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ABSTRACT. During aging, physiological and physical frailty occur, which is accompanied by a decline in adaptive and
innate immunity, termed ‘immunosenescence’ characterized by marked changes in the composition, function, and
competence of the human immune system. Moreover, the capabilities of the immune system to defend the human body
against infections, to detect and destruct malignant or autoreactive cells decline, resulting in an increase in the
susceptibility to infection, development of cancer, as well as autoimmune disorders. The study of age-related changes in
immune function is an important area of investigation. In this review, the function of the immune system during aging, as
well as the different ways to rejuvenate the aging immune system, is explored, as medical intervention, balanced
nutrition, and a healthy life style will be discussed.
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INTRODUCTION

In a context of physiological and physical integrity
changes with aging, immune function declines in terms
of both adaptive and innate [1] with marked changes in
the composition, function, and competence of the
human immune system [2], all together termed as
“immunosenescence” [3]. Functions of the immune
system as defense against infections, response against
new invaders, and detection and destruction of
malignant or autoreactive cells, decline by aging [4].
The availability of naive T cells is substantially affected
by age-related thymic atrophy, especially naive CD8+
T-cell reservoir, ending up in a status of increased
susceptibility to infections and cancer and an increased
incidence of autoimmune disorders [4] . In addition a
condition of chronic low-grade inflammation occurs
[5], leading to an imbalance between the inflammatory
and antiinflammatory states due to elevated levels of
pro-inflammatory mediators [6] released by effector
memory and senescent T cells [7]. Moreover, dysre-
gulation of monocytes takes place leading to reduced
phagocytosis [5]. Wagner et al. in 2018 stated that
severe infections, symptoms tend to be less in the
elderly, and fever is absent in 20 to 30 percent [8] . In
2000 Norman suggested that there is a decrease in the
ability of immune system to mount an inflammatory
cytokine response when facing infection, and the signs
of infections are not specific [9]. The efficient immune
response is created by a complex network of cells and
soluble factors grouped into the innate and adaptive

parts of the immune system, which are formed by
hematopoietic stem cells (HSC) [10]. In the present
review, the function of the immune system during
aging is explored as well as the different ways of
rejuvenating the aging immune system as medical
intervention, good nutrition, and a healthy life style.

IMPACT OF AGING ON THE IMMUNE

SYSTEM

Hematopoiesis and mechanism of aging

Aging is associated with profound alterations of the
hematopoietic system [11] responsible for producing
lymphoid and myeloid cells .The lymphoid branch
produces B and T cells that orchestrate the adaptive
immune response; the myeloid branch orchestrates the
innate immune defense to infection through general
pathogen surveillance, phagocytosis, and the inflam-
matory response [12] as shown in figure 1 [13]. With
aging, a decrease in the volume of hematopoietic tissue
in the bone marrow occurs [14], and the regenerative
capacity of the hematopoietic stem cells (HSCs)
declines [15]. Also, production of myeloid and
megakaryotic cells increases resulting in impaired
immune functions and elevated incidence of hemato-
logical malignancies [16]. The DNA damage response
(DDR) in cells is involved in the regulation of cell cycle,
cell apoptosis, and senescence [17]. A study released by
Li and colleague revealed that HSCs are exposed to
DDR stress because of their continuous self-renewal
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process, they proposed that DNA damage may be a
principal mechanism that regulates age-dependent
stem cell decline [17]. As a consequence of HSC aging
a lineage skewing occurs; an upregulation of myeloid-
specific genes and a down regulation of lymphoid-
specific genes are observed [16]. This skewing toward
the myeloid lineage is thought to be due to the
decreased number of progenitor cells and colony
stimulating factors. Additionally, age-associated
changes in the endocrine system lead to reduction in
lymphopoiesis, as a result of lowered concentration of
growth hormone [18].

Innate immunity

Innate immunity is an unspecific cellular response.
Skin and mucous membranes constitute the first line of
defense against invaders [19]. The innate immune
response is mediated by monocytes, macrophages,
neutrophils, dendritic cells, natural killer (NK), and
Toll-like receptors [19, 20].

