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ABSTRACT. Transforming Growth Factor ß (TGF-ß) is a multifunctional cytokine that plays a role in several
biological processes. TGF-ß1 is the most abundantly expressed isoform, associated with susceptibility to various
diseases, and several polymorphisms have been described in the TGF-ß1 gene structure, and some of them have
been associated with functional implications. To date, eight single-nucleotide polymorphisms (SNPs) and one dele-
tion/insertion polymorphism have been shown to affect TGF-ß1 expression (rs2317130, rs11466313, rs1800468,
rs1800469, rs11466314, rs1800471, rs1800470, and rs11466316); some of these interfere with transcriptional regu-
lation by affecting the binding of transcription factors binding, while others interfere with protein production. These
polymorphisms have been associated with different types of diseases (i.e., cancers, cardiac diseases, inflammatory
diseases, and others) and could therefore be used as susceptibility biomarkers. Since polymorphism clusters are
likely to be more reliable than single polymorphisms in this respect, it is hoped that haplotype analysis of TGF-ß1
may reveal the genetic basis of disease susceptibility associated with the TGF-ß1 gene.
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ransforming Growth Factor � (TGF-�) is a multifunc-
ional cytokine that plays a meaningful role in several
iological processes such as cell replication, differen-
iation, migration, apoptosis, healing, bone formation,
ngiogenesis, and immune system regulation [1, 2]. It
elongs to a TGF-� superfamily that contains more than
0 types of cytokines, including activins, inhibins, bone
orphogenetic protein (BMP), anti-Müllerian hormone

AMH), and growth differentiation factor (GDF), besides
GF-� [3].
his extracellular dimeric protein is mainly produced by

egulatory T cells, platelets, macrophages, neutrophils,
one, soft tissues, renal tubular cells, and also malignant
ells [4, 5].
ith a versatile role in regulation, TGF-� fosters tissue

rowth and morphogenesis in the embryo but, in contrast,
t activates cytostatic and cell death processes that maintain
omeostasis in mature tissues [6]. Therefore, deregulated
GF-� signaling has been implicated in multiple develop-
ental disorders and in various human diseases, including

ancer, fibrosis, autoimmune diseases, and transplant out-
ome, in which high levels of TGF-�1 have been described
or many [7-9].
mong the three homologous isoforms present in mam-

als (TGF-�1, TGF-�2, TGF-�3), TGF-�1 is the most

bundant and ubiquitously expressed isoform [2, 10].
he regulation of TGF-�1 production occurs at many

evels, including transcription, translation, secretion, and
inical implications

activation in the extracellular environment [11]. In this
context, we emphasize the influence of genetic variation
on TGF-�1 production, represented by single-nucleotide
polymorphism (SNP), based on a large number of stud-
ies that have shown the significance of SNPs on TGF-�1
expression and disease development.

TGF-ß1 PRODUCTION

TGF-�1 is synthesized as a pre-pro-TGF-�1 monomer that
consists of 390 amino acid residues, comprising an N-
terminal signal peptide of 29 amino acids (c.+1 to c.+87,
+1 from the translation start site based on DNA sequence),
a latency-associated peptide (LAP) of 249 amino acids
(c.+88 to c.+835), and a C-terminal sequence of 112 amino
acids (c.+836 to c.+1172) corresponding to the mature
TGF-�1 [12, 13].
The signal peptide is removed during translocation across
the rough endoplasmic reticulum membrane, where dimer-
ization of two monomers occurs with three disulfide bonds
at two cysteine residues in LAP (positions 223 and 225)
and one in mature TGF-�1 peptide (position 356), form-
ing the pro-TGF-�1 homodimer [14, 15]. The pro-TGF-�1

is cleaved between 278 and 279 amino acid residues by
the endoprotease furin convertase within the Golgi appa-
ratus, resulting in LAP homodimer and mature TGF-�1
homodimer separation. The homodimers are kept attached
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E2

