

REVIEW

TGF- β 1 functional polymorphisms: a review

Guilherme Cesar Martelossi Cebinelli, Kleber Paiva Trugilo, Stephanie Badaró Garcia, Karen Brajão de Oliveira

Immunology and Molecular Genetics Laboratory, Department of Pathological Sciences, Biologic Science Center, Londrina State University, Paraná, Brazil

Correspondence: Karen Brajão de Oliveira. Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, CEP 86051-970 Londrina, PR, Brazil
<karen.brajao@gmail.com>

Accepted for publication December 15, 2016

To cite this article: Martelossi Cebinelli GC, Paiva Trugilo K, Badaró Garcia S, Brajão de Oliveira K. TGF- β 1 functional polymorphisms: a review. *Eur. Cytokine Netw.* 2016; 27(4): 81-9 doi:10.1684/ecn.2016.0382

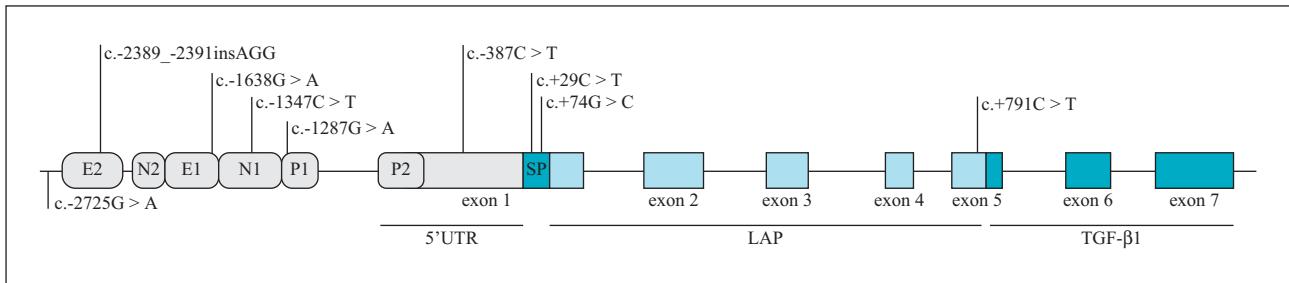
ABSTRACT. Transforming Growth Factor β (TGF- β) is a multifunctional cytokine that plays a role in several biological processes. TGF- β 1 is the most abundantly expressed isoform, associated with susceptibility to various diseases, and several polymorphisms have been described in the TGF- β 1 gene structure, and some of them have been associated with functional implications. To date, eight single-nucleotide polymorphisms (SNPs) and one deletion/insertion polymorphism have been shown to affect TGF- β 1 expression (rs2317130, rs11466313, rs1800468, rs1800469, rs11466314, rs1800471, rs1800470, and rs11466316); some of these interfere with transcriptional regulation by affecting the binding of transcription factors binding, while others interfere with protein production. These polymorphisms have been associated with different types of diseases (i.e., cancers, cardiac diseases, inflammatory diseases, and others) and could therefore be used as susceptibility biomarkers. Since polymorphism clusters are likely to be more reliable than single polymorphisms in this respect, it is hoped that haplotype analysis of TGF- β 1 may reveal the genetic basis of disease susceptibility associated with the TGF- β 1 gene.

Key words: TGF- β 1 polymorphisms, EMSA, luciferase, haplotype, clinical implications

Transforming Growth Factor β (TGF- β) is a multifunctional cytokine that plays a meaningful role in several biological processes such as cell replication, differentiation, migration, apoptosis, healing, bone formation, angiogenesis, and immune system regulation [1, 2]. It belongs to a TGF- β superfamily that contains more than 30 types of cytokines, including activins, inhibins, bone morphogenetic protein (BMP), anti-Müllerian hormone (AMH), and growth differentiation factor (GDF), besides TGF- β [3].

This extracellular dimeric protein is mainly produced by regulatory T cells, platelets, macrophages, neutrophils, bone, soft tissues, renal tubular cells, and also malignant cells [4, 5].

With a versatile role in regulation, TGF- β fosters tissue growth and morphogenesis in the embryo but, in contrast, it activates cytostatic and cell death processes that maintain homeostasis in mature tissues [6]. Therefore, deregulated TGF- β signaling has been implicated in multiple developmental disorders and in various human diseases, including cancer, fibrosis, autoimmune diseases, and transplant outcome, in which high levels of TGF- β 1 have been described for many [7-9].


Among the three homologous isoforms present in mammals (TGF- β 1, TGF- β 2, TGF- β 3), TGF- β 1 is the most abundant and ubiquitously expressed isoform [2, 10]. The regulation of TGF- β 1 production occurs at many levels, including transcription, translation, secretion, and

activation in the extracellular environment [11]. In this context, we emphasize the influence of genetic variation on TGF- β 1 production, represented by single-nucleotide polymorphism (SNP), based on a large number of studies that have shown the significance of SNPs on TGF- β 1 expression and disease development.

TGF- β 1 PRODUCTION

TGF- β 1 is synthesized as a pre-pro-TGF- β 1 monomer that consists of 390 amino acid residues, comprising an N-terminal signal peptide of 29 amino acids (c.+1 to c.+87, +1 from the translation start site based on DNA sequence), a latency-associated peptide (LAP) of 249 amino acids (c.+88 to c.+835), and a C-terminal sequence of 112 amino acids (c.+836 to c.+1172) corresponding to the mature TGF- β 1 [12, 13].

The signal peptide is removed during translocation across the rough endoplasmic reticulum membrane, where dimerization of two monomers occurs with three disulfide bonds at two cysteine residues in LAP (positions 223 and 225) and one in mature TGF- β 1 peptide (position 356), forming the pro-TGF- β 1 homodimer [14, 15]. The pro-TGF- β 1 is cleaved between 278 and 279 amino acid residues by the endoprotease furin convertase within the Golgi apparatus, resulting in LAP homodimer and mature TGF- β 1 homodimer separation. The homodimers are kept attached

Figure 1

TGF-β1 Gene structure. Exon 1 encodes the 5'UTR that contains the Promoter region 2, the signal peptide (SP), and part of the mature protein. The end of exon 5 to exon 6 encodes the mature TGF-β1, and the other exons encode the LAP. Upstream, the exon 1 is present in the Promoter region 1 (P1), Negative region 1 (N1), Enhancer region 1 (E1), Negative region 2 (N2), and Enhancer region 2 (E2). The functional polymorphisms are presented with their respective position and sequence.

by noncovalent bonds to form the small latent complex (SLC) [13, 15, 16].