Skin and mucus membrane. By aging the decline of
skin cell replacement and epidermal thinning inhibit
the barrier function and initiate a pro-inflammatory
state [21]. Subcutaneous tissue atrophy [22] and
decrease in sweat and sebum production are also
observed [23]. In mucous membranes, ciliated cells
that remove pathogens, are reduced [24]. Many
contributors are involved in skin aging such as
alterations in DNA repair and stability, mitochondri-
al function, cell cycle and apoptosis, proteolysis
induced by ubiquitin, cellular metabolism, and
hormone decline [25].

Monocytes and Macrophages. The phagocytic activity
of monocytes is highly affected and reduced by aging
[5]. The ability of cells to produce pro-inflammatory
cytokines like TNF-a, IL-1, IL-6, and IL-8 declines
[26, 27]. Metcalf et al. in 2017 observed that cytokine
secretion in response to stimulation via TLRs is greatly
reduced by aging [28].

Processing and presenting antigens to T cells decline
[27], and they become susceptible to the accumulation
of reactive oxygen species ROS [29] .These declined
functions were attributed to the telomeres shortening
of macrophage leading to a decreased GM-CSF
but not M-CSF-dependent proliferation of these cells
as a result of decreased phosphorylation of STAT5
[29]. In addition, a decline in classical monocytes
(CD14+ve CD16�ve) and an increase in intermediate
(CD14+ve CD16+ve) and nonclassical monocytes
(CD14+veCD16++ve) were observed by aging [30].
Interestingly, nonclassical monocytes express high
levels of miR-146a and exhibit a senescence associated
with a secretory phenotype (SASP), and involved in
inflammaging [31].

Neutrophils. Aging affects functions of neutrophils in
many aspects such as migration route [32], efficiency of
phagocytosis [33], and the production of ROS
“oxidative burst” [34]. Inaccurate migration was found
to be associated with increased constitutive phosphoi-
nositide 3-kinase (PI3K) signaling [35]. PI3K-blocking
strategies, specifically inhibition of PI3Kg or PI3Kd,
restored neutrophil migratory accuracy [35] and might
help improve outcomes during infection and reduce
inflammation [36]. Neutrophils showed a reduced
chemotaxis to the different stimuli [37] and a reduced
ability to extrude their DNA as networks of extracel-
lular fibers (NETs) responsible to entrap bacteria
extracellularly [34], causing an alteration in pathogen
destructionmechanism [38]. In addition, the significant
decrease in T-cell-like receptor repertoire diversity
(referred to as TCRL) in old age is a mechanism of
immunosenescence in neutrophils [39]. Moreover, an
age-associated reduction in TLR1 expression on
neutrophils was found to be associated with reduced
chemokine (IL8) production, reduced rescue from
apoptosis, and lower expression of activation markers,
resulting from reduced bioenergetics in neutrophils
[40], which explains the recurring infections [35],
especially of the skin and respiratory tract in seniors
[32]. Also, it was reported that the lowered production
of ROS due to aging [34] leads ing to a reduced ability
to eliminate bacteria and fungi [41].

Dendritic cells. Dendritic cells (DCs) are professional
antigen-presenting cells, responsible for the first
recognition of pathogens, migration to regional lymph
nodes, phagocytosis, priming of naive T cells, and
regulation of B and NK cells’ response [42]. They are
strategically placed between internal and external
environment, which enables them to link innate and
adaptive immunity [42]. Impaired functions of DCs by
aging [43] include defective migration, phagocytosis
[44], and signaling pathways [45]. They also exhibit
mitochondrial dysfunction, illustrated by reduced ATP
turnover and coupling efficiency, decreased baseline
oxidative phosphorylation, and greater proton leak
and reactive oxygen species (ROS) production [46]. It
was observed that DC from older mice have a poor
ability to stimulate a CD8+ T cell-mediated cytotoxic
response [47], because of the reduced production of
TNF-a which is a determining factor in the DC that
mediate CD8+ T cell response [48].
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Figure 1
Hematopoiesis from a multipotent stem cell. In the elderly
there is skewing toward the myeloid cell differentiation
pathway (red arrows) in comparison with the less favored
common lymphoid cell differentiation pathway (green
arrows); this will result in a decreased production of lympho-
cytes [13].
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Natural Killer cells. TheNK cells are key component of
innate immunity which are involved in the immune
response to influenza infection [49] and vaccine [50].
They are responsible for eliminating virus-infected or
tumor cells and in the regulation of the immune
response by producing cytokines and chemokines that
activate other cellular components of innate and
adaptive immunity [51]. Changes in NK cell biology
that accompany human aging are manifested as an
increase in NK cell numbers, due to the increase of
CD56dim NK cells [52] and a decrease of CD56bright
cells [53], leading to an altered NK cell subset
distribution [54] and a decrease of about 75% in the
amount of IFN-g secreted by NK cells [55]. Addition-
ally, the expression of activating NK cell receptors
NKp46 and NKp30 declines with age, NK cell
cytotoxicity toward cancer cells is reduced with age
[52, 54] due to reduced release of perforin [54],
increased reactivation rates of latent Mycobacterium
tuberculosis [56], CMV seropositivity, and proinflam-
matory status occur [7] leading to an increased
incidence of bacterial and fungal infection [57].
Conversely, aging-related functional NK cell deficien-
cy was completely reversed by injecting soluble IL-15/
IL-15Ra complexes [58].