c.-2389_-2391insAGG

c.-2725G > A exon 1 exon 2 exon 3 exon 4 exon 5 exon 6 exon 7

5’UTR LAP TGF-β1

c.-1638G > A
c.-1347C > T

c.-1287G > A

c.-387C > T
c.+29C > T

c.+74G > C c.+791C > T

N2 N1 P1 P2 SPE1

Figure 1
TGF-ß1 Gene structure. Exon 1 encodes the 5’UTR that contains the Promoter region 2, the signal peptide (SP), and part of the mature
protein. The end of exon 5 to exon 6 encodes the mature TGF-�1, and the other exons encode the LAP. Upstream, the exon 1 is present in the
P (E1), N
p ence.
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romoter region 1 (P1), Negative region 1 (N1), Enhancer region 1
olymorphisms are presented with their respective position and sequ

y noncovalent bonds to form the small latent complex
SLC) [13, 15, 16].
ubsequently, the SLC and TGF-binding protein (LTBP)
re covalently attached to form the large latent complex
LLC) [17, 18]. After secretion, LLC binds to the extracel-
ular matrix and is maintained until its activation which
epends on enzymes and other convertases, as well as
n low pH levels and irradiation-induced reactive oxygen
pecies (ROS) production in the local environment [19-22].

ENE STRUCTURE AND REGULATION
F TGF-ß1 TRANSCRIPTION

he TGF-ß1 gene is located in the 19q13.2 chromo-
omal region, and comprises 7 exons separated by 6
ery large introns [23]. The exon 1 encodes the 5’UTR
5’ Untranslated Region), the signal peptide, and a part of
he Latency-Associated Peptide (LAP) of which the coding
equence continues until codon 249 in exon 5. From the
emaining exon 5 to exon 7, the formed segment encodes
he mature TGF-�1 [24, 25].
GF-�1 transcription is regulated by approximately 3 kb
f DNA sequence (c.-2665 to c.+423). Several regulatory
lements have been described, among them are 5’UTR (c.-
39 to c.-1pb) which contains the Promoter region 2 (c.-
39 to c.-568), Promoter region 1 (c.-1292 to c.-1161),
egative regulatory region 1 (c.-1570 to c-1293), Enhancer

egion 1 (c.-1971 to c.-1571), Negative regulatory region
(c.-2201 to c.-1972), and Enhancer region 2 (c.-2665 to

.-2204), as shown in figure 1 [26, 27].
embers of the Activator Protein (AP-1) transcription fac-

or family, Stimulating protein 1 (Sp1), Signal Transducers
nd Activators of Transcription 3 (STAT-3), Nuclear Fac-
or kappa B (NF-kB), Early Growth Response 1 (Egr-1),
nd other transcription factors, may orchestrate the levels
f TGF-�1 through recognition of specific sequences in
he regulatory region of TGF-ßI gene [27-33].
P-1 and Sp1 are regulators of transcriptional activation.
P-1 recognizes two binding sites in TGF-ß1 Promoter

egion 1, and Sp1 recognizes five binding sites located
etween c.-1161 and c.-898 [34, 35]. Furthermore, it was
eported that another transcription factor, WT1 protein,
ay repress TGF-�1 gene expression through recogni-
ion of a response element (c.-957 to c.-949). Curiously,
n the same study, it was verified that Egr-1 may activate
GF-�1 gene expression through the same response region

36]. Since transcription factors depend on specific binding
egative region 2 (N2), and Enhancer region 2 (E2). The functional

site recognition to regulate gene expression, genetic
polymorphisms in the regulatory region could modulate
transcription factor binding, altering TGF-ß1 expression.

