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ABSTRACT. Zika virus (ZIKYV) is an emerging arbovirus that causes a mosquito-borne disease. Although infection
with ZIKYV generally leads to mild disease, its recent emergence in the Americas has been associated with an increase in
the development of the Guillain-Barré syndrome in adults, as well as with neurological complications, in particular
congenital microcephaly, in new-borns. Over the five past years, through the combined efforts of the scientific
community, comprehensive remarkable progress aimed at deciphering the clinical, virological, physiopathological, and
immunological features of ZIKV infection. This review highlights some of the most recent advances in our
understanding of the role of cytokines and chemokines in ZIKYV infection, and discusses potential links to pathogenesis.
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INTRODUCTION

Zika virus (ZIKV) is an emerging arbovirus of the
flavivirus genus discovered in 1947 near Entebbe,
Uganda, where it circulates in the forests between
nonhuman primates and sylvatic mosquitoes [1]. Until
2007, ZIKV has silently circulated in many parts of
Africa and Asia, with less than 20 documented human
infections that represented only cases of spillover
transmission from the sylvatic cycle, in which humans
became infected as an accidental host [2]. The first large
outbreak of human infection by ZIKV occurs in 2007
in Micronesia [3], followed by the one in French
Polynesia in late 2013 [2], that subsequently spread
across the Pacific to the Americas in a short timeframe
[4] (figure I). Nowadays, ZIKV is making headlines
around the world, and the World Health Organization
(WHO) has declared a public health emergency of
international concern for this virus [5].

For more than sixty years, the early clinical picture of
natural human ZIKV infection has mainly been
associated with a self-limiting, mild febrile illness of
short duration. However, like many other flaviruses,
including yellow fever (YFV), dengue (DENYV), and
West Nile (WNV) virus [6], ZIKV has turned out to
be a significant human pathogen. During the
outbreak in Micronesia in 2007, ZIKV disease started
to be associated with rash, high fever, arthralgia, and
conjunctivitis, whereas during later outbreaks, several
cases of Guillain-Barré syndrome were observed in
French Polynesia, as well as meningoencephalitis in

the Pacific Islands, and myelitis in Guadeloupe [7-9].
Most strikingly, the ZIKV epidemic in Brazil in 2015
has brought to light a temporal relation between fetal
microcephaly and ZIKV infection of the childbearing
mothers during the first trimester of pregnancy [10-
12], prompting several national agencies to issue
advisories to pregnant women and those considering
pregnancy. Additionally, several case reports on sexual
transmission of ZIKV [13], due to its persistence in
semen [14] and vaginal secretions [15], have been
published. Thus, unlike other flaviviruses, ZIKV is
now characterized by its capacity of transplacental and
sexual transmission, causing life-threatening neuro-
logical complications, that has highlighted its danger-
ousness (figure 2).

How did ZIKV, considered as an obscure and low-
pathogenic mosquito-borne flavivirus for more than 60
years, emerge from its sylvatic forest existence in Africa
and Asia to cause major epidemics throughout the
Pacific and the Americas? Several not mutually
exclusive possibilities have been proposed: First, with
respect to the evolution of ZIKV strains, results from
recent studies combining reverse genetics with mathe-
matic models have provided evidence that ZIKV has
acquired amino-acid substitutions around the same
time as the detection of congenital Zika syndrome and
other birth defects [16]. Second, it can be assumed that
the intensification of the globalization process, associ-
ated with a modern lifestyle, could amplify an epidemic
through travel of naive, non-naturally immunized
individuals. Third, environmental elements, in partic-
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Figure 1
ZIKYV spread from Africa to the Americas. (1) 1947: First documented in monkeys in Uganda. (2) 1960: First documented human
cases in Nigeria. (3) 1970s: First cases in Asia. (4) 2007: Epidemic on island of Yap, Micronesia; (5) 2013-2015: Epidemic on
French Polynesia and then through South America; (6) 2014-2016: ZIKV appears in northern Brazil and spreads through Central

and North America.

ular climate change, are likely of critical importance
for the survival and spread of mosquitoes.

Several mosquito species belonging to the Aedes genus
have been identified as potential transmission vectors
for ZIKV, and more especially Ae aegypti and possibly
Ae albopictus, for their wide and increasing spread
[17, 18]. As previously described for other flaviviruses,
viral dissemination occurs via the skin, at the site of the
mosquito bite, into the extracellular space of the
dermis [19]. The initial step in the life cycle of
flaviviruses is attachment of the virion to host-cell
entry factor(s), including DC-SIGN, AXL, and
TYRO3 that have been shown to be important for
mediating ZIKV infection [19, 20], underscoring the
pantropic nature of ZIKV. Following entry, ZIKV
replicates in tissue macrophages and dendritic cells
that traffic the virus to the draining lymph nodes and
other lymphoid tissues. Increased number of macro-
phages is thus recruited that further amplify viral
replication [21]. The “cytokine cascade” engaged
during this early process of ZIKV infection will be
discussed in this review.