Toll-like receptors. Toll-like receptors (TLRs) are
receptors that are distributed in the body [59]. By
aging, a down regulation of toll-like receptors (TLRs)
is observed, a process that contributes to the lack of
effective recognition of invaders [60]. Research studies
have implicated specific signaling pathways in altera-

tions in TLR function in the context of human aging.
These include decreased PI3-kinase activity in
MDDCs (associated with increased PTEN phosphor-
ylation) [45] and an impairment in downregulation of
STAT1 phosphorylation in macrophages [61]. Micro-
glia are mononuclear immune cells of the central
nervous system (CNS) [62], they express all TLRs but
their expression is affected by aging, which is a risk
factor of neurodegenerative diseases, such as Alzhei-
mer’s disease (AD) [63].

Adaptive immunity

Adaptive immunity is characterized by the generation
of highly antigen-specific memory after encountering
an antigen [64]. By aging, a reduced B and T cell
responses [8] and a decrease in the production of T and
B cells occur [65]. As a result the immune system
becomes less able to distinguish self-belongings from
nonself one [66], and autoimmune disorders become
more common [67].

Thymic involution.. One of the most dramatic changes
that occur in the aged immune system is the involution
of the thymus gland. As a result, a decrease in both
stromal and thymocyte cellularity and a loss of tissue
organization occur [68], the thymus function decreases
[69] and production of naive T cells declines [69] along
with the accumulation of memory T cells that
contributes to a shift in T-cell population toward
memory T-cell dominance (figure 2) [68]. Therefore,
the ability to respond to new immunological chal-
lenges, including vaccines, is compromised, and
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Age-related alterations in adaptive immune cells [68]. The thymus is located in the right upper side of the figure in yellow color as
shown in young age it is bigger than that of old (getting smaller with age) the young thymus release a large amount of naive T
cells showed as (green circles) small amount of memory T cells shown as (red circles) and very little amount of senescent T cells
purple cells arrow to the upper side increase arrow directed to down decrease in the upper left side of the figure in aged
individuals the bone marrow produces a very little amount of naive B cells shown in the figure as (yellow circles) a decrease in the
antibody production and a large amount of memory B cells shown (turquoise circles).
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susceptibility to infection, autoimmune diseases, and
cancer increases [70].

T lymphocytes. The hallmarks of T cell immunesenes-
cence include: accumulation of CD28�veCD57+ve T
cells with shortened telomeres and reduced prolifer-
ative capacity [71], the lymphocyte potassium channel
inhibitory pattern is altered, regulators of calcium
influx kinetics contribute to the development of age-
related changes of T cell function [72] and a decrease in
intracellular calcium levels and alterations in the signal
transduction pathways NF kB and MAPK have been
observed [73, 74], a reduction of the membrane
receptors CD28 (important in lymphocyte activation)
and CD27 (limited proliferative capacity by T
lymphocytes) [75] occurs. It was found that decreased
miR-181a is associated with age, it controls lympho-
cyte activation via their T cell receptor. This decline
results in poor cell activation and also autoantigen
recognition [76]. Endogenous p53 isoforms D133p53
and p53b are physiological regulators of proliferation
and senescence in human T lymphocytes. Conversely,
the knockdown of D133 and the over expression of p53
b in CD8 + CD28+ cells inhibits cell proliferation and
induced senescence [77]. T cells with senescent
characteristics increase with age and exhibit constitu-
tive p38MAPK activation [78], due to the formation of
a complex betweenMAP kinases and the sestrin family
of proteins which results in kinase activation [79].
Furthermore, knockdown of sestrins [79] or inhibition
of p38 MAP kinase restored T cell proliferative
capacity [80].