TGF-ß1 FUNCTIONAL POLYMORPHISMS

Genetic polymorphisms are inherited variations in the
DNA sequence that occur in more than 1% of a popu-
lation. The term “polymorphism” refers to the presence
of different genotypes/alleles of a particular gene, and
can occur as single-nucleotide polymorphism (SNP),
deletion/insertions, polymorphic repetitive elements, and
microsatellite variations [37].
SNPs are the most common type of polymorphisms and
are usually found in areas flanking protein-coding genes
that are critical for microRNA binding and gene expres-
sion regulation, in coding sequences, introns, or intergenic
regions [37-39]. Accordingly, SNPs may influence gene
expression, messenger RNA (mRNA) stability, alternative
splicing, microRNA target sequence, protein exportation to
endoplasmic reticulum via signal peptides, or alter protein
function when an amino acid is changed [40].
The TGF-ß1 gene presents various polymorphisms that
can be classified as functional, non-functional, or with
undetermined function. Until now, 8 SNPs and one dele-
tion/insertion polymorphism have been reported to be
associated with a functional impact on TGF-�1 production
(table 1).

C.-1638G > A SNP

The c.-1638G > A SNP (rs1800468), commonly identi-
fied as -800G > A, is located in the enhancer region 1.
The affinity of the cAMP response element binding pro-
tein (CREB) family is reduced in the presence of allele A,
associated with lower TGF-�1 levels [41-43].

C.-1347C > T SNP

The c.-1347C > T SNP (rs1800469), commonly identified
as -509C > T, is located in the first negative regula-
tory region and is associated with differential TGF-ß1
gene expression and plasma levels [26]. Individuals who

present TT genotype show increased gene expression
of TGF-ß1 in comparison to CC genotype individuals
[45, 46]. Furthermore, c.-1347T allele carriers have almost
double plasma levels in comparison to c.-1347C allele
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Table 1
Functional significance of TGF-�1 polymorphisms

SNP identification Region Function

c.-2725G > A rs2317130 Upstream enhancer region 2 Nuclear protein binding

c.-2389_-2391insAGG rs11466313 Enhancer region 2 Nuclear protein binding

c.-1985C > G rs3087453 Negative regulatory region 2 Undetermined

c.-1638G > A rs1800468 Enhancer region 1 Transcription factor binding

c.-1347C > T rs1800469 Negative regulatory region 1 Transcription factor binding

c.-1287G > A rs11466314 Promoter region 1 Nuclear protein binding

c.-1154C > T rs35318502 Not described unlikely to be of functional significance

c.-827G > C rs11466315 Promoter region 2 Undetermined

c.-387C > T rs11466316 5’ UTR Transcription factor binding

c.-14G > A rs9282871 5’ UTR Undetermined

c.+29C > T rs1800470 Signal peptide Secretion

c.+74G > C rs1800471 Signal peptide Secretion
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c.+791C > T rs1800472

Other polymorphisms in NCBI SNP database

arriers, in a dose-response relationship [41]. Corrobo-
ating with these findings, in vitro studies using TGF-ß1
romoter-luciferase reporter plasmids demonstrated that
he c.-1347T allele increases relative luciferase activity,
ompared to the c.-1347C allele [44, 45, 47, 48]. Taken
ogether, this data supports an influence of c.-1347C > T
NP on TGF-ß1 gene expression and hence plasma levels.
hanges in the nucleotide binding sequence of transcrip-

ion factors may be responsible for differential TGF-ß1
ene expression associated with c.-1347C > T SNP. As
ypothesized by Shah et al. 2006, increased TGF-�1 lev-
ls might result from c.-1347T because of the loss of
egative regulation. In their results it was shown that
P1 is only recruited when allele C is encoded at the

.-1347 position, and this recruitment causes the reduc-
ion in luciferase activity. In addition, the transcription
actor hypoxia-inducible factor 1A (HIF1A) binds a site
urrounding the c.-1347C position, and competes with AP1
hen allele C is present.
ther effects of this SNP involve the transcription fac-

or Yin-Yang 1 (YY1); the presence of c.-1347T allele
as shown to increase YY1 binding and elevated relative

uciferase activity in a dose–response fashion, using a YY1
ector cotransfection [48].

