (frameworks): an
analogous approach as described for the 3-fold or more
up-regulated promoters based on network-derived up-
regulated promoters yielded framework sets that also were

associated with the up-regulated network promoters as well
as with the three and more up-regulated promoters (data
not shown).

TFBS-frameworks in promoters are associated with tran-
scriptional regulation of the corresponding genes and can
be located by computational search in promoters of genes
not involved in the detection of those frameworks. Hence,
they are also suitable for predicting transcriptional up-
regulation for genes that contain such frameworks in their
promoters.

Framework-predicted gene regulation is confirmed by
mircoarray data: we selected the FKHD-CREB-SORY
framework (defined from promoters of ITK, PDGFRA,
SYK) as it associates two relevant TFBSs (FKHD and
CREB) with the central genes of the gene-interaction
network-derived pathways. All promoters of up-regulated
genes on the whole microarray were analyzed for presence
of this framework. Any matching promoter is supposed to
be associated with an up-regulated transcript, which in turn
can be verified using the microarray data for these genes. It
is important to note, that none of these microarray results
have been used at any time to generate the framework,
which makes them independent data. The framework was
overrepresented in the promoters of the up-regulated genes
on the microarray (6.41-fold enriched) matching just 11
promoters (table 9). The only down-regulated gene was
skipped as it was not annotated and was thus not suitable
for further evaluation. We then used GePS to construct
a co-citation linked network from the 206 genome-wide
matches. A central area connected five genes including
the three input genes and consisting of: ITK-SYK-KDR
(vascular endothelial growth factor receptor 2 VEGFR?2)-
PDGFRA-BRAF (figure 2). BRAF was also associated
with four of the 10 network-up-regulated genes associated
pathways.

DISCUSSION

We applied a predominantly data-driven and strictly
network-focused strategy to the analysis of microarray
data - in our case HMEC-1 cells treated with LIF.
Several attempts have already been published employing
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Table 5

GO/MeSH term comparison all regulated genes / network genes.

T. Werner, et al.

GO-term p-value 1107 regulated genes p-value 335 network genes
Top ranked GO term et e

MapKKK cascade e’ 132xel’

Signal transmission via phosphorylation event 111 xe® 2.80 x e

Inflammation (MeSH disease) 193 x el 275 x e’

Selected GO-processes were compared by their p-value. All three selected individual GO-terms (rows 2 to 4) showed a much lower p-value for the network association than

for all of the regulated genes.

Table 6

Ten pathways associated with the 190 up-regulated genes contained in the network.

Pathway p-value Input genes in pathway

Cytokine receptor degradation signaling 2.84E-04 ILAT, MAP3K2, IRAK4, IL4R, AKT2, IGF1R, FLT4, ITK, IL7, IL1B,
PDGFRA, IFNG, SOCS3, BRAF, PRLR, PRKCD, SYK, FGFR2, ZAP70

IL-7 signaling pathway(JAK1 JAK3 STATS) 5.82E-04 MAP3K?2, IRAK4, PIK3CD, AKT2, IGFR1, FLT4, ITK, IL7, PDGFRA,
BRAF, PRKCD, SYK, FGFR2, ZAP70

pertussis toxin-insensitive ccr5 signaling in 1.86E-03 CCL2, CCRS5, JUN, CXCL12

macrophage

AKT(PKB)-Bad signaling 1.95E-03 MAP3K2, IRAK4, PIK3CD, AKT2, IGFR1, FLT4, ITK, PDGFRA,
BRAF, PRKCD, SYK, FGFR2, TZAP70

Migration 2.15E-03 MAP3K?2, IRAK4, PIK3CD, AKT2, IGFR1, FLT4, ITK, PDGFRA,
BRAF, PRKCD, SYK, FGFR2, ZAP70

ATF-2 transcription factor network 2.89E-03 DUSPS8, I BCL2, NOS2, PDGFRA , IFNG, SOCS3

Signaling events mediated by PTP1B 3.92E-03 ITGB3, LAT, LYN, SOCS3, PRLR, CSFIR

IL23-mediated signaling events 4.23E-03 CCL2, NOS2, IL1B, IFNG, SOCS3

Class I PI3K signaling events 8.96E-03 ITK, LYN, VAV1, SYK, ZAP70

IL-6-mediated signaling events 9.85E-03 CEBPD, IRF1, VAV1, SOCS3, PRKCD

All associated pathways were ranked by their p-value as determined by the program GePS/GeneRanker (Genomatix Software, Munich). Input genes in pathways: these genes

were part of the list of regulated genes as well as the pathway.

Table 7
Seven TFBSs associated with genes in the network of LIF-associated pathways.