Subsequently, the SLC and TGF-binding protein (LTBP) are covalently attached to form the large latent complex (LLC) [17, 18]. After secretion, LLC binds to the extracellular matrix and is maintained until its activation which depends on enzymes and other convertases, as well as on low pH levels and irradiation-induced reactive oxygen species (ROS) production in the local environment [19-22].

GENE STRUCTURE AND REGULATION OF *TGF-β1* TRANSCRIPTION

The *TGF-β1* gene is located in the 19q13.2 chromosomal region, and comprises 7 exons separated by 6 very large introns [23]. The exon 1 encodes the 5'UTR (5' Untranslated Region), the signal peptide, and a part of the Latency-Associated Peptide (LAP) of which the coding sequence continues until codon 249 in exon 5. From the remaining exon 5 to exon 7, the formed segment encodes the mature TGF-β1 [24, 25].

TGF-β1 transcription is regulated by approximately 3 kb of DNA sequence (c.-2665 to c.+423). Several regulatory elements have been described, among them are 5'UTR (c.-839 to c.-1pb) which contains the Promoter region 2 (c.-839 to c.-568), Promoter region 1 (c.-1292 to c.-1161), Negative regulatory region 1 (c.-1570 to c.-1293), Enhancer region 1 (c.-1971 to c.-1571), Negative regulatory region 2 (c.-2201 to c.-1972), and Enhancer region 2 (c.-2665 to c.-2204), as shown in figure 1 [26, 27].

Members of the Activator Protein (AP-1) transcription factor family, Stimulating protein 1 (Sp1), Signal Transducers and Activators of Transcription 3 (STAT-3), Nuclear Factor kappa B (NF-κB), Early Growth Response 1 (Egr-1), and other transcription factors, may orchestrate the levels of TGF-β1 through recognition of specific sequences in the regulatory region of *TGF-β1* gene [27-33].

AP-1 and Sp1 are regulators of transcriptional activation. AP-1 recognizes two binding sites in *TGF-β1* Promoter region 1, and Sp1 recognizes five binding sites located between c.-1161 and c.-898 [34, 35]. Furthermore, it was reported that another transcription factor, WT1 protein, may repress TGF-β1 gene expression through recognition of a response element (c.-957 to c.-949). Curiously, in the same study, it was verified that Egr-1 may activate TGF-β1 gene expression through the same response region [36]. Since transcription factors depend on specific binding

site recognition to regulate gene expression, genetic polymorphisms in the regulatory region could modulate transcription factor binding, altering *TGF-β1* expression.

TGF-β1 FUNCTIONAL POLYMORPHISMS

Genetic polymorphisms are inherited variations in the DNA sequence that occur in more than 1% of a population. The term “polymorphism” refers to the presence of different genotypes/alleles of a particular gene, and can occur as single-nucleotide polymorphism (SNP), deletion/insertions, polymorphic repetitive elements, and microsatellite variations [37].

SNPs are the most common type of polymorphisms and are usually found in areas flanking protein-coding genes that are critical for microRNA binding and gene expression regulation, in coding sequences, introns, or intergenic regions [37-39]. Accordingly, SNPs may influence gene expression, messenger RNA (mRNA) stability, alternative splicing, microRNA target sequence, protein exportation to endoplasmic reticulum via signal peptides, or alter protein function when an amino acid is changed [40].

The *TGF-β1* gene presents various polymorphisms that can be classified as functional, non-functional, or with undetermined function. Until now, 8 SNPs and one deletion/insertion polymorphism have been reported to be associated with a functional impact on TGF-β1 production (table 1).

C.-1638G > A SNP

The c.-1638G > A SNP (rs1800468), commonly identified as -800G > A, is located in the enhancer region 1. The affinity of the cAMP response element binding protein (CREB) family is reduced in the presence of allele A, associated with lower TGF-β1 levels [41-43].

C.-1347C > T SNP

The c.-1347C > T SNP (rs1800469), commonly identified as -509C > T, is located in the first negative regulatory region and is associated with differential *TGF-β1* gene expression and plasma levels [26]. Individuals who present TT genotype show increased gene expression of *TGF-β1* in comparison to CC genotype individuals [45, 46]. Furthermore, c.-1347T allele carriers have almost double plasma levels in comparison to c.-1347C allele

Table 1
Functional significance of TGF- β 1 polymorphisms

SNP identification		Region	Function
c.-2725G > A	rs2317130	Upstream enhancer region 2	Nuclear protein binding
c.-2389_-2391insAGG	rs11466313	Enhancer region 2	Nuclear protein binding
c.-1985C > G	rs3087453	Negative regulatory region 2	Undetermined
c.-1638G > A	rs1800468	Enhancer region 1	Transcription factor binding
c.-1347C > T	rs1800469	Negative regulatory region 1	Transcription factor binding
c.-1287G > A	rs11466314	Promoter region 1	Nuclear protein binding
c.-1154C > T	rs35318502	Not described	unlikely to be of functional significance
c.-827G > C	rs11466315	Promoter region 2	Undetermined
c.-387C > T	rs11466316	5' UTR	Transcription factor binding
c.-14G > A	rs9282871	5' UTR	Undetermined
c.+29C > T	rs1800470	Signal peptide	Secretion
c.+74G > C	rs1800471	Signal peptide	Secretion
c.+791C > T	rs1800472	Exon 5	Undetermined
Other polymorphisms in NCBI SNP database			Not tested

carriers, in a dose-response relationship [41]. Corroborating with these findings, *in vitro* studies using *TGF- β 1* promoter-luciferase reporter plasmids demonstrated that the c.-1347T allele increases relative luciferase activity, compared to the c.-1347C allele [44, 45, 47, 48]. Taken together, this data supports an influence of c.-1347C > T SNP on *TGF- β 1* gene expression and hence plasma levels. Changes in the nucleotide binding sequence of transcription factors may be responsible for differential *TGF- β 1* gene expression associated with c.-1347C > T SNP. As hypothesized by Shah *et al.* 2006, increased *TGF- β 1* levels might result from c.-1347T because of the loss of negative regulation. In their results it was shown that AP1 is only recruited when allele C is encoded at the c.-1347 position, and this recruitment causes the reduction in luciferase activity. In addition, the transcription factor hypoxia-inducible factor 1A (HIF1A) binds a site surrounding the c.-1347C position, and competes with AP1 when allele C is present.