THE “CYTOKINE CASCADE” IN ZIKA FEVER

The innate immune response is the first line of host
defense against a viral infection. Multiple host pattern
recognition receptors expressed on innate immune
cells, including Toll-like receptors (TLR) and retinoic
acid-inducible gene 1 (RIG-I)-like receptors, detect

different pathogen-associated molecular patterns and
trigger antiviral responses by producing type I
interferons (IFNs), in particular IFN-f and multiple
subtypes of IFN-o, that mount a rapid and potent
innate defense against a number of viruses [22, 23].
Production of type I IFNs is initiated through
recognition of pathogen-associated molecular patterns
(PAMPs), generated during viral infection [24].
Binding of type I IFNs to their receptor, composed
of two subunits (IFNAR1 and IFNAR?2), activates the
Janus kinases, Jakl and Tyk2, as well as the signal
transducers of transcription, STAT1 and STAT?2,
resulting in the upregulation of hundreds of IFN-
stimulated genes (ISGs), whose activity restricts viral
replication through a broad range of mechanisms [25].
The importance of type I IFNs in host antiviral innate
immunity is highlighted by the diversity of viral
strategies to evade these responses [26], some of which
have been demonstrated for DENV, WNV, and YFV.
It seems that the flavivirus nonstructural NS5 protein,
which encodes both the viral methyltransferase and the
RNA-dependent RNA polymerase, required for viral
RNA synthesis, plays a key role in the inhibition of
IFN-signaling by different mechanisms, depending on
the flavivirus. WNV NS5 targets the host prolidase
protein to prevent surface expression of IFNARI [27].
By contrast, YFV NS5 binds directly to STAT2, to
prevent its binding to the IFN-stimulated responsive
elements (ISRE) present upstream of ISGs [28§],
whereas DENV NS5 recruits the host E3 ubiquitin



76

Christopher Maucourant, et al.

ZIKYV infection

Viremia

!

Fever
Rash
Myalgia

!

Microcephaly

Pathogenesis

Meningoencephalitis

Persistence ?

L

/
)
4

"

/

oo
Guillain-Barré
Immune Response Arthralgia syndrome
Figure 2

Virus dissemination, immune responses, and clinical manifestations in ZIKV-infected patients. ZIKV is transmitted through the
bite of a female Aedes mosquito. Following infection of permissive cells in the dermis, such as endothelial cells, fibroblasts and
macrophages and the virus replicates rapidly. Locally produced viral particles are transported through the circulatory system to
secondary lymphoid organs, then disseminated to different organs. The acute phase of infection is associated with a high release of
type 1 IFNs, followed by the up- or down-modulation of many other cytokines and chemokines, in association with the
development of specific cellular immune responses. The infection by ZIKV can be accompanied by a spectrum of diseases, ranging
from self-limiting meningo-encephalitis to congenital birth defects, like microcephaly, or Guillain-Barré syndrome.

ligase UBR4 to degrade STAT2 [29]. In ZIKV, NS5
expression results in proteasomal degradation of the
IFN-regulated transcriptional activator STAT2, how-
ever, unlike DENYV, via a UBR4-independent process
[30]. This ability to strongly inhibit type I IFN
responses has been proposed to favor a mild infection
that allows flaviviruses to persist in the host and cause
long-term defects [31].

As flavivirus NS5 proteins exhibit a remarkable, albeit
virus-specific, functional convergence in their [FN type
I antagonism, it is likely that ZIK'V can also evade type
III IFN (IFN-)) signaling through STAT2 degrada-
tion via NS5. IFN-A is a key cytokine produced
abundantly at mucosal sites by epithelial and myeloid
cells in response to viral infection [32]. Its induction
and subsequent action at the epithelial layer of the
vagina depends on the hormone-dependent stage of the
estrous cycle [33]. Furthermore, IFN-A protects
trophoblasts, a layer of barrier cells in the human
placenta from ZIKYV infection [34, 35]. The ability of
ZIKV to escape from the action of IFN-A could
contribute to its capacity to cross the placenta during
pregnancy and cause neuronal disease in the develop-
ing fetus (see below).