.+29C > T AND C.+74G > C

he c.+29C > T SNP (rs1800470), also identified as
869C > T and Pro10Leu; and the c.+74G > C SNP
rs1800471), also identified as +915G > C and Arg25Pro,
re located in the signal peptide sequence [25]. Both sig-
al peptides comprise three regions: a positively charged
-terminal region, a central hydrophobic core, and a polar
-terminal region [49]. The c.+29C > T SNP is located in

he hydrophobic core, and both the alleles encode apolar
mino acids at amino acid position 10 (allele C encodes

roline and allele T encodes leucine). Conversely, the
.+74G > C SNP at amino acid 25 corresponds to a
hange from a large polar amino acid (arginine encoded by
uanine) to a small apolar one (proline encoded by
n 5 Undetermined

Not tested

cytosine), and is located close to the cleaved region of pro-
TGF-� which gives rise to LAP and mature TGF-� [25].
In an in vitro study, the allele c.+29C was shown to cause an
increase in TGF-�1 secretion compared with c.+29T [50].
Moreover, it was found that the serum concentration was
higher in individuals with c.+29CC genotype than those
with the c.+29CT or c.+29TT genotype [46, 52-54], and
the serum concentration of TGF-�1 was higher with the
c.+74G allele in comparison with the c.+74C allele [54].

C.-387C > T

The c.-387C > T SNP (rs11466316) is located in the 5’
UTR in exon 1 and the sequence nearby is a partial Sp1/Sp3
consensus site. Based on EMSA (electrophoretic mobil-
ity shift assay), Sp1 and Sp3 were shown to bind to a
c.-387C probe but not a c.-387T probe [26]. To demonstrate
this functional association, a luciferase reporter assay was
performed, and showed that the c.-387T allele reduces in
TGF-ß1 promoter activity by 5 fold when compared with
the c.-387C allele [55].
Additionally, using luciferase reporter assay constructs
transfected into HT1080 human fibrosarcoma cells
cotransfected with a Sp1 expression vector, it was shown
that the c.-387T allele is less responsive to stimulation by
Sp1 in comparison with the c.-387C allele. Furthermore,
the gene expression of this SNP was investigated by using
phenotype-specific dermal fibroblasts, and it was observed
that the c.-387CC genotype presented a higher expression
level than the c.-387CT or c.-1387TT genotype. Accord-
ing to the authors, these data suggest that Sp1, and maybe
Sp3, likely differentially regulate TGF-�1 expression due
to the presence of this SNP [55].

C.+791C > T
The c.+791C > T SNP (rs1800472), also identified as
Thr263Ile and +788C > T, is located in exon 5. Using
the luciferase reporter assay, it was observed that Ile263
(c.+791T) led to an increase in relative luciferase activity
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Table 2
Clinical implication of TGF-�1 functional polymorphisms

SNP identification Disease association Reference

c.-2725G > A rs2317130 - -

c.-2389_-2391insAGG rs11466313 - -

c.-1985C > G rs3087453 - -

c.-1638G > A rs1800468 Cervical cancer Ramos-Flores et al., 2013 [62]

Coronary Artery Disease Xu et al., 2014 [63]

c.-1347C > T rs1800469 Breast cancer Dunning et al., 2003 [51]

Cardia cancer Guo et al., 2011 [45]

Colon and rectum cancer Liu et al., 2012 [64]

Colon cancer Slattery et al., 2011 [65]

Esophagus cancer Jin et al., 2008 [66]

Wei et al., 2007a [67]

Nasopharynx cancer Wei et al., 2007b [68]

Hu et al., 2012 [69]

Prostate cancer Ewart-Toland et al., 2004 [70]

Stomach cancer Chang et al., 2014 [71]

Jin et al., 2007 [72]

Xu et al., 2011 [73]

Cervical cancer Singh; Jain; Mittal, 2009 [74]

Torres-Poveda et al., 2016 [75]

Ophthalmoplegic complication Nel et al., 2015 [56]

Coronary heart disease Lu et al., 2012 [76]

Morris et al., 2012 [77]

Bone mineral density Langdahl et al., 2008 [78]

Risk of stroke Sie et al., 2006 [79]

Periodontitis Cui et al., 2015 [80]

Chronic obstructive pulmonary disease Celedón et al., 2004 [81]