Other effects of this SNP involve the transcription factor Yin-Yang 1 (YY1); the presence of c.-1347T allele was shown to increase YY1 binding and elevated relative luciferase activity in a dose-response fashion, using a YY1 vector cotransfection [48].

C.+29C > T AND C.+74G > C

The c.+29C > T SNP (rs1800470), also identified as +869C > T and Pro10Leu; and the c.+74G > C SNP (rs1800471), also identified as +915G > C and Arg25Pro, are located in the signal peptide sequence [25]. Both signal peptides comprise three regions: a positively charged N-terminal region, a central hydrophobic core, and a polar C-terminal region [49]. The c.+29C > T SNP is located in the hydrophobic core, and both the alleles encode apolar amino acids at amino acid position 10 (allele C encodes proline and allele T encodes leucine). Conversely, the c.+74G > C SNP at amino acid 25 corresponds to a change from a large polar amino acid (arginine encoded by guanine) to a small apolar one (proline encoded by

cytosine), and is located close to the cleaved region of pro-TGF- β which gives rise to LAP and mature TGF- β [25]. In an *in vitro* study, the allele c.+29C was shown to cause an increase in *TGF- β 1* secretion compared with c.+29T [50]. Moreover, it was found that the serum concentration was higher in individuals with c.+29CC genotype than those with the c.+29CT or c.+29TT genotype [46, 52-54], and the serum concentration of *TGF- β 1* was higher with the c.+74G allele in comparison with the c.+74C allele [54].

C.-387C > T

The c.-387C > T SNP (rs11466316) is located in the 5' UTR in exon 1 and the sequence nearby is a partial Sp1/Sp3 consensus site. Based on EMSA (electrophoretic mobility shift assay), Sp1 and Sp3 were shown to bind to a c.-387C probe but not a c.-387T probe [26]. To demonstrate this functional association, a luciferase reporter assay was performed, and showed that the c.-387T allele reduces in *TGF- β 1* promoter activity by 5 fold when compared with the c.-387C allele [55].

Additionally, using luciferase reporter assay constructs transfected into HT1080 human fibrosarcoma cells cotransfected with a Sp1 expression vector, it was shown that the c.-387T allele is less responsive to stimulation by Sp1 in comparison with the c.-387C allele. Furthermore, the gene expression of this SNP was investigated by using phenotype-specific dermal fibroblasts, and it was observed that the c.-387CC genotype presented a higher expression level than the c.-387CT or c.-1387TT genotype. According to the authors, these data suggest that Sp1, and maybe Sp3, likely differentially regulate *TGF- β 1* expression due to the presence of this SNP [55].

C.+791C > T

The c.+791C > T SNP (rs1800472), also identified as Thr263Ile and +788C > T, is located in exon 5. Using the luciferase reporter assay, it was observed that Ile263 (c.+791T) led to an increase in relative luciferase activity

Table 2
Clinical implication of TGF- β 1 functional polymorphisms

SNP identification		Disease association	Reference
c.-2725G > A	rs2317130	-	-
c.-2389_-2391insAGG	rs11466313	-	-
c.-1985C > G	rs3087453	-	-
c.-1638G > A	rs1800468	Cervical cancer	Ramos-Flores <i>et al.</i> , 2013 [62]
		Coronary Artery Disease	Xu <i>et al.</i> , 2014 [63]
c.-1347C > T	rs1800469	Breast cancer	Dunning <i>et al.</i> , 2003 [51]
		Cardia cancer	Guo <i>et al.</i> , 2011 [45]
		Colon and rectum cancer	Liu <i>et al.</i> , 2012 [64]
		Colon cancer	Slattery <i>et al.</i> , 2011 [65]
		Esophagus cancer	Jin <i>et al.</i> , 2008 [66]
			Wei <i>et al.</i> , 2007a [67]
		Nasopharynx cancer	Wei <i>et al.</i> , 2007b [68]
			Hu <i>et al.</i> , 2012 [69]
		Prostate cancer	Ewart-Toland <i>et al.</i> , 2004 [70]
		Stomach cancer	Chang <i>et al.</i> , 2014 [71]
			Jin <i>et al.</i> , 2007 [72]
			Xu <i>et al.</i> , 2011 [73]
		Cervical cancer	Singh; Jain; Mittal, 2009 [74]
			Torres-Poveda <i>et al.</i> , 2016 [75]
		Ophthalmoplegic complication	Nel <i>et al.</i> , 2015 [56]
		Coronary heart disease	Lu <i>et al.</i> , 2012 [76]
			Morris <i>et al.</i> , 2012 [77]
		Bone mineral density	Langdahl <i>et al.</i> , 2008 [78]
		Risk of stroke	Sie <i>et al.</i> , 2006 [79]
		Periodontitis	Cui <i>et al.</i> , 2015 [80]
		Chronic obstructive pulmonary disease	Celedón <i>et al.</i> , 2004 [81]
		Metastatic brain tumors	Wang <i>et al.</i> , 2015 [82]
		IgA nephropathy	Vuong <i>et al.</i> , 2009 [83]
		Myocardial infarction	Barsova <i>et al.</i> , 2012 [84]
		Chronic Periodontitis	Heidari; Mahmoudzadeh Sagheb; Sheibak, 2015 [85]
		Graft-versus-host disease	Zhang; Mao; Xu, 2015 [86]
		Cerebral infarction	Tao <i>et al.</i> , 2012 [87]
			Peng <i>et al.</i> , 2011 [88]
		Coronary Artery Disease	Xu <i>et al.</i> , 2014 [63]
		Pneumoconiosis	Li; Zong; Han, 2016 [89]
		Chronic Beryllium Disease	Jonth <i>et al.</i> , 2007 [90]
		Sarcoidosis	Jonth <i>et al.</i> , 2007 [90]
c.-1287G > A	rs11466314	-	-
c.-1154C > T	rs35318502	-	-
c.-827G > C	rs11466315	-	-
c.-387C > T	rs11466316	Ophthalmoplegic complication	Nel <i>et al.</i> , 2015 [56]
c.-14G > A	rs9282871	Ophthalmoplegic complication	Nel <i>et al.</i> , 2015 [56]
c.+29C >	rs1800470	Oral cancer	Carneiro <i>et al.</i> , 2013 [91]
		Cardia cancer	Guo <i>et al.</i> , 2011 [45]
		Esophagus cancer	Wei <i>et al.</i> , 2007a [67]
		Breast cancer	Dunning <i>et al.</i> , 2003 [51]
			Pooja <i>et al.</i> , 2013 [52]
			Shin <i>et al.</i> , 2005 [92]
			Ziv <i>et al.</i> , 2001 [93]
		Nasopharynx cancer	Wei <i>et al.</i> , 2007b [68]
		Oropharynx cancer	Guan <i>et al.</i> , 2010 [94]
		Prostate cancer	Li <i>et al.</i> , 2004 [95]