TFBS family TF / up + or down - Network pathway z-score up-regulated z-score down-regulated

regulated association network promoters network promoters
SP1 KLF11 + + 3.89 297
CEBP CEBPD + + 2.79 -
FKHD FOXD1 + + 2.38 -

FOXP4 -

FOXJ2 -
IRF IRF1 + - - 2.54

IRF8 +
STAT - + 2.54 -
ETS SPI1 + + - -

PBRM1 +
ZBP ZNF219 + - 5.22 -
BCDF OTX1 + - 2.00 -

Column 1 shows the TFBS family of which the individual TFs shown in column 2 are members of. Column 3 indicates whether the TF was directly implicated by an associated
pathway, and columns 4 and 5 indicate the statistical over-representation of the respective TFBS family in network promoters as compared to all promoters in the human

genome.

more data-driven strategies, such as identification of co-
expression of transcription factors and their putative target
genes [7], which worked best in yeast. A more recent
approach was aimed at the identification of functionally
coordinated TF-clusters also in human and Arabidopsis

microarray data [8]. These and many other approaches
are truly data-driven analyses, but focus on expression
data only, while our approach was designed to include as
many sources of information as possible in a data-driven
and network-focused analysis. Even the simplest analysis
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Table 8
Final results: core set of TFs involved in response to LIF.

TF Matrix Pathway Associated TF regulated TF framework TFBS over-

family network pathway /(=) associated represented (+)/(-)
FOXD1 FKHD + - + -
FOXP4 - FOXJ2 FKHD + + + +
STAT 1/3/4/5a STAT + + + +
CEBPD CEBP + + +

SP1 T
IRF1 IRF + + + -
IRF8

CREB + + +
POU2F1 OCT1 - + -
OTX1 BCDF + + +

The table summarizes the results from five analyses (pathway network, pathway association, TF gene up/down regulation, framework association, and TFBS overrepresentation
in promoters of up/down-regulated genes) derived from three independent lines of evidence: generic knowledge databases, experimental measurements, and promoter sequence
analysis. Final selection was made with a cutoff of 3/5, i.e. only factors supported by at least three of the five analyses are shown. (+) and (-) indicate association with up (+)

or down (-) regulated genes and are for the purpose of sum scores treated as equivalent.

Table 9
FKHD-CREB-SORY-containing promoters are all up-regulated with one exception.
All microarray All up-regulated All genome promoters All microarray All up-regulated
promoters (5371) promoters (764) (101233) promoters promoters
Matches Matches Matches Overrepresentation Overrepresentation
11 10 206 1.01 6.41

Overrepresentation analysis was carried out in the same way as for the data in rable 4.

of the ENCODE data as published recently in Nature [2],
provided overwhelming evidence of how strong network-
oriented gene regulation is.

The actions of LIF include several mRNA-independent
steps such as kinase cascades, which can never be observed
directly in microarray data [6]. However, we were not only
able to identify STAT as a central factor in LIF action solely
by data analysis, but we also determined a short-list of
eight TFs, most of which were not known to be impor-
tant for LIF action (table 8). IRF8, STAT3, SP1, IRF from
that list are significantly associated with myeloid leukemia
(p=1.21¢"19), yielding further support for the validity of
the TF selection.

The most compelling part of regulatory network-oriented
analyses is the ability to predict changes in RNA of other
genes not used in the definition of the TFBSs frameworks
defining regulatory networks. We ran the prediction using
a network-associated framework containing two of the
best associated TF/TFBSs (FKHD-CREB-SORY), found
11 promoters of genes interrogated on the microarray,
and 10 of these matched the prediction derived from the
framework analysis. At this point, verification by other
experimental methods such as RT-PCR, NGS or the like
would be required to turn most likely candidates into
verified transcriptional regulators or transcriptional tar-
gets (by ChIP-seq, ChIP-on-chip, siRNA or vector-driven
over-expression approaches), but this is clearly beyond the
scope of this study that focused on strategies for the com-
putational data analysis. However, supporting evidence
can also be collected from existing knowledge: four of
the core TFs are part of the androgen receptor pathway
(STAT3, SP1, POU2F1, and ATF2) and three are part of

the IL-6 and the c-Myc signaling pathways respectively
(STAT3, CEPBD, IRF1, and CEBPD, IRFS8, SP1). This
may allow selective inhibition of such pathway-oriented
downstream reactions, which might even enable the diffe-
rentiation of inflammatory responses from others, such as
angiogenesis.

Our strategy focused on TFs, their TFBSs and the potential
functional network-context by combining knowledge-
based measures (GO-terms, pathways, co-citations) with
experimental data (expression changes) and genomics-
based sequence analysis (TFBSs and promoters) as
outlined before [9]. The almost perfect agreement of
framework-derived predictions with the actual microarray
readings on genes is another line of supporting evidence.
We used specific, prior knowledge solely to judge our
results not to generate them, e.g. we used the know-
ledge about STAT and SOCS3 involvement to qualify our
results as valid, but both factors were identified without the
explicit use of this knowledge.