Type I and type 111 IFNs are not the sole cytokines that
are targeted by ZIKV. A longitudinal study from a
Singapore cohort of ZIKV-infected patients revealed
high levels of inflammatory cytokines and chemokines,

such as GM-CSF, IFN-y, IL-18, IL-2, IL-4, IL-5, IL-6,
IL-9, IL-17, IL-22, CXCL10, CCL2, and CCLS5, that
were specifically identified in the acute phase of viral
infection [36]. Most of these factors were previously
described in two independent studies of Brazilian
patients acutely infected by ZIKV [37, 38], making
them useful markers for acute ZIKV infection.
However, the over-expression of three of these pro-
inflammatory mediators, IFN-y, CXCL10, and CCLS,
appears to be sufficient for generating an effective anti-
ZIKV response, and consequently, a mild disease
(figure 3). IFN-y is unique in its action because it
coordinates the transition from innate to adaptive
immune responses by supporting macrophage activa-
tion and recruitment of other immune cells, like Tyl
lymphocytes, to the site of infection [39]. The
expression of IFN-vy is limited to cells of the immune
system and mainly to natural killer (NK) cells. These
cells are a key element of the innate immune system,
and represent a first-line defence against a variety of
viral infections. They play both antiviral and regula-
tory roles via the release of soluble factors and operate
via a balance of inhibitory and activating signals that
enable them to detect and lyse virus-infected target
cells [40-42]. To date, few data on the involvement of
NK cells in ZIKV infection have been reported in the
literature [43-45]. Our own data, obtained in a cohort
of Gabonese patients, point to an early and transient
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Figure 3
Model cytokine/chemokine pathways in the development of clinical symptoms mediated by ZIKV infection.

accumulation of specific NK cells, called adaptive NK
cells, following an acute infection by DENV-2 that was
absent in healthy donors [46]. This “clonal” expansion
of adaptive NK cells, also described in other viral
infections, such as Chikungunya, and cytomegalovirus
[47, 48], is associated with a functional decoupling, in
which IFN-y production seems sufficient to control
a DENV infection, in the absence of cytotoxicity
(Petitdemange, Maucourant et al. Personal data).
Upregulation of IFN-y production by NK cells was
also observed in WNV infection [49] and preliminary
data suggested that NK cells from ZIKV-infected
patients also produced high level of IFN-y [43].
Interestingly, ZIKV infection has been reported to
induce the expression of many IFN-y-stimulated genes
that, likely due to NS5-mediated depletion of STAT?2,
shift the STATI-STAT2 balance toward STATI,
resulting in more STAT1 homodimers available to
preferentially induce the transcription of IFN-y-
stimulated genes [50]. However, other groups have
shown that pretreatment of human foreskin fibroblast
with IFN-y restricts ZIKV replication [19], possibly
through the initiation of an inhibitory feed-back
mechanism. Thus, the interplay between IFN-y and
ZIKV pathogenesis needs further investigation.

Monocytes, one of the first targets infected in the
peripheral blood, also play a key role during the acute
phase of infection by ZIKV, as highlighted by the high
levels of GM-CSF and CCL2 produced early after
infection [44]. CCL2 associated with IL-8 and
CXCL10 was recently correlated with high viremia
in symptomatic patients [36]. During the later phase of
ZIKYV infection, concentrations of IL-1B, IL-2, and
CCL2 in the sera, produced during the acute phase,
were not decreased in ZIKV-infected patients during
the later phase of infection, in contrast to DENV fever.
However, in both infections, very high concentration
of IL-10 was detected tardily [S1-53]. It is of note that
contrasting results were reported in these different
studies for several other proinflammatory cytokines,
like TNF-o and IL-6. Several hypotheses could explain
these discrepancies, but the marked difference seems to
be the studied populations. It seems that acute ZIKV
infection in resident to an endemic area displays a
modest proinflammatory systemic immune-activation
profile, compared to non-residents individuals [3§].
This suggests that constant exposure to ZIKV, and
possibly other environmental factors, may affect the
immunological inflammatory impact of infection.
However, most studies to date have focused on direct



78

measurements of cytokines and chemokines in the
peripheral blood compartment and have failed to
interrogate the whole of the immune cascade in the
context of the infecting pathogen and the rapidly
changing immune environment in tissues.