Naive T cells. Naive T cells are long-lived cells and can
circulate for years if they did not encounter the
appropriate antigen. In old age they may die before
finding their appropriate antigen [81]; therefore, the net
outcome of naive T-cell output becomes reduced by
aging [70]. Additionally an altered expression of
costimulatory and inhibitory receptors occurs [82]
causing many functional defects including impaired
ability to multiply and become “effector” cells. As a
result, the ability of the elderly to mount a successful
immune response to new antigens is diminished, their
ability to respond to infections increases, vaccine
efficacy decreases [83].

Senescent Memory T cells. Memory T cells are
generated when encountering an antigen. Upon
reexposure to the same antigen, memory T cells
recognize it and launch a vigorous response. By time,
repeated exposure to antigens increases the number of
protective memory T cells [84] memory T cells of
seniors are often senescent, and dysfunctional as they
lose the ability to proliferate and divide [83]; and
secrete high levels of pro-inflammatory cytokines such
as tumor necrosis factor-alpha and IL-6 [57, 83]. Chou
and Effros 2013 stated that aging of memory T cells
may result from lifetime exposure to common viral
infections such as cytomegalovirus (CMV) and
Epstein-Barr virus (EBV) [85] that remain inactive in
the body for decades, triggering a chronic, low-
intensity response from memory cells and other
adaptive immune cells and inducing chronic inflam-

mation. There is also an evidence that senescent
memory T cells may suppress other types of immune
cells [85]; they accumulate in tissues with age, causing
degeneration and malignant transformation [86].

Regulatory T cells. Jagger in 2014 revealed that
regulatory T cells CD4+veCD25+veFoxp3+ve T cells
play a pivotal role in maintaining immune homeostasis
[87] by suppressing immune responses [88] they
accumulate with age and weaken the immune response
to pathogens or malignant cells [87]. Furthermore,
their function may change with age [87, 89] as high
suppressive activity could allow a greater risk of
cancer, whereas impaired suppressive activity could
confer a greater risk of autoimmune diseases. Thus, a
balanced functioning of regulatory T cells is necessary
to avoid chronic inflammation, maintaining immune
protection against infections and cancer [87].

Helper T cells. CD4+ T-helper cells in the context of
aging exhibit a Th2 profile (i.e., IL-4 producing cells)
dominance over a Th1 profile (i.e., IFN-g producing
cells) [90]. In addition, Th17 cells that are responsible
for IL-17 production and are associated with autoim-
munity and inflammatory diseases accumulate by
aging [91].

Cytotoxic T cells. CD8+ cytotoxic T cells mediate lytic
reactivity once activated and can kill infected cells
directly by the production of cytotoxins such as
perforins and granzymes [92]. The accumulation of
late-stage potentially differentiated cytotoxic T cells as
a result of the substantial telomere erosion that affects
the replicative capacity of CD8+ T cells during aging
[93] is often considered a hallmark of immunosenes-
cence [94].

B lymphocytes. Functions of B cells are affected at a
mechanistic level. B-cell lymphopoiesis decreases [95],
a reduced expression of genes for the differentiation
occurs [96] leading to a decline in the frequency of
naive B cells (CD27�ve IgD+ve) and an increase in
memory B cells [97]. In addition, a reduction in crucial
gene products for immunoglobulin class switch occurs
which in turn affects the efficacy of humoral immune
responses [96]. A decline in CD4 T cell and dendritic
cell functioning, along with intrinsic changes in B cells
resulting in age-associated reduction in number and
size of germinal centers, are all contributing factors
toward the decline in antibody production by older
individuals with age [98]. One of the major manifesta-
tions of B-cell aging is the changes in their antibody
repertoire including a shift in antibody production
from IgG to IgM, from high affinity to low affinity,
and from specificity for foreign antigens to specificity
for self- antigens [71, 99]. Duggal et al. in 2012
revealed that immunosuppressive CD19+ve CD24hi

CD38hi B cells subsets are affected in their number
and function which might be a factor contributing
toward increased risk of systemic autoimmunity by
aging [100].