A TF involved in the regulation should bind to its target
genes and would naturally act together with other factors in
this context, which is modeled by the framework approach
[5, 10]. Each line of evidence basically provides quantita-
tive results of some kind (scores, expression values etc.).
But it is almost impossible to normalize knowledge-based
[11] and genomics based data in any way that would allow
a quantitative comparison. Therefore, we count a line of
evidence as supportive (i.e. associated significantly with
the data) or not, without any internal ranking or order.
This safeguarded against the bias of “more” evidence (e.g.
from literature) available for particularly popular factors
and premature filtering. For example, STAT factors turned
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Figure 2
Literature-derived co-citation network based on the 206 genes selected by genome-wide search for the FKHD-CREB-SORY promoter TFBS-
framework. This network represents the largest contiguous network detectable in the set of 206 genes. The central area containing the framework-

founding genes ITK, SYK and PDGFRA is boxed.

out to be among the most important TFs in the end, despite
the fact that we did not observe a significant mRNA regu-
lation in the microarray data as STAT is finally activated
by phosphorylation even if transcriptionally up-regulated
[12]. The collection of multiple lines of evidence made the
results robust with respect to missing lines of evidence, as
long as enough lines remained supportive.

We have successfully used a highly systematic, network-
focused approach, which can be applied to almost all
high-throughput data sets such as microarrays, NGS-based
experiments (e.g. RNA-Seq, and ChIP-seq), as well as
protein-interaction maps with very few adaptations. The
general process contains steps with quantitative limita-
tions requiring some pre-selections by the scientist, that
cannot always be strictly motivated from the data, as in
our case the selection of 3-fold or higher, induced genes.
Here, a best guess approach is required, but it is possible
to test a few alternatives. This is one of the reasons why
we also used a novel pathway-network oriented approach
that does not suffer from such limitations and essentially
confirmed results obtained on the arbitrarily selected gene
subset. The network tool can take an unlimited number of
pathways and genes, and always results in a single net-
work, optimal in terms of co-citation-based connectivity.
The biggest advantage is that the network is constructed in
a fully automatic process within less than a minute, requir-
ing no user-defined parameters. The results appeared to be
more focused on the LIF-relevant biology as indicated by
the much lower p-values of pertinent GO-terms. SOCS3
featured prominently as a central gene in the network-
associated pathways, and is already known to be involved

in the actions of LIF [13]. All in all, we hope that this stra-
tegy can contribute another building block for standardized
data analysis of experimental, high-throughput methods
aimed at rapid selection of subsets of data relevant to the
experimental question at hand.
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Annex 1. Preface

This whole paper is about HT-data analysis not about set-
ting up and carrying out the experimental part. This is why
we start at the expression data as provided by microar-
ray readers or NGS mapping and annotation of RNA-seq
data. The description of the experimental system in this
manuscript is for scientific completeness but of no conse-
quence to the strategy.

The strategy outlined in this paper and summarized in
figure I in a general manner and can be followed without
a Genomatix license in all but two steps: the pathway-
network analysis is not possible by other means right now;
However, this part is optional and similar results can be
reached by going manually through all the steps. The
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second step is the promoter framework analysis, which
is possible without Genomatix but carries a prohibitive
workload (to our knowledge).

For every other step alternative methods (commercial as
well as public domain) are available. However, to our
knowledge there is no other package that would offer
everything is one integrated system, which is why we used
Genomatix.

We will not recommend any particular other tools for two
reasons: First we have not tested other tools sufficiently
well to justify recommendations and second the field is
developing so fast that we expect more tools to become
available for individual tasks quickly after publication of
this manuscript. Therefore, as a more durable alternative,
we clearly describe the required results for each step In
order to facilitate following our strategy, so scientists can
look for alternative tools if they choose to do so.

Rationale of the overall strategy

Data-driven analysis. Although one line of evidence
(knowledge-based context analysis) clearly involves prior
knowledge it does so in a generic manner: No experiment-
or experience-motivated pre-selection or prioritizing of any
of the knowledge database content is done. The only selec-
tions are made by applying direct experimental results (list
of significantly changed genes) or results of prior analy-
ses of this strategy. At no point specific prior knowledge
of the experimental system is used to direct analysis. All
prior knowledge is solely used to judge data-driven results.

Multiple lines of evidence. The overall aim of our strategy
is to make use of as many sources of information as possi-
ble in order to develop a network-based representation of
the biology observed in any high-throughput expression
analysis (microarrays, RNA-seq, ChIP-seq, etc). We focus
on the identification of central transcription factors (TFs)
via networks involving their binding sites (TFBSs) and any
other functionally motivated gene-gene-interaction (GGI),
including protein-protein-interactions (PPI) as such tran-
scription factors are among the most important actors in
gene regulation. Once the networks have been developed
other features can also be looked at (such as signaling
transduction pathways or other gene groups of specific
interest).

Optimization is at the level of overall results not indi-
vidual analyses. Our strategy follows a paradigm slightly
different from the usual approaches: We do not aim to
optimize the results of individual tools and steps (such as
minimizing the rate of false positives at every step) but
use one of the most important principles in biology, which
is biological consistency, i.e all knowledge and all results
from analyses (lines of evidence) essentially represent the
same biology (there is only one) and as a consequence
any true finding must be reflected in one or several other
results or prior knowledge. Due to gaps in our knowledge
and limitations of the tools this will not be the case for
all lines of evidence but at least two should coincide. If
this is the case then a third finding distinct from the two in
agreement is regarded as a false positive and not consid-
ered in order to make errors on the safe side. Of course, the
more lines of evidence can be introduced to complement
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findings from expression data the better this selection by
biological consistency works.