In this context, it is also important to point out that
immune cross-reactivity with other flaviviruses could
be beneficial and result in cross-protection [54]; on the
other hand, humoral cross-reactivity can also exacer-
bate disease through the process of antibody-depen-
dent enhancement (ADE), of which DENYV is the
prototypic model [55]. Primary DENV infection
results in a mild, acute disease with production of
efficacious neutralizing antibodies, in which virus-
antibody complexes are recognized by the Fc Recep-
tor, internalized and destroyed. Problems may arise
when a second DENYV infection of a different serotype
occurs, as the antibodies produced during the first
infection can recognize and bind the second infecting
strain, but with sub-neutralizing capability. For
DENYV, ADE has been associated with lower levels
of innate immune mediators, such as nitric oxide or
type I IFNs, and high production of IL-10 [55].
Whereas experimental evidence has demonstrated
both a preventive, as well as a pathogenicity-enhancing
role, of preexisting DENV antibodies in ZIKV
infections, to date, ADE has not been confirmed in
ZIKV [56, 57]. Because most countries with confirmed
ZIKYV cases are also endemic for DENV, there is a
higher probability that ZIKV infection and immune
response intensity may be amplified, owing to
preexisting DENV cross-reactive antibodies; this
should be a concern, particularly during vaccine
development.

CYTOKINES ASSOCIATED WITH ZIKA-
RELATED DETRIMENTAL NEUROGENESIS

Recent widespread outbreaks had brought ZIKV into
spotlight, in particular because of the presumed causal
relationship between infection and adverse fetal
microcephaly. This has prompted the WHO to declare
a Public Health Emergency of International Concern
in February 2016 [58], and to advocate research into
possible causal relationships and underlying mecha-
nisms of ZIKV-induced neurologic disorders.

Fetal abnormalities

Pregnancy is a sophisticated biological process that
relies on maternal-initiated immunosuppression to-
ward the growing fetus particularly [59]. Because of the
temporal and geographical overlap between the
emergence of fetal microcephaly and the outbreak of
ZIKV, the hypothesis was formulated that fetal
microcephaly was caused by ZIKV infection during
pregnancy [60, 61]. In the United States, there have
been approximately 2,500 pregnant women infected
with ZIKV and 116 infants born with ZIK V-associated
birth defects since 2015. However, the majority of birth
defects were reported in Brazil, which accounted for
almost 400,000 cases of ZIKV infections and approxi-
mately 1,700 cases of neonates with confirmed
microcephaly in 2015 [58].

Christopher Maucourant, et al.

Microcephaly results from any insult that disturbs
early brain growth, and can be caused by genetic
variations, teratogenic agents, or other congenital
infections [62]. One potential mechanism for the
observed microcephaly is the capacity of ZIKV to
preferentially infect human neural progenitor cells and
to trigger their apoptosis [63]. The capacity of the
microglia to interact with ZIK V-infected tissues could
also contribute to further spreading of the virus in the
developing brain [64]. Activation of microglia leads to
the production of pro-inflammatory cytokines, like
TNF-a, IL-1B, IL-6, IL-12, and cytotoxic molecules,
such as nitric oxide that aggravate inflammatory
damage [65, 66]. In an extensive multiplexing analysis
of 69 cytokines from a large cohort of pregnant
women, high expression of CXCLI10, in addition to
CCL8 and CCL2, was associated with ZIKV-induced
abnormal birth [67].

The majority of mediators modulated by ZIKV in
pregnant women was also involved in the recruitment
of monocytes and NK cells, like type I IFNs, IL-12,
CXCL10, CCLS8, or CCL2 [68, 69]. An excessive
infiltration of both cell subsets at the maternal-fetal
interface has previously been linked to pregnancy
complications, such as preeclampsia and preterm birth
[70, 71]. Instead, at the human implantation site, the
predominant population of immune cells consists of
uterine NK (uNK) cells and macrophages, which may
comprise about 90% of all leukocytes, that are
important for the control of placentation [72]. It is
thought that the main function of uNK cells is to
produce cytokines, such as TNFo, TGFB, and IFNy,
as well as IL-1B and IL-10 [73]. Such production is
regulated by inhibitory and activating receptors
binding to HLA class I on trophoblast cells, but their
role during ZIKV infection remains totally elusive.
Interestingly, Foo et al [74] have recently shown that
ZIKV infection promoted the dramatic expansion of
nonclassical CD14°CD16" monocytes and an appar-
ent production of the IL-10 in blood from the first and
second trimesters of pregnancy; this cytokine produced
by inflammatory monocytes and NK cells is known to
promote viral persistency and to dampen host defenses
[75], and can be detected at high level in the amniotic
fluid of pregnant ZIKV patients who had microce-
phalic fetuses or neonates [76]. Production of I1L-10 is
certainly a marker of a counter anti-inflammatory
response that has been termed “immunoparalysis.”
Downregulation of systemic inflammation by IL-10 in
ZIKV may be conceptually beneficial in controlling
systemic responses to local infection, but also
detrimental with the development of fetal abnormali-
ties in ZIKV-infected pregnant women.