Antibody diversity. It has been stated that B-cell
diversity is collapsed and decreased by aging [101]. The
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immune system becomes disabled to mount an
effective and specific antibodies production where a
nonspecific antibody production prevails, making
seniors vulnerable to infections and affecting their
general health status [102]. Despite being quantitatively
preserved, antibodies show impaired qualitative attach-
ment to antigens, consequently infectious diseases such
as pneumonia, influenza, infective endocarditis, and
tetanus are more common among the elderly. Also, this
explains why vaccines are less effective among them and
why they must take booster shots [103].

PHENOTYPICAL AND FUNCTIONAL
ALTERATIONS IN ELDERLY (TABLE 1)

How can immune system survive aging?

Rejuvenation strategies

Impact of lifestyle modifications on immunesenescence.

Stress Management.
Stress can be managed by meditation, mindfulness, and
yoga that can promote positive emotional states [120].
Interestingly, it was found that themind-body therapies
decrease the markers of inflammation and increase the
anti-viral-related immune responses and cell-mediated
immunity [121], and increase IgA [122]. A recent study
revealed that yoga reduces pro-inflammatory markers,
as CRP and IL-1beta increases antiinflammatory
cytokines such as IL-10 and could mediate inflamma-
tion at the genomic level, by changing the levels of
proteins that control the DNA transcription of proin-
flammatory cytokine [123]. Another study found that it
also improves the levels of cytotoxic T cells, B
lymphocytes, and natural killer cells [124].

Sleep. Unfortunately, deprivation of sleep increases
expression of genes responsible for DNA damage [125]
and thus increases senescence, along with the enhance-
ment of the proinflammatory profile [125] and a
decrease in natural killer cell responses and T-cell
cytokine production [125], but regular sleep patterns
correlate with better immunological responses [126]
and promote the redistribution of antigenic memories
initially those held by antigen-presenting cells[127].

Oxytocin (Cuddle hormone). Oxytocin (OT) plays an
important role in the functioning of the immune
system, because the oxytocin secretory system (OSS)
has a pivotal role in the development of thymus and
bone marrow, strengthens immune defense, performs
immune surveillance, inhibits immune damages, and
maintains immune homeostasis. As a result OT
inhibits inflammation, exerts antibiotic-like effect,
promotes wound healing, and regenerates and sup-
presses immune disorders associated with stress, the
OSS can release OT that act on immune system by
activating OT receptors [128].

Sunlight. Sunlight is an important factor that positively
impacts immune functioning and reduces the incidence
of autoimmune diseases [129] and cancer [130].

Interestingly, it was revealed that sunlight energizes
T cells through a separate mechanism from vitamin D
production and that low levels of blue light, found in
sun rays, make T cells move faster, allowing them to
report T cells as either helper or killer and as the first
immune cells that respond to sunlight. In addition they
proved that T lymphocytes possess intrinsic photosen-
sitivity which may enhance their motility in skin. They
showed that blue light triggers the production of H2O2

that stimulates signaling pathway enhancing T-cell
motility in vitro [131].

Water. Succeeding cold exposure (CE) leads to the
increase of leukocytes, granulocytes, circulating levels
of IL-6, and NK cells responses by pretreatment with
exercise in water (18 8C) and thus acute CE has
immune-stimulating effects [132]. Shevchuk and Radoja
revealed that a daily brief cold stress can increase both
numbers and activity of peripheral cytotoxic T-
lymphocytes and NK cells, which are the major
effectors of adaptive and innate tumor immunity [133].