Metastatic brain tumors Wang et al., 2015 [82]

IgA nephropathy Vuong et al., 2009 [83]

Myocardial infarction Barsova et al., 2012 [84]

Chronic Periodontitis Heidari; Mahmoudzadeh Sagheb; Sheibak, 2015 [85]

Graft-versus-host disease Zhang; Mao; Xu, 2015 [86]

Cerebral infarction Tao et al., 2012 [87]

Peng et al., 2011 [88]

Coronary Artery Disease Xu et al., 2014 [63]

Pneumoconiosis Li; Zong; Han, 2016 [89]

Chronic Beryllium Disease Jonth et al., 2007 [90]

Sarcoidosis Jonth et al., 2007 [90]

c.-1287G > A rs11466314 - -

c.-1154C > T rs35318502 - -

c.-827G > C rs11466315 - -

c.-387C > T rs11466316 Ophthalmoplegic complication Nel et al., 2015 [56]

c.-14G > A rs9282871 Ophthalmoplegic complication Nel et al., 2015 [56]

c.+29C > rs1800470 Oral cancer Carneiro et al., 2013 [91]

Cardia cancer Guo et al., 2011 [45]

Esophagus cancer Wei et al., 2007a [67]

Breast cancer Dunning et al., 2003 [51]

Pooja et al., 2013 [52]

Shin et al., 2005 [92]

Ziv et al., 2001 [93]

Nasopharynx cancer Wei et al., 2007b [68]

Oropharynx cancer Guan et al., 2010 [94]

Prostate cancer Li et al., 2004 [95]
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Table 2 (Continued )

SNP identification Disease association Reference

Lung cancer Chen, 2014

Fan et al., 2014 [96]

Chronic obstructive pulmonary disease Zhang; Mao; Xu, 2015 [86]

Risk of stroke Sie et al., 2006 [79]

Coronary heart disease Morris et al., 2012 [77]

Myocardial infarction Barsova et al., 2012 [84]

Graft-versus-host disease Zhang; Mao; Xu, 2015 [86]

Myopia Sandhya et al., 2011 [97]

Cerebral infarction Tao et al., 2012 [87]

Chronic Beryllium Disease Jonth et al., 2007 [90]

Sarcoidosis Jonth et al., 2007 [90]

c.+74G > C rs1800471 Breast cancer Pooja et al., 2013 [52]

Coronary heart disease Morris et al., 2012 [77]

Recurrent pregnancy loss Magdoud et al., 2013 [98]

IgA nephropathy Vuong et al., 2009 [83]

Chronic kidney disease Nabrdalik et al., 2013 [99]

Radiation Pneumonitis Yuan et al., 2009 [100]

Chronic Hepatitis C Virus Infection Sánchez-Parada et al., 2013 [101]

Graft-Versus-Host Disease Rashidi-Nezhad et al., 2010 [102]

Coronary Artery Disease Xu et al., 2014 [63]

Pneumoconiosis Li; Zong; Han, 2016 [89]

c.+791C > T rs1800472 Vertebral fracture risk Langdahl et al., 2008 [78]
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hen compared with Thr263 (c.+791C). However, no dif-
erence was detected in the concentration of active or total
GF-�1 levels. Thys et al. hypothesized that the absence
f a difference in total TGF-�1 concentration could be
xplained by an effect of the Ile263 variant on the acti-
ation of TGF-�1 and not on secretion. As explained by
revious observations for monogenic TGF-�1 mutations,
35-fold increase in TGF-�1 activity may correlate with
nly a 2-fold increase in the concentration of active TGF-
1 [24, 56].
o explain the effect of c.+791C > T SNP, Thys et al.
roposed, based on the PROSITE database (database of
rotein domains, families, and functional sites), that amino
cid Thr263 is a Casein kinase II phosphorylation site.
asein kinase II is a serine/threonine kinase with activity

ndependent of cyclic nucleotides and calcium. Although
o experimental evidence exists, it is possible that the loss
f phosphorylation site affects TGF-�1 activation. Alter-
atively, the authors also believe that changes in this amino
cid could lead to a more efficient cleavage of the mature
eptide from the LAP, either through a direct effect, since
his site is only 15 amino acids away from the cleavage site,
r by an indirect effect through a conformational change
n the LAP [24].