Table 2 (Continued)

SNP identification		Disease association	Reference
		Lung cancer	Chen, 2014
			Fan <i>et al.</i> , 2014 [96]
		Chronic obstructive pulmonary disease	Zhang; Mao; Xu, 2015 [86]
		Risk of stroke	Sie <i>et al.</i> , 2006 [79]
		Coronary heart disease	Morris <i>et al.</i> , 2012 [77]
		Myocardial infarction	Barsova <i>et al.</i> , 2012 [84]
		Graft-versus-host disease	Zhang; Mao; Xu, 2015 [86]
		Myopia	Sandhya <i>et al.</i> , 2011 [97]
		Cerebral infarction	Tao <i>et al.</i> , 2012 [87]
		Chronic Beryllium Disease	Jonth <i>et al.</i> , 2007 [90]
		Sarcoidosis	Jonth <i>et al.</i> , 2007 [90]
c.+74G > C	rs1800471	Breast cancer	Pooja <i>et al.</i> , 2013 [52]
		Coronary heart disease	Morris <i>et al.</i> , 2012 [77]
		Recurrent pregnancy loss	Magdoud <i>et al.</i> , 2013 [98]
		IgA nephropathy	Vuong <i>et al.</i> , 2009 [83]
		Chronic kidney disease	Nabrdalik <i>et al.</i> , 2013 [99]
		Radiation Pneumonitis	Yuan <i>et al.</i> , 2009 [100]
		Chronic Hepatitis C Virus Infection	Sánchez-Parada <i>et al.</i> , 2013 [101]
		Graft-Versus-Host Disease	Rashidi-Nezhad <i>et al.</i> , 2010 [102]
		Coronary Artery Disease	Xu <i>et al.</i> , 2014 [63]
		Pneumoconiosis	Li; Zong; Han, 2016 [89]
c.+791C > T	rs1800472	Vertebral fracture risk	Langdahl <i>et al.</i> , 2008 [78]
		Otosclerosis	Sommen <i>et al.</i> , 2014 [103]
		Cerebral infarction	Peng <i>et al.</i> , 2011 [88]

when compared with Thr263 (c.+791C). However, no difference was detected in the concentration of active or total TGF- β 1 levels. Thys *et al.* hypothesized that the absence of a difference in total TGF- β 1 concentration could be explained by an effect of the Ile263 variant on the activation of TGF- β 1 and not on secretion. As explained by previous observations for monogenic TGF- β 1 mutations, a 35-fold increase in TGF- β 1 activity may correlate with only a 2-fold increase in the concentration of active TGF- β 1 [24, 56].

To explain the effect of c.+791C > T SNP, Thys *et al.* proposed, based on the PROSITE database (database of protein domains, families, and functional sites), that amino acid Thr263 is a Casein kinase II phosphorylation site. Casein kinase II is a serine/threonine kinase with activity independent of cyclic nucleotides and calcium. Although no experimental evidence exists, it is possible that the loss of phosphorylation site affects TGF- β 1 activation. Alternatively, the authors also believe that changes in this amino acid could lead to a more efficient cleavage of the mature peptide from the LAP, either through a direct effect, since this site is only 15 amino acids away from the cleavage site, or by an indirect effect through a conformational change in the LAP [24].

C.-1287G > A

The c.-1287G > A SNP (rs11466314) is located in the TGF- β 1 first promoter region. Two undetermined nuclear protein complexes were described to bind to the promoter region with c.-1287A with higher affinity than to

a region with c.-1287G. This was further associated with an increased relative luciferase activity observed with c.-1287A versus c.-1287G. In conclusion, these results indicate that this SNP significantly affects TGF- β 1 transcription [26].

C.-2389_-2391INSAGG

The c.-2389_-2391insAGG polymorphism (rs11466313), also identified as -1550DEL/AGG, is located in the second enhancer region [26, 57]. Based on *silico* analyses, performed by Healy *et al.*, 2009, it was predicted that the deletion leads to a loss and gain of transcription factor binding sites. However, an experimental analysis showed a gain of protein complex in the presence of this deletion [58]. Thus, the functional relevance of this polymorphism requires further investigation.

C.-2725G > A

The c.-2725G > A SNP (rs2317130) is located in an undetermined region upstream of the second enhancer region. For this SNP, functional evaluation demonstrated a difference in complex binding affinity. The c.-2725A allele demonstrated high binding affinity complex formation, in contrast to the c.-2725G allele that presented a weak affinity [58]. The influence of this SNP on gene expression and transcription factor requirement was not performed, however, this polymorphism may nevertheless be functional based on the differential complex formation.