Lines of evidence need to be truly independent. There
is one important point that needs to be observed care-
fully: Only independent lines of evidence contribute to
this decision process. Two different expression analy-
ses are good, replicates on one experiments are not
(with respect to independent lines of evidence) as they
only contribute to the improvement of the same line
of evidence. Two different literature mining tools using
the same basis (such as PubMed) are not independent
lines of evidence, one PubMed based and one pathway-
database based are considered sufficiently independent. Of
course, knowledge-based methods, experimental results,
and purely genomic sequence based analyses are naturally
as independent as possible, which is why we chose exactly
this combination.

Individual results need to be good enough not perfect.
Each and every method has shortcomings including auto-
matic annotation or any other method relying on prior
knowledge (enrichment analysis, TFBSs matrix libraries,
promoter databases etc.). Therefore, we do not rely on
ANY single analysis result but collect several lines of
evidence in independent analyses. This helps to identify
erroneous individual results even in the absence of specific
knowledge about the error due to inconsistencies with the
results of two or more methods in agreement.

As a consequence of this approach, perfect optimization
of individual tools might even be counterproductive: For
example, the association of two genes by “expert curation”
is virtually free of false positives (except for errors of the
experts). However, this comes at the price of a consider-
able number of false negatives, excluded not because the
experts were sure about the results being negative but sim-
ply because they did not find conclusive positive evidence.
“Two genes being associated by co-citation” on the other
hand does have much less false negatives, which in this
case comes at the expense of a considerable number of
false positives. However, in the light of the overall strat-
egy false positives will be eliminated by the fact that the
will not find supporting other lines of evidence while false
negatives are simply eliminated from this line of evidence
without the chance to collect additional support. So in this
strategy it pays off to be more lenient on each individual
line of evidence as the pileup will take care of most false
positives brought in by individual lines of evidence. Of
course, this only works within limits and requires some
minimal quality standards. False positives should always
be a minority of the results and tools and parameters need to
be adjusted to guarantee this. However, the default param-
eters offered with the tools usually take care of this point
already.

The strategy step by step

Step 1: List of significantly changed genes in the
HT-expression analysis

Required results: A list of gene IDs (preferably) and/or
gene symbols of genes with changed steady-state levels of
mRNAs, in case of RNA-seq transcripts, selected by:
—cutoff p-value for statistics

—cutoff (log) folds-change (up and down regulated)
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We have used the Limma package here, but any tool deliv-
ering similar results can be used as long as the desired list
of significantly regulated genes is provided.

Line of evidence 1 (k): Knowledge-based context analysis
It is important that at this point we took advantage of the
associative nature of enrichment analyses. We collected
all TF genes that were linked to the associated GO-terms
and pathways, regardless if they were also significantly
regulated or not. They belong to the context of the regulated
genes.

Step 2(k): GO- / MeSH / tissue enrichment analysis
Required results: A list of GO-terms (and/or MeSH-
terms, and/or tissue terms) significantly associated with
gene IDs (preferably) and/or gene symbols from the list
resulting in step 1:

—cutoff p-value for statistics

—identification and download of the genes belonging to
each significantly associated term.

We have used Genomatix tool GeneRanker to analyze GO-
terms for biological process as we found this category
to be most informative. However, other categories may
also proof to be helpful in specific cases. This needs to
be decided by the researcher (details on parameters in the
“methods details” section).

As our focus was on TFs we scanned the resulting gene
lists for each associated GO-term for TF genes to get an
initial TF-list supported by GO-terms.

Step 3(k): Pathway enrichment analysis

Required results: A list of canonical pathways signifi-
cantly associated with gene IDs (preferably) and/or gene
symbols from the list resulting in step 1:

—list of pathway databases used (to spot omissions)

— cutoff p-value for statistics

—list of significantly associated pathways

—identification and download of the genes belonging to
each significantly associated pathway.

We used the Genomatix tool GePS (Genomatix pathway
system) for this task. However, any other tool yielding
the desired results can be used interchangeably (details
on parameters in the “methods details” section).

GePS already automatically identifies all TF-genes, so col-
lection was easy in this case. With other tools this might
require an additional annotation step. We collected all TFs
that were associated with the gene list from step 1 regard-
less if they were on the list or in the pathways.

With this we completed the first line of evidence analy-
sis resulting in a list of TFs that were associated with the
gene list from step one either via GO-terms or canonical
pathways.

The optional step 3(k)a: pathway network analysis will be
described at the end of the strategy section.