.-1287G > A
he c.-1287G > A SNP (rs11466314) is located in the
GF-�1 first promoter region. Two undetermined nuclear
rotein complexes were described to bind to the pro-
oter region with c.-1287A with higher affinity than to
rosis Sommen et al., 2014 [103]

farction Peng et al., 2011 [88]

a region with c.-1287G. This was further associated with
an increased relative luciferase activity observed with
c.-1287A versus c.-1287G. In conclusion, these results
indicate that this SNP significantly affects TGF-�1 tran-
scription [26].

C.-2389_-2391INSAGG

The c.-2389_-2391insAGG polymorphism (rs11466313),
also identified as -1550DEL/AGG, is located in the sec-
ond enhancer region [26, 57]. Based on silico analyses,
performed by Healy et al., 2009, it was predicted that the
deletion leads to a loss and gain of transcription factor
binding sites. However, an experimental analysis showed
a gain of protein complex in the presence of this deletion
[58]. Thus, the functional relevance of this polymorphism
requires further investigation.

C.-2725G > A

The c.-2725G > A SNP (rs2317130) is located in an unde-
termined region upstream of the second enhancer region.
For this SNP, functional evaluation demonstrated a dif-
ference in complex binding affinity. The c.-2725A allele
demonstrated high binding affinity complex formation, in
contrast to the c.-2725G allele that presented a weak affin-

ity [58]. The influence of this SNP on gene expression and
transcription factor requirement was not performed, how-
ever, this polymorphism may nevertheless be functional
based on the differential complex formation.
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.-1985C > G, C.-1154C > T, C.-827G > C,
ND C.-14G > A

he c.-1985C > G SNP (rs3087453) present in the sec-
nd negative region; c.-1154C > T SNP (rs35318502);
.-827G > C SNP (rs11466315) present in the sec-
nd promoter region in 5’UTR region; and c.-14G > A
NP (rs9282871) present in 5’UTR region are SNPs
ith no effect on nuclear protein binding. Addition-

lly, c.-1154C > T demonstrated no influence on
ene expression in reporter assays, suggesting that c.-
154C > T probably has no impact on TGF-�1 expression
26].

s exposed by Shah et al., some of these SNPs might
ffect the TGF-�1 regulatory region. For instance, SNPs
ave been shown to influence reporter gene activity with-
ut demonstrating exclusive recruitment of transcription
actor(s) by EMSA [59]. Alternatively, SNPs in the 5’UTR
ight alter post-transcriptional events, such as mRNA pro-

essing or stability [26].

LINICAL IMPLICATION OF TGF-ß1
UNCTIONAL POLYMORPHISMS

he TGF-�1 functional polymorphisms have been asso-
iated with different types of diseases (table 2) and
ould be used as susceptibility biomarkers. However, the
imple association between one polymorphism and a dis-
ase may not justify such polymorphisms as biomarkers,
ince different polymorphisms affect TGF-�1 produc-
ion. A haplotype is a cluster of alleles present at

locus that are inherited together [60], and haplo-
ype analysis may therefore be a more robust method
o reveal the association between SNPs and disease
usceptibility.

ONCLUSION

n conclusion, eight polymorphisms have been described
o affect TGF-�1 production and have been associated
ith disease susceptibility. Some of these interfere at the

ranscriptional level affecting transcription factor binding,
hile others interfere at the protein production level. To

lucidate the correlation between TGF-�1 polymorphisms
nd disease susceptibility, haplotype analysis is necessary
o certify the exact influence of these polymorphisms that
re inherited together more effectively. However,the func-
ional significance of many TGF-�1 polymorphisms still
emains unclear, and further studies are required to eluci-
ate the effect of TGF-�1 polymorphism and haplotypes
n disease development.
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