C.-1985C > G, C.-1154C > T, C.-827G > C, AND C.-14G > A

The c.-1985C > G SNP (rs3087453) present in the second negative region; c.-1154C > T SNP (rs35318502); c.-827G > C SNP (rs11466315) present in the second promoter region in 5'UTR region; and c.-14G > A SNP (rs9282871) present in 5'UTR region are SNPs with no effect on nuclear protein binding. Additionally, c.-1154C > T demonstrated no influence on gene expression in reporter assays, suggesting that c.-1154C > T probably has no impact on TGF- β 1 expression [26].

As exposed by Shah *et al.*, some of these SNPs might affect the TGF- β 1 regulatory region. For instance, SNPs have been shown to influence reporter gene activity without demonstrating exclusive recruitment of transcription factor(s) by EMSA [59]. Alternatively, SNPs in the 5'UTR might alter post-transcriptional events, such as mRNA processing or stability [26].

CLINICAL IMPLICATION OF TGF- β 1 FUNCTIONAL POLYMORPHISMS

The TGF- β 1 functional polymorphisms have been associated with different types of diseases (table 2) and could be used as susceptibility biomarkers. However, the simple association between one polymorphism and a disease may not justify such polymorphisms as biomarkers, since different polymorphisms affect TGF- β 1 production. A haplotype is a cluster of alleles present at a locus that are inherited together [60], and haplotype analysis may therefore be a more robust method to reveal the association between SNPs and disease susceptibility.

CONCLUSION

In conclusion, eight polymorphisms have been described to affect TGF- β 1 production and have been associated with disease susceptibility. Some of these interfere at the transcriptional level affecting transcription factor binding, while others interfere at the protein production level. To elucidate the correlation between TGF- β 1 polymorphisms and disease susceptibility, haplotype analysis is necessary to certify the exact influence of these polymorphisms that are inherited together more effectively. However, the functional significance of many TGF- β 1 polymorphisms still remains unclear, and further studies are required to elucidate the effect of TGF- β 1 polymorphism and haplotypes in disease development.

Acknowledgment This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação Araucária, Secretaria da Ciência, Tecnologia e Ensino Superior (SETI) and the Londrina State University Graduate Coordination (PROPPG-UEL).

Disclosure. Financial support: none. Conflict of interest: none.

REFERENCES

1. Chin D, Boyle GM, Parsons PG, Coman WB. What is transforming growth factor-beta (TGF-B)? *Br J Plast Surg* 2004; 57: 215-21.
2. Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S. TGF-beta - an excellent servant but a bad master. *J Transl Med* 2012; 10: 183.
3. Dela Cruz C, Reis FM. The role of TGF β superfamily members in the pathophysiology of endometriosis. *Gynecol Endocrinol* 2015; 31: 511-5.
4. Kehrl JH, Wakefield LM, Roberts AB, *et al.* Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. *J Exp Med* 1986; 163: 1037-50.
5. Ge YZ, Wu R, Lu TZ, *et al.* Combined effects of TGF- β 1 +869 T/C and +915 G/C polymorphisms on acute rejection risk in solid organ transplant recipients: a systematic review and meta-analysis. *PLoS One* 2014; 9: 1-9.
6. Massagué J, Gomis RR. The logic of TGF β signaling. *FEBS Lett* 2006; 580: 2811-20.
7. ten Dijke P. Signaling inputs converge on nuclear effectors in TGF- β signaling. *Trends Biochem Sci* 2000; 25: 64-70.
8. Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. *Front Biosci* 2002; 7: d793-807.
9. Hutchinson IV. The role of transforming growth factor-beta in transplant rejection. *Transplant Proc* 1999; 31: 9S-13S.
10. Deryck R, Akhurst RJ, Balmain A. TGF- β signaling in tumor suppression and cancer progression. *Nat Genet* 2001; 29: 117-29.
11. Xiao YQ, Freire-de-Lima CG, Schiemann WP, Bratton DL, Vandivier RW, Henson PM. Transcriptional and translational regulation of TGF-beta production in response to apoptotic cells. *J Immunol* 2008; 181: 3575-85.
12. Gentry LE, Nash BW. The pro domain of pre-pro-transforming growth factor beta 1 when independently expressed is a functional binding protein for the mature growth factor. *Biochemistry* 1990; 29: 6851-7.
13. Poniatowski ŁA, Wojdasiewicz P, Gasik R, Szukiewicz D. Transforming growth factor beta family: insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. *Mediators Inflamm* 2015; 2015: 137823.
14. Gentry LE, Lioubin MN, Purchio F, Marquardt H. Molecular events in the processing of recombinant type 1 pre-pro-transforming growth factor beta to the mature polypeptide. *Mol Cell Biol* 1988; 8: 4162-8.
15. ten Dijke P, Arthur HM. Extracellular control of TGF-beta signalling in vascular development and disease. *Nat Rev Mol Cell Biol* 2007; 8: 857-69.
16. Kusakabe M, Cheong PL, Nikfar R, McLennan IS, Koishi K. The structure of the TGF- β latency associated peptide region determines the ability of the proprotein convertase furin to cleave TGF- β s. *J Cell Biochem* 2008; 103: 311-20.
17. Kanzaki T, Olofsson A, Morén A, *et al.* TGF-beta 1 binding protein: a component of the large latent complex of TGF-beta 1 with multiple repeat sequences. *Cell* 1990; 61: 1051-61.
18. Saharinen J, Taipale J, Keski-Oja J. Association of the small latent transforming growth factor-beta with an eight cysteine repeat of its binding protein LTBP-1. *EMBO J* 1996; 15: 245-53.
19. Papageorgis P. TGF- β signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis. *J Oncol* 2015; 2015: 587193.