Line of evidence 2 (e): Experimental data-based analysis

Step 2(e): Separation of the genes from the list

obtained in step 1 into up- and downregulated genes.
Required results: Two sublists of gene IDs (preferably)
and/or gene symbols from the list resulting in step 1:
—list sorting by attached parameter

—list of down-regulated genes

—list of up-regulated genes
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Since this is only a very simple sorting we used Excel for
convenience. Of course, every tool allowing to sort lists by
an attached parameter is suitable.

Step 3(e): Extraction of regulated TFs from the

sublists obtained in step 2(e)

Required results: Two sublists of TF gene IDs (prefer-
ably) and/or TF gene symbols from the list resulting in
step 1:

—identification of TF genes

—list of down-regulated TF genes

—list of up-regulated TF genes

We used GePS to identify the genes that code for TFs.
Essentially any tool capable of extracting TF genes based
on the gene annotation for any genome-wide gene ID or
gen symbol database can be used.

The TF-gene sublists were then extracted using Excel
again. Important step is to carry the fold-change values
along as they will be needed later on. See above (step 2(e)).
With this we completed the second line of evidence analy-
sis resulting in a list of TFs that were up- or down-regulated
in the gene list from step.

Please note that at this point GO-/pathway based informa-
tion and expression-change based information is collected
absolutely independently.

Line of evidence 3 (g): Genomic sequence-based analysis

Step 2(g): Extraction of promoter sequences

associated with the genes from the list obtained in

step 1.

Required results: Two sublists of promoter sequences of
the gene IDs (preferably) and/or gene symbols from the
list resulting in step 1:

—identification of promoter sequences of genes

—list of promoter sequences from down-regulated genes
—list of promoter sequences from up-regulated genes

We used the Genomatix tool Gene2Promoter as it allows
one-step extraction of all promoters belonging to one list
of genes in batch mode. However, any tool capable of find-
ing transcriptional start sites (TSS) in a genome browser
and extracting the appropriate promoter sequence (we used
Genomatix defaults, see “method details” section) can be
used for this task as well.

We focused on promoters despite the well-known impor-
tance of enhancers and other regulatory regions (such as
Locus control regions or matrix attachment regions) as
promoters are directly linked to transcriptional control of
transcripts observed by HT-expression analysis and all the
other regions act through promoters. This will miss some
important relations but essentially capture enough for the
purpose of this strategy.

Step 3(g)a: TFBSs framework analysis
Required results: Frameworks linking specific promoter
sequences of the gene IDs (preferably) and/or gene sym-
bols from the list resulting in step 1:
—identification of TFBSs frameworks
e finding matches to individual TFBSs in promoters
based on a TFBSs library
e Analysis subsets of promoters for the occurrence of
TFBSs frameworks characterized as follows:
o Individual TFBSs matches that are members of the
framework
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o Strand orientation of the respective TFBSs matches

o Determination of the distance range of these
selected TFBSs

—list of frameworks and their corresponding promoter

sequences from list of regulated down-regulated genes

—list of frameworks and their corresponding promoter

sequences from list of regulated up-regulated genes
This step of the analysis may be the least familiar for
scientists not deeply involved in the mechanism of tran-
scription control. Therefore here is a brief description of
the underlying biological principles:
Individual TFBSs are physical units capable of binding
TFs. However, binding of an isolated TF does not elicit
any transcriptional control, which always requires comple-
xes of more than one TF to be bound simultaneously
to a promoter. In order to ensure specific regulation, the
individual TFBSs cooperating (e.g. TFBSs A, B, and C)
and their relative order is conserved (A-B-C only, A-C-B
rejected), a flexible but limited distance range is allowed
between the individual TFBSs, which also in most cases
have a conserved strand-orientation. In this way a com-
plete framework of three TFBSs would have the annotation
A(+) - distance range 1 - B(-) - distance range 2 - C(+)
where + and - symbolize the strand orientation of the
individual TFBSs. Such a framework is associated with
a specific regulation (if it is complete, i.e. no more TFs
are required) or a group of gene regulations (if additional
TFs are required that were not found in the analysis).
In order to contribute to our strategy, such frameworks
need to be found conserved in a minimum number of
sequences (sequence quorum, see “method details™). Since
up- and down-regulation definitely will employ different
frameworks and mechanisms we separated the up- and
down-regulated promoter sequences for this purpose.
In case of the down-regulated genes it should be noted,
that this strategy will only detect frameworks that are
basically up-regulatory but one or more of the impor-
tant factor’s activity is down-regulated (not necessarily the
mRNA level!). Cases where a different, specific repres-
sor element is responsible will not be accessible to this
strategy.
We used the Genomatix tool FrameWorker for this purpose,
which carries out the whole analysis fully automatically for
one set of promoters at a time. Since this tool uses combi-
natorial TFBSs analysis there is a limit of 1,000 promoters
due to the combinatorial explosion of possible TFBSs com-
binations. We are not aware of any other tool that would
currently do the same. However, any tool that will help
to determine the specific TFBSs organization described in
the results required, could be used to carry out this step.
Due to the number of promoters exceeding limit Frame-
Worker requires some pre-selection of promoters before a
framework analysis can be started. Basically, any biolog-
ically motivated selection process can be used provided it
selects > 3 and < 1,000 promoters: By GO-term group,
by pathways, by expression profile, by network analysis.
The important selection criterion is that the genes in the list
should have a high likelihood of being functionally con-
nected. As becomes evident from the results of the optional
step 3(k)a (pathway networks) the more biological con-
nection information is used the better the selection. We
chose to go for highly up-regulated gene promoters in the
basic strategy as we did not have expression profiles (time-
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series) available and wanted to demonstrate viability of the
strategy even without the pathway network analysis.
Sometimes FrameWorker delivers long lists of frameworks
necessitating a ranking. This ranking can be done either
post-analysis requiring to go through all the long lists
and crossing them with other lines of evidence or pre-
analysis by the setting of mandatory elements. These are
pre-selected TFBSs that MUST be part of any framework
reported. This is only a filter, and the same frameworks
would be found without the mandatory element but some-
where down the list in unfortunate cases.