Together, these observations suggest that excess
production of certain factors, like IL-10 and CXCL10,
driven by specific monocytes and uNK cells in ZIKV™*
pregnant women could contribute to neuronal damage
affecting the developing fetal brain and the develop-
ment of microcephaly.

Guillain-Barré syndrome

Convincing evidence has also associated ZIKV infec-
tion with the development of Guillain-Barré syndrome
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(GBS), an infrequent autoimmune disorder characte-
rized by progressive muscle weakness of limbs and
areflexic paralysis [77]. GBS is the most common cause
of neuromuscular paralysis and, in rare cases, may lead
to death. Its worldwide incidence is approximately 1
case per 100,000 people. The first challenge to the
apparently benign nature of ZIKV infection occurred
during the outbreak in French Polynesia, which began
in October 2013, when 45 individuals developed GBS
[78]. In 2015, the WHO reported 1708 cases of GBS in
Brazil, although this must be interpreted with caution
because several cases were not tested for ZIKV
infection [79]. The reasons for the increase in the
incidence of GBS in Brazil, but also El Salvador, and
Suriname are unknown, particularly because poten-
tially other viral pathogens might be involved in
particular DENV or CHIKYV that are co-circulating in
these countries, during the same period. Importantly,
GBS associated with ZIKV infection was found to be
associated with a higher morbidity during the acute
phase, compared with GBS triggered by other
etiologies [66]. This suggests that the immune response
specific to ZIKV infection could be partially implicated
in the symptomology of the GBS.

Pro-inflammatory cytokines play various roles in the
pathogenesis of GBS, such as TNF-o, IFN-y, IL-1p,
1L-6, 1L-12, IL-17, 1L-18, and IL-23, but also anti-
inflammatory mediators, like TGF-B, IL-4 and IL-10,
aswell as IL-27, that exerts both pro-inflammatory and
anti-inflammatory effects, [69, 80]. It seems that 1L-23
and IL-27, two members of the IL.-12 family, are more
particularly associated with the recovery of GBS [81],
whereas CXCL10 has been implicated in GBS
pathogenesis [82] (figure 3). Thus, it was hypothesized
that high levels of CXCL10 in ZIKV patients may
contribute to neuronal damage affecting the develop-
ing fetal brain and potentially targeting peripheral
nerves in Guillain-Barré syndrome as well [66].

CONCLUDING COMMENTS

Across the world, infectious diseases remain a real
threat, accounting for approximately half of all deaths
each year. Tuberculosis, malaria, AIDS, influenza, as
well as endemic and (re)emerging flavivirus infections,
like ZIKV, all contribute to morbidity and mortality.
Economic development, urbanization, and environ-
mental degradation gather pace, whereas the structure
of societies changes, creating a “perfect storm” for the
future spread of ZIKV, leading to new challenges in the
future. Against this backdrop and the absence of an
effective vaccine against ZIKV infection, although
actively sought [83, 84], increasing interest has focused
on the development of drugs that target the cytokine
response following ZIKYV infection. The virus/host
interaction is a complex interplay between pro- and
anti-viral components that ultimately determines the
spread or halt of virus infections in tissues. Integrating
the data listed above in this review reveals the role for
certain key cytokines in the pathology of ZIKV
(figure 3). High production of CXCL10 and IL-10 is
associated with several aspects of ZIKV-related
detrimental neurogenesis, including microcephaly
and/or GBS. Thus, it should be important to try to
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target these mediators in order to reduce the collateral
damage initiated by the host immune response to
ZIKV. As previously shown, CXCL10 neutralization
by specific antibodies or genetic deletion in CXCL107
mice protected against cerebral malaria infection and
inflammation [85], and passive transfer of anti-
CXCL10 antibodies reduced inflammatory leukocyte
recruitment across the blood-brain barrier. Further-
more, statin medications commonly used for choles-
terol control have been shown to decrease CXCL10
and to be effective in Crohn’s disease [86, 87].
However, to date, successful targeting of the immune
system during an acute infection has proved to be
extraordinarily difficult and largely unsuccessful. A
reason could be that we still do not totally understand
the delicate nature of the rapid changes of the cytokine
response during an acute infection, and until we do, it
is unlikely that we will be able to develop rational
therapies that target the exact phase of the immune
cascade and administrate those therapies at the time
they are needed.
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