20. Piek E, Heldin CH, Ten Dijke P. Specificity, diversity, and regulation in TGF-beta superfamily signaling. *FASEB J* 1999; 13: 2105-24.
21. Lyons RM, Keski-Oja J, Moses HL. Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. *J Cell Biol* 1988; 106: 1659-65.
22. Barcellos-Hoff MH, Deryck R, Tsang ML, Weatherbee JA. Transforming growth factor-beta activation in irradiated murine mammary gland. *J Clin Invest* 1994; 93: 892-9.
23. Deryck R, Rhee L, Chen EY, Van Tilburg A. Intron-exon structure of the human transforming growth factor-beta precursor gene. *Mol Genet* 1987; 15: 3188-9.
24. Thys M, Schrauwen I, Vanderstraeten K, et al. The coding polymorphism T263I in TGF-B1 is associated with otosclerosis in two independent populations. *Hum Mol Genet* 2007; 16: 2021-30.
25. Cambien F, Ricard S, Troesch A, et al. Polymorphisms of the transforming growth factor-beta 1 gene in relation to myocardial infarction and blood pressure. *Hypertension* 1996; 28: 881-7.
26. Shah R, Rahaman B, Hurley CK, Posch PE. Allelic diversity in the TGF- β 1 regulatory region: characterization of novel functional single nucleotide polymorphisms. *Hum Genet* 2006; 119: 61-74.
27. Kim SJ, Glick A, Sporn MB, Roberts AB. Characterization of the promoter region of the human transforming growth factor-beta 1 gene. *J Biol Chem* 1989; 264: 402-8.
28. Dhaouadi N, Li JY, Feugier P, et al. Computational identification of potential transcriptional regulators of TGF-B1 in human atherosclerotic arteries. *Genomics* 2014; 103: 357-70.
29. Baugé C, Cauvard O, Leclercq S, Galéra P, Boumendiéne K. Modulation of transforming growth factor beta signalling pathway genes by transforming growth factor beta in human osteoarthritic chondrocytes: involvement of Sp1 in both early and late response cells to transforming growth factor beta. *Arthritis Res Ther* 2011; 13: R23.
30. Birchenall-Roberts MC, Ruscetti FW, Kasper J, et al. Transcriptional regulation of the transforming growth factor b1 promoter by v-src gene products is mediated through the AP-1 complex. *Mol Cell Biol* 1990; 10: 4978-83.
31. Buck A, Ellenrieder V. Recent advances in TGF β -regulated transcription during carcinogenesis. *Signal Transduct* 2006; 6: 345-54.
32. Ogata H, Chinen T, Yoshida T, et al. Loss of SOCS3 in the liver promotes fibrosis by enhancing STAT3-mediated TGF-beta1 production. *Oncogene* 2006; 25: 2520-30.
33. Kim SJ, Yoo YDO, Chiou C, Choi KS, Yi Y. The IE2 regulatory protein of human cytomegalovirus induces expression of the human transforming growth factor beta1 gene through an Egr-1 binding site. *J Virol* 1996; 70: 7062-70.
34. Weigert C, Sauer U, Brodbeck K, Pfeiffer A, Häring HU, Schleicher E. AP-1 proteins mediate hyperglycemia-induced activation of the human TGF-beta1 promoter in mesangial cells. *J Am Soc Nephrol* 2000; 11: 2007-16.
35. Presser LD, McRae S, Waris G. Activation of TGF-B1 promoter by hepatitis C virus-induced AP-1 and Sp1: role of TGF-B1 in hepatic stellate cell activation and invasion. *PLoS One* 2013; 8: e56367.
36. Dey BR, Sukhatme VP, Roberts AB, et al. Repression of the transforming growth factor-beta 1 gene by the Wilms' tumor suppressor WT1 gene product. *Mol Endocrinol* 1994; 8: 595-602.
37. Karki R, Pandya D, Elston RC, Ferlini C. Defining "mutation" and "polymorphism" in the era of personal genomics. *BMC Med Genomics* 2015; 8: 37.
38. Brookes AJ. The essence of SNPs. *Gene* 1999; 234: 177-86.
39. Aerts J, Wetzel Y, Cohen N, Aerssens J. Data mining of public SNP databases for the selection of intragenic SNPs. *Hum Mutat* 2002; 20: 162-73.
40. Shastry BS. SNPs: impact on gene function and phenotype. *Methods Mol Biol* 2009; 578: 3-22.
41. Grainger DJ, Heathcote K, Chiano M, et al. Genetic control of the circulating concentration of transforming growth factor type beta1. *Hum Mol Genet* 1999; 8: 93-7.
42. Syrris P, Carter ND, Metcalfe JC, et al. Transforming growth factor-beta1 gene polymorphisms and coronary artery disease. *Clin Sci* 1998; 95: 659-67.
43. Jin Q, Hemminki K, Grzybowska E, et al. Polymorphisms and haplotype structures in genes for transforming growth factor B1 and its receptors in familial and unselected breast cancers. *Int J Cancer* 2004; 112: 94-9.
44. Shah R, Hurley CK, Posch PE. A molecular mechanism for the differential regulation of TGF-B1 expression due to the common SNP - 509C-T (c -1347C > T). *Hum Genet* 2006; 120: 461-9.
45. Guo W, Dong Z, Guo Y, et al. Polymorphisms of transforming growth factor- β 1 associated with increased risk of gastric cardia adenocarcinoma in north China. *PLoS One* 2014; 9: e112912.
46. Cao H, Zhou Q, Lan R, et al. A functional polymorphism C-509T in TGF- β -1 promoter contributes to susceptibility and prognosis of lone atrial fibrillation in Chinese population. *Int J Immunogenet* 2011; 38: 215-24.
47. Luedeking EK, DeKosky ST, Mehdi H, Ganguli M, Kamboh MI. Analysis of genetic polymorphisms in the transforming growth factor-beta1 gene and the risk of Alzheimer's disease. *Hum Genet* 2000; 106: 565-9.
48. Silverman ES, Palmer LJ, Subramaniam V, et al. Transforming growth factor- β 1 promoter polymorphism C-509T is associated with asthma. *Am J Respir Crit Care Med* 2004; 169: 214-9.
49. Randall LL, Hardy SJ. Unity in function in the absence of consensus in sequence: role of leader peptides in export. *Science* 1989; 243: 1156-9.
50. Dunning AM, Ellis PD, McBride S, et al. A transforming growth factor beta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. *Cancer Res* 2003; 63: 2610-5.
51. Pooja S, Francis A, Rajender S, et al. Strong impact of TGF- β 1 gene polymorphisms on breast cancer risk in Indian women: a case-control and population-based study. *PLoS One* 2013; 8: e75979.
52. Taubenschuss E, Marton E, Mogg M, et al. The L10P polymorphism and serum levels of transforming growth factor beta1 in human breast cancer. *Int J Mol Sci* 2013; 14: 15376-85.
53. Yokota M, Ichihara S, Lin T-L, Nakashima N, Yamada Y. Association of a T29>C polymorphism of the transforming growth factor-B1 gene with genetic susceptibility to myocardial infarction in Japanese. *Circulation* 2000; 101: 2783-7.
54. Awad MR, El-Gamel A, Hasleton P, Turner DM, Sinnott PJ, Hutchinson IV. Genotypic variation in the transforming growth factor-beta1 gene: association with transforming growth factor-beta1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. *Transplantation* 1998; 66: 1014-20.
55. Nel M, Buys J-M, Rautenbach R, Mowla S, Prince S, Heckmann JM. The African-387 C>T TGF- β 1 variant is functional and associates with the ophthalmoplegic complication in juvenile myasthenia gravis. *J Hum Genet* 2016; 61: 307-16.
56. Janssens K, Gershoni-Baruch R, Guanabens N, et al. Mutations in the gene encoding the latency-associated peptide of TGF- β 1 cause Camurati-Engelmann disease. *Nature* 2000; 417: 708.