Step (3g)a continued: Verification of data association

of the frameworks

Required results: Lists of matches for individual TFBSs
frameworks in selected promoter lists:

—promoter sequences used as training set for framework
detection

—promoter sequences of the gene IDs (preferably) and/or
gene symbols from the lists resulting in step 2(g):

—all promoter sequences of the human genome (or the
genome of interest)

—table of over-representations of the above results vs the
last (whole-genome match list)

As described in the text, we validated the association of the
frameworks found by comparing the number of matches
in various subsets of promoters with the matches in all
promoters in the genome. A framework that is not over-
represented in the experiment-specific subsets may still
describe biological functionality but too broad to be rele-
vant for the interpretation of the experimental data. This
is no new line of evidence but only a safeguard that the
framework and its TFBSs are relevant for the study.

We used Genomatix’ tool Modellnspector for this tasks as
it carries out the whole analysis fully automatically and
is already linked to the genomic promoter databases of
many organisms. However, any tool capable of locating
matches to frameworks together with appropriate promoter
sequence selection is suitable for this task.

Step 3(G)b: TFBSs overrepresentation analysis
Required results: Lists of TFBSs overrepresented in pro-
moter sequences of the gene IDs (preferably) and/or gene
symbols from the list resulting in step 1:

—identification of TFBSs matches to individual TFBSs in
promoters based on a TFBSs library

—p-value / z-score for the overrepresentation of TFBSs in
the promoters of the promoter list:

—list of TFBSs over-represented in promoter sequences
from list of regulated down-regulated genes

—list of TFBSs over-represented in promoter sequences
from list of regulated up-regulated genes

The statistical over-representation of TFBSs only takes
the number of matches compared to expectation from
the genomic total match numbers into account and does
not look at individual matches or any context. Therefore,
this is rather different from the framework analysis. How-
ever, TFBSs involved in the regulation of gene groups
are known to be over-represented in the corresponding
promoters sometimes, which makes this a helpful result
for selecting mandatory elements for step 3(g)a in case
too many frameworks are found. TFBSs over-represented
are often involved in gene regulation; however, statisti-
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cal over-representation is not mandatory for functional
involvement. Therefore, only positive results are consid-
ered and negative results are no exclusion criterion.

We used the Genomatix tool RegionMiner for this pur-
pose, as it conveniently carries out the whole analysis
automatically for each promoter set. Any tool producing
the required results is suitable as this is basically mostly
a statistical analysis (except for the location of the TFBSs
matches, for which several solutions exist).

With this we completed the third line of evidence anal-
ysis resulting in a list of TFs that were found in a
putatively functional context in the promoters of up- or
down-regulated in the gene list from step.

Please note that at this point framework-based TF identi-
fication is carried out absolutely independently from the
GO-/pathway based information and expression-change
based analysis.

Step 4: Compilation of the results into one final table
Now that all results from three independent lines of evi-
dence are in, the final step is rather easy: A table is compiled
simply listing all potentially involved TFs in the first col-
umn and tabulating the supporting lines of evidence in
further columns. Then support is counted and the list is
ranked by level of support.

We have refrained from weighting individual results in the
table. However, researchers may decide that some lines of
evidence appear to be stronger than others in their mind,
weighting counts accordingly. We do not recommend this
as it deviates form the principle of strictly data-driven anal-
ysis maintained so far.

Optional Step 3(k)a: Pathway network analysis
Genomatix Synopsis: Extraction of pathway-centered
optimal networks.

Required results: Sublist of genes from gene lists obtained
in steps 1 or 2(g) with the following properties:

—all genes are either members of associated pathways or
—linked by statistically significant co-citation (against co-
citation background) with two associated pathways

—the extent of the network is determined so that the con-
nectivity (co-citation weight / number of genes) is optimal.
—The network is de novo constructed based on the exper-
imental data and not any predefined interactome
—Parameters: none

To our knowledge there is currently no other method avail-
able fulfilling the described requirements for the results.
We used Synopsis on the complete list of annotated genes
(1,105) to derive a maximum connectivity sub-network
(335), which was then subjected to the complete strat-
egy as outlines in steps 2 to 4. This is a better selection
strategy than the 3-fold or more fold-change used before,
as Synopsis is closer to biology due to the pathway con-
nections. Also it is fully automatic and requires about a
minute for the analysis. However, as the results obtained
without it showed, it is optional and not absolutely neces-
sary; however, it yielded more structured results due to the
underlying network structure.