Fasting. During normal and healthy operation, the
immune system detects and removes senescent cells;
this operation ceases and fails by aging, leading to the
accumulation of senescent cells, which are partially
responsible for aging [134]. Upon fasting, the immune
system tries to save energy, by recycling a lot of the
immune cells which are not needed, especially the
damaged ones, fasting can help body get back to
normal, and possibly even better than before fasting
[134]. Another recent study by Choi et al.,2017 showed
that long-term fasting, followed by refeeding, pro-
motes the antiinflammatory effects, decreases the aging
biological rate, and reverses a variety of autoimmune
disorders as well as immunosenescence by killing old
and damaged cells and replacing them with young and
functional ones and causes apoptosis of autoreactive T
cells, which are replaced by newly generated naive T
cells during the refeeding period [135], because it
reduces circulating Insulin-like Growth Factor-1
(IGF-1) levels and protein kinase A (PKA) activity
in various cell populations [136]. Recently, Rangan
et al. in 2019 revealed that fasting by water only
increased regenerative activity of immune system and
reduces inflammatory markers [137].

Calorie restriction. A new study released by Lee and
Longo stated that caloric restriction program of a 20–
40% reduction of food consumption relative to normal
intake is very effective in the regulation of aging [138].
Many studies revealed that long-term caloric restric-
tion results in reduction of the risk of age-related
diseases, including type 2 diabetes mellitus, cardiovas-
cular disease, and cancer [139]. Other experimental
studies have shown that caloric restriction maintains a
youthful function of the thymus gland, reduces
immune senescence during aging, increases prolifera-
tion and diversity of T cells [140], and improves
multiple aspects of immune activity, particularly T-cell
function [141], response to mitogens [142], and
enhances the activity of both cytotoxic T-lymphocytes
[143], NK cells and the ability of mononuclear cells to
produce proinflammatory cytokines [142]. Periodic
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dietary restrictions were found to reverse age-depen-
dent immune dysfunction by killing autoimmune cells
[144] and could rejuvenate aged HSCs by reduction of
the nutrient supply and the clearance of senescent cells
[15]. Calorie restriction reduces oxidative stress by
SIRT3-mediated SOD2 activation [145].

Mediterranean Diet. The Mediterranean diet is a
dietary pattern based on foods and drinks traditionally
consumed by people in the region surrounding the
Mediterranean Sea [146]. This diet has been shown to
protect against several age- and inflammation-related
conditions including diabetes, atherosclerosis, obesity,
cancers, and neurodegenerative diseases. It is charac-
terized by inclusion of olive oil, fruits, vegetables,
legumes, whole grains, nuts, and seeds; with moderate
amounts of fish, poultry, cheese, yogurt, and eggs;
limited inclusion of red meat, processed food, and
foods rich in refined sugars [147]. The adoption of the
Mediterranean diet by older adults has also been

associated with improvement in immune responses,
particularly dendritic cell function [148].

Exercise. Reduced physical activity leads to increased
adiposity and systemic inflammation [149]. There is a
link between aging of immune system and inflam-
mation [150], but regular physical activity has been
associated with exert antiinflammatory and anti
immunesenescence effects, potentially delaying the
health declines [151] lowering the levels of pro-
inflammatory cytokines such as IL-6, TNF-a in the
elderly [152] and improving neutrophil chemotaxis
[153]. Regular exercise has been shown to improve
neutrophil microbicidal functions which reduces the
risk of infectious disease [151], with increased immune
cell telomere length, improved vaccine responses and
immune system function [154]. Takahashi and col-
league revealed that moderate walking reduces basal
levels of ROS leading to an improved immune-
surveillance in seniors [155]. Exercise and aerobics

Table 1
Phenotypical and functional alterations in elderly individuals

Alterations in elderly Phenotypical Functional

Skin Subcutaneous tissue atrophy [22] epidermal thin-
ning ultra-structural changes of the mucus mem-
branes of hair cells [24]

Decreased barrier function, pro-inflammatory
state, and gradual deterioration of the epidermal
immune response [21]

Peripheral lymphoid
tissue

Shrinkage of the volume of the
peripheral lymphoid tissue [104]

Decline of absolute and relative concentrations of
naive T cells in the blood [104]

Monocytes 1-No change in the number [105]
2- Increase in nonclassical monocytes express high
levels of miR-146a and exhibit a senescence associ-
ated secretory phenotype (SASP) [31]

Migratory/ chemotaxis,Phagocytic,
Cytotoxic abilities were reduced [105]