57. Park BL, Han IK, Lee HS, Kim LH, Kim SJ, Shin HD. Identification of novel variants in transforming growth factor-beta 1 (TGF- β 1) gene and association analysis with bone mineral density. *Hum Mutat* 2003; 22: 257-8.

58. Healy J, Dionne J, Belanger H, et al. Functional impact of sequence variation in the promoter region of TGF- β 1. *Int J Cancer* 2009; 125: 1483-9.

59. Knight JC, Keating BJ, Kwiatkowski DP. Allele-specific repression of lymphotoxin- α by activated B cell factor-1. *Nature Genetics* 2004; 36: 394-9.

60. Crawford DC, Nickerson DA. Definition and clinical importance of haplotypes. *Annu Rev Med* 2005; 56: 303-20.

61. Ramos-Flores C, Romero-Gutierrez T, Delgado-Enciso I, et al. Polymorphisms in the genes related to angiogenesis are associated with uterine cervical cancer. *Int J Gynecol Cancer* 2013; 23: 1198-204.

62. Xu J, Yu X, Huang C, et al. Association of 5 Well-Defined Polymorphisms in the Gene Encoding Transforming Growth Factor-1 With Coronary Artery Disease Among Chinese Patients With Hypertension. *Angiology* 2014; 66: 1-7.

63. Liu Y, Lin X-F, Lin C-J, Jin S-S, Wu J-M. Transforming growth factor beta-1 C-509T polymorphism and cancer risk: a meta-analysis of 55 case-control studies. *Asian Pac J Cancer Prev* 2012; 13: 4683-8.

64. Slattery ML, Herrick JS, Lundgreen A, Wolff RK. Genetic variation in the TGF- β signaling pathway and colon and rectal cancer risk. *Cancer Epidemiol Biomarkers Prev* 2011; 20: 57-69.

65. Jin G, Deng Y, Miao R, et al. TGF- β 1 and TGF- β 2 functional polymorphisms and risk of esophageal squamous cell carcinoma: a case-control analysis in a Chinese population. *J Cancer Res Clin Oncol* 2008; 134: 345-51.

66. Wei YS, Xu QQ, Wang CF, Pan Y, Liang F, Long XK. Genetic variation in transforming growth factor-beta1 gene associated with increased risk of esophageal squamous cell carcinoma. *Tissue Antigens* 2007; 70: 464-9.

67. Wei Y-S, Zhu Y-H, Du B, et al. Association of transforming growth factor-beta1 gene polymorphisms with genetic susceptibility to nasopharyngeal carcinoma. *Clin Chim Acta* 2007; 380: 165-9.

68. Hu S, Zhou G, Zhang L, Jiang H, Xiao M. The effects of functional polymorphisms in the TGF β 1 gene on nasopharyngeal carcinoma susceptibility. *Otolaryngol Head Neck Surg* 2012; 146: 579-84.

69. Ewart-Toland A, Chan JM, Yuan J, Balmain A, Ma J. A gain of function TGF- β 1 polymorphism may be associated with late stage prostate cancer. *Cancer Epidemiol Biomarkers Prev* 2004; 13: 759-64.

70. Chang W, Zhang L, Su H, Yao Y. An updated meta-analysis of transforming growth factor- β 1 gene: three polymorphisms with gastric cancer. *Tumour Biol* 2014; 35: 2837-44.

71. Jin G, Wang L, Chen W, et al. Variant alleles of TGF- β 1 and TGF- β 2 are associated with a decreased risk of gastric cancer in a Chinese population. *Int J Cancer* 2007; 120: 1330-5.

72. Xu L, Zeng Z, Chen B, et al. Association between the TGF- β 1-509C/T and TGF- β R2-875A/G polymorphisms and gastric cancer: a case-control study. *Oncol Lett* 2011; 2: 371-7.

73. Singh H, Jain M, Mittal B. Role of TGF-beta1 (-509C>T) promoter polymorphism in susceptibility to cervical cancer. *Oncol Res* 2009; 18: 41-5.

74. Torres-Poveda K, Burguete-García AI, Bahena-Román M, et al. Risk allelic load in Th2 and Th3 cytokines genes as biomarker of susceptibility to HPV-16 positive cervical cancer: a case control study. *BMC Cancer* 2016; 16: 330.

75. Lu Y, Boer JMA, Barsova RM, et al. TGF- β 1 genetic polymorphisms and coronary heart disease risk: a meta-analysis. *BMC Med Genet* 2012; 13: 39.

76. Morris DR, Moxon JV, Biros E, Krishna SM, Golledge J. Meta-analysis of the association between transforming growth factor-beta polymorphisms and complications of coronary heart disease. *PLoS One* 2012; 7: e37878.

77. Langdahl BL, Uitterlinden AG, Ralston SH, et al. Large-scale analysis of association between polymorphisms in the transforming growth factor beta 1 gene (TGF- β 1) and osteoporosis: the GENOMOS study. *Bone* 2008; 42: 969-81.