What is to be gained from this analysis in addition to TF
identification?

First of all, the TF identification and their ranking is
based on solid data-driven analyses with several lines of
evidence and should be more reliable than any of the
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individual analyses. The other, probably even more impor-
tant point is that TF-oriented microarray-analysis as far
as it includes functionally related analyses such as frame-
work analysis allows for predictions. These can be used
for direct verification in other parts of the HT-data as we
demonstrated, or as blueprints for experimental design.
Especially Next Generation Sequencing expression anal-
ysis (RNA-seq) produces large amounts of data, where
knowledge-based analysis fails due to lack of knowledge.
However, the promoter-sequence based TFBSs analysis
including the framework approach can be also used on
entirely anonymous sequences outside any known genes,
which we consider a major advantage. Once this approach
links unknowns transcripts to known ones (such as demon-
strated here by finding other genes on the microarray) the
knowledge-based analyses can be applied based on a guilt-
by-association principle.

Method details including rationale for setting and
optimizing parameters

Preface

Wherever possible we used default parameters as sug-
gested by the programs. In such cases no further
explanations are given. Wherever parameters have been
adjusted, the rationale for the adjustment is given.

Limma package: significantly changed gene list
Parameters:

—p-value threshold set to: <0.05 (unadjusted)
Preprocessing: Array signals for 6 replicates (channel
median values) were calculated by first subtracting the
local background mean followed by normalization using
loess (within array) and quantile (between arrays) algo-
rithms.

Limma analysis: P values for differential expression were
determined using the R/Bioconductor package limma,
which incorporates both Bayesian and linear modeling
methods and is routinely used in microarray data analyses.

Genomatix GeneRanker: GO-term enrichment

analysis

Parameters:

—organism: human

—p-value threshold set to: <0.01 (unadjusted, default)
We used the option to analyze GO-term enrichment,
described on the help page as follows:

Biological Processes (GO): The ontology “biological pro-
cess” from the Gene Ontology Consortium. Here is a short
description of the p-value concept: Let q be the number
of genes in the input set; Let m be the number of genes
from the input set having annotation A assigned; Then the
p-value is the probability (using Fisher’s Exact Test) of
finding at least m genes in a input list of length q having
annotation A (under the assumption that belonging to the
input list is independent of having this annotation).

Genomatix Pathway System (GePS): Enrichment of
canonical pathways, determination of TF genes

The databases behind GePS are collected from public
domain sources as well as by licensing other commercial
databases (e.g. NetPro for expert-curated PPI).

The pathway database of GePS is compiled from four pub-
licly available databases (Pathway interaction database,
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NCI, Biocarta, Cancer cell map, and the INOH database).
It contained a total of 512 pathways at the time of analysis.
The gene-gene interaction database was constructed in two
ways:

All PubMed abstracts (with few exclusions) are automati-
cally annotated to convert all gene and protein synonyms
used into the NCBI preferred gene symbols using a expert
curated synonym and homonym database (more than
600,000 synonyms just for mammals). From this annota-
tion co-citations are determined on three different levels: 1)
in the same abstract, ii) in the same sentence, iii) in the same
sentence with connecting functions words (e.g. regulates,
inhibits etc). This ensured to cover the whole literature on
each gene without missing entries that use other synonyms.
This resulted in a basic interactome database containing >
6.7 million interactions at the time of analysis.

On top of this automatic effort, GGIs and PPIs are veri-
fied by a team of PhD-level scientists who have verified
the connection in the abstracts of every paper that is part
of an expert-level interaction, which totaled more that
64,000 at the time of analysis. This was complemented
by expert curated PPIs from the NetPro database which
added another 67,000 expert level interactions to bring the
total of expert curated interactions to more than 130,000.
All information in the GePS interactome database is
curated from the published literature. Thus, every gene
interaction in this manuscript is supported by evidence
extracted from the underlying publications (abstract level.
On top of that GePS complements specially TF-gene
interactions by literature independent verification of the
presence of TF binding sites in the promoters of connected
genes adding already a second line of evidence to such
cases. GePS is available online through Genomatix.

We used the option: Characterization of gene sets: Input a
gene list, optionally with expression values of GePS.
Parameters:

—organism: humans

—p-value threshold set to: <0.01 (unadjusted, default)
—co-citation level: sentence

TF gene identification by GePS is done by exporting the
input gene list using the Export/import option: Export
advanced gene list (filter genes). This results in a tab-
delimited text with one column indicating whether the gene
is a TF or not.

Pathway association:

This part does not make use of the co-citation analysis and
is solely based on the overlap between the pathway genes
and the input gene list. P-value determination as described
in GeneRanker.

Literature-based network construction:

Here GGIs and PPIs are constructed between the genes
of the input list using the interactome database described
above. Each network is constructed based on the input
genes and there is no projection to any precompiled inter-
actome map.

Excel: Handling and sorting of gene lists with

expression values:

Parameters:

—no parameters

Excel was used to compile and maintain all gene lists used
throughout the analysis.
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Genomatix Gene2Promoter: Extraction of promoters
for gene lists
Gene2Promoter utilizes the Genomatix promoter

databases; at the time of analysis the human database
contained a total of about 120,000 human promoters.
Promoters are extracted either by fixed format (user-
defined) or by the Genomatix-defined default, which
is flexible depending on the number of TSS known for
each promoter. The default is extraction of a sequence
that reaches 500 bp upstream of the most 5° TSS in the
promoter to 100 bp‘ downstream of the most 3° TSS
of the same promoter. The -500/+100 range has been
motivated by whole genome-analyses and was recently
confirmed by whole genome-DNAse hypersensitive site
analysis to encompass the bulk of accessible promoter
sequences.

We used the batch version of the program: Extraction of
larger sets of promoters and/or filtering promoters for TF
sites

Parameters:

—organism: human

—promoter length: Genomatix variable (default)
—sequence format: FASTA

Gene2Promoter automatically produces a file of sequences
of the promoters for the selected genes (upload list).

Genomatix FrameWorker: Definition of TFBSs
frameworks in subsets of promoters

FrameWorker uses the concept of matrix families, which
groups TFBSs that are known or very likely to be able
to replace each other functionally into families and used
as such. The family concept is supported by numerous
experimental results.

Parameters:

—Matrix family group: vertebrates (all)

— Matrix filters: none (default)

—Framework analysis: exhaustive combination (default)
—Sequence quorum constraint: adjusted, see below.
—Sequence constraints: none (default)

—Minimum and maximum distance between TFBSs: 10 /
200 (see below)

—Maximum distance variation: 20 (see below)
—Minimum number of elements: 3 (see below)
—Mandatory elements: used according to TFBSs overrep-
resentation analysis

—Determine p-value of models: none (default)

We always started FrameWorker on a sequence set using
all default parameters. However, very often this results in
no frameworks reported. In such cases only we adjusted
the parameters in the following order:

—Reduce the sequence quorum (default >80%) to lower
numbers in increments of 10% until results were found.
—1In case step one did not yield results, then increase the
distance variation from 10 to 20 or even 30 bps in order
to relax the requirements for similarity of the distance
ranges.

—Restrict the distance range from 5-200 to 10-200 in
case overlapping TFBSs were found causing combinatorial
explosions. A distance of 10 usually excludes overlapping
sites.

Mandatory elements were used when too many frame-
works for easy inspection were found. Mandatory elements
filter the results but do not produce different frameworks.
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Mandatory elements were selected from the results of
other analyses (TFBSs overrepresentation, other lines of
evidence).

Genomatix Modellnspector: Locating matches to
frameworks in sequences

Parameters:

—Model group: user defined model

—Maximum number of matches: 1,000 (default)
Modellnspector analyzes both strands of all sequences
selected and can do so also for whole genome sequences
or whole genome promoter collections. It reports model
matches only if all elements of the model match with the
thresholds defined in the model (distances, order, individ-
ual TFBSs scores). The maximum number of matches was
only extended when an initial search resulted in more than
1,000 matches. Usually more than 2,000 matches are an
indication that no over-representation of the model with
the experimental data set is to be expected.

The resulting match lists were used to calculate over-
representation of individual models or model sets against
the whole genome collection of promoters in our case. We
did not calculate p-values for such over-representations
since we usually had small numbers where statistics are
not advisable.

Genomatix RegionMiner: Overrepresentation of

TFBSs in promoter sets

Parameters:

—User-defined sequence set: promoter sets

—Matrix description: matrix families

—Background selection for over-representation analysis:
human promoters

RegionMiner is a tool for large-scale sequence analysis
(up to whole genome), where one of the tasks possible
is determination of the over-representation of TFBSs in
particular sets of sequences vs a background distribution.
In our case we used the whole genome promoter collection
as background as described in the help page of the program:
Here the background is selected, which is used for the cal-
culation of the overrepresentation values and the Z-Score
(see below). You can select from

—genomic background: Genomic background comprises
all chromosomes of the selected organism.

—promoter background: The promoter background
comprises all Genomatix defined promoters of optimized
length (about 500/100bp up/downstream of the TSS,
details)

user-defined background: If this option is selected, please
supply either a sequence file or a BED file with genomic
positions. These sequences will be then searched for TFBS
to get the background match numbers.
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The result is a list of TFBSs with all the match numbers
and a z-score to indicate validity of the over-representation.
We used a z-score of 2.0 as cutoff. We also ignore any
underrepresentation (negative z-score) as this can be the
consequence of various artifacts and focused entirely on
positive z-scores.
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