78. Sie MPS, Uitterlinden AG, Bos MJ, et al. TGF- β 1 polymorphisms and risk of myocardial infarction and stroke: the Rotterdam study. *Stroke* 2006; 37: 2667-71.

79. Cui L, Sun Y, Li D, Wang S, Shao D. Transforming growth factor- β 1 rs1800469 polymorphism and periodontitis risk: a meta-analysis. *Int J Clin Exp Med* 2015; 8: 15569-74.

80. Celedón JC, Lange C, Raby B, et al. The transforming growth factor-beta1 (TGF- β 1) gene is associated with chronic obstructive pulmonary disease (COPD). *Hum Mol Genet* 2004; 13: 1649-56.

81. Wang HB, Song WG, Liu HQ, Fang F, Xiao Y. Role of TGF- β 1 polymorphism in the development of metastatic brain tumors in non-small cell lung cancer patients. *Genet Mol Res* 2015; 14: 1-2.

82. Vuong MT, Lundberg S, Gunnarsson I, et al. Genetic variation in the transforming growth factor-1 gene is associated with susceptibility to IgA nephropathy. *Nephrol Dial Transplant* 2009; 24: 3061-7.

83. Barsova RM, Titov BV, Matveeva NA, et al. Contribution of the TGF- β 1 Gene to Myocardial Infarction Susceptibility. *Acta Naturae* 2012; 4: 74-9.

84. Heidari Z, Mahmoudzadeh Sagheb H, Sheibak N. Association between TGF-Beta1 (-509) C/T gene polymorphism and tissue degradation level in chronic periodontitis: a stereological study. *Gene Cell Tissue* 2015; 2: 1-7.

85. Zhang L, Mao L, Xu J. Transforming growth factor- β 1 polymorphisms and graft-versus-host disease risk: a meta-analysis. *Oncotarget* 2015; 7: 2455-61.

86. Tao H, Chen G, Cheng G, Shan X. The haplotype of the TGF β 1 gene associated with cerebral infarction in Chinese. *Can J Neurol Sci* 2012; 39: 626-31.

87. Peng Z, Zhan L, Chen S, Xu E. Association of transforming growth factor- β 1 gene C-509T and T869C polymorphisms with atherosclerotic cerebral infarction in the Chinese: a case-control study. *Lipids Health Dis* 2011; 10: 100.

88. Li X, Zong Q, Han F. Associations between transforming growth factor- β 1 gene -509C/T and + 915G/C polymorphisms and pneumoconiosis: a meta-analysis. *Int J Clin Exp Med* 2016; 9: 5764-72.

89. Jonth AC, Silveira L, Fingerlin TE, et al. TGF-1 variants in chronic beryllium disease and sarcoidosis. *J Immunol* 2007; 179: 4255-62.

90. Carneiro NK, Oda JMM, Losi Guembarovski R, et al. Possible association between TGF- β 1 polymorphism and oral cancer. *Int J Immunogenet* 2013; 40: 292-8.

91. Shin A, Shu X-O, Cai Q, Gao Y-T, Zheng W. Genetic polymorphisms of the transforming growth factor-beta1 gene and breast cancer risk: a possible dual role at different cancer stages. *Cancer Epidemiol Biomarkers Prev* 2005; 14: 1567-70.

92. Ziv E, Cauley J, Morin PA, Saiz R, Browner WS. Association between the T29>C polymorphism in the transforming growth factor beta1 gene and breast cancer among elderly white women: the Study of Osteoporotic Fractures. *JAMA* 2001; 285: 2859-63.

93. Guan X, Sturgis EM, Lei D, *et al.* Association of TGF-beta1 genetic variants with HPV16-positive oropharyngeal cancer. *Clin Cancer Res* 2010; 16: 1416-22.

94. Li Z, Habuchi T, Tsuchiya N, *et al.* Increased risk of prostate cancer and benign prostatic hyperplasia associated with transforming growth factor-beta 1 gene polymorphism at codon10. *Carcinogenesis* 2004; 25: 237-40.

95. Fan H, Yu H, Deng H, Chen X. Transforming growth factor- β 1 rs1800470 polymorphism is associated with lung cancer risk: a meta-analysis. *Med Sci Monit* 2014; 20: 2358-62.

96. Sandhya A, Bindu CH, Reddy KP, Vishnupriya S. TGF- β 1 codon 10 polymorphism and its association with the development of myopia: a case-control study. *Biol Med* 2011; 3: 18-24.

97. Magdoud K, Granados Herbezin V, Messaoudi S, *et al.* Genetic variation in TGF- β 1 gene and risk of idiopathic recurrent pregnancy loss. *Mol Hum Reprod* 2013; 19: 438-43.

98. Nabrdalik K, Gumprecht J, Adamczyk P, Górczyńska-Kosiorz S, Zywiec J, Grzeszczak W. Association of rs1800471 polymorphism of TGF- β 1 gene with chronic kidney disease occurrence and progression and hypertension appearance. *Arch Med Sci* 2013; 9: 230-7.

99. Yuan X, Liao Z, Liu Z, *et al.* Single nucleotide polymorphism at rs1982073:T869C of the TGF- β 1 gene is associated with the risk of radiation pneumonitis in patients with non-small-cell lung cancer treated with definitive radiotherapy. *J Clin Oncol* 2009; 27: 3370-8.

100. Sánchez-Parada MG, Alvarez-Rodríguez BA, Gómez-Meda BC, *et al.* Association of genetic polymorphisms with histological grading of necroinflammation, staging of fibrosis, and liver function in Mexicans with chronic hepatitis C virus infection. *J Investig Med* 2013; 61: 1088-96.

101. Rashidi-Nezhad A, Azimi C, Alimoghaddam K, *et al.* TGF-Beta codon 25 polymorphism and the risk of graft-versus-host disease after allogenic hematopoietic stem cell transplantation. *Iran J Allergy Asthma Immunol* 2010; 9: 1-6.

102. Sommen M, Van Camp G, Liktor B, *et al.* Genetic association analysis in a clinically and histologically confirmed otosclerosis population confirms association with the TGF- β 1 gene but suggests an association of the RELN gene with a clinically indistinguishable otosclerosis-like phenotype. *Otol Neurotol* 2014; 35: 1058-64.