Dendritic cell 1-Reduced number [105] and lower maturation [48]
2-Reduction in plasmacytoid DCs and unaltered
frequency of myeloid DCs [106] decline in
CD141+ve DCs, inducer of T helper 1 cell and
cytotoxic T lymphocyte responses [107] [108]

1-chemotaxis,Phagocytic,abilities were affected [105]
2-T helper 1 cell responses and cytotoxic T lympho-
cyte responses were affected [108]

Neutrophils No change in the number [105] Migratory/ chemotaxis,Phagocytic,
Cytotoxic abilities were reduced [105]

Natural killer cell Impaired maturation [109] increase in NK cell
numbers, due to expansion of CD56dim NK cells
[105, 110]

Migratory and chemotaxicity were reduced [105]
Impaired function of NK cells [109], slower resolu-
tion of inflammatory responses increased incidence
of bacterial and fungal infection [57]

Toll like receptor changes in expression of costimulatory markers
CD80 and CD86 on monocytes showed a general-
ized, highly significant decrease in TLR-induced
upregulation of CD80 [111]

Inappropriate persistence of TLR activation lack of
effective antigen recognition [112], dysregulation of
TLR signaling [112]

Peripheral lymphoid
tissue

Shrinkage of the volume of the
peripheral lymphoid tissue [104]

Decline of absolute and relative concentrations of
naive T cells in the blood [104]

Thymus Involution of thymus [104] replaced by connective
and lipoid tissues[113]

Lower number of naive T- cell and thymic hor-
mone [114]

T- cell Shortening of the average
telomere length of T cells [104]
Increase in the Number of memory and effector
cells increase in the expanded clones of CD8+ and
CD4+ memory T cells (oligoclonal expansion) and
regulatory T cells [18]
Decrease in the Number of naı̈ve T cells [18]

Lymphocyte decline in their proliferative capacity
[115, 116]
Increase in the levels of pro- inflammatory cyto-
kines [18]
Ability of the elderly to mount a successful immune
response to new antigens is diminished [83]

B cell Decrease in the Expression of costimulatory mole-
cules (CD27, CD40) [18]
Decline in the frequency of naı̈ve B cells (CD27�ve

IgD+ve) and an increase in memory B cells [97]
[118]
Decline in the immunosuppressive CD19+ve CD24hi

CD38hi B cells [100]

Antibody affinity and specificity as well as diversity,
decreases [117]
Impaired B cell responses and defective antibody
production reflected in a reduced ability to effec-
tively respond against viruses and bacteria [119]
Decrease of Isotype switching leading to the risk of
autoantibody responses and autoimmunity [18, 100]
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are thought to mobilize aged T cells into the blood
[156] leading to their degradation, allowing more space
for naive T cells [126] and induce changes in immune
cell numbers and functions. A clear response of CD4+
T cells, rather than CD8+ T cells or NK cells, was
noted [157]. In addition aerobics improved immune
response and reduced inflammatory cytokines [6].
Recently, Duggal et al. observed that aged cyclists had
higher levels of IL-7, IL-15 which are thymo protective
cytokines that maintain naive T cells in the periphery
and lower levels of IL-6 which causes thymus
involution [158].

Vitamins. Micronutrients are important for natural
defenses on three levels:
– To support physical barriers (skin/mucosa): Vita-
mins A, C, E and the trace element zinc assist in
enhancing the skin barrier function [111, 159].
– To support cellular immunity: vitamins A, B6, B12,
D,C, E, folic acid and the trace elements zinc, iron
work in synergy to support cellular and humoral
immune responses [159].
– Antibody production: The vitamins A, B6, B12, D,
E and folic acid and the trace elements zinc are
essential for antibody production [111, 159].

Vitamin A
By aging skin becomes thinner resulting in a decreased
barrier function because of the decrease in the protein
transforming growth factor beta that controls many
cellular functions. As a result dermal fibroblasts will
not be converted into fat cells, and cells will not
produce the antimicrobial peptide cathelicidin, which
protects against bacterial infections [160]. Vitamin A
increases the epidermal thickness by the upregulation
of transcription factors, collagen genes responsible for
wound healing, improving extracellular matrix micro-
environment, extracellular matrix production, and
activation of dermal fibroblasts in elderly [161].
Vitamin A deficiency leads to a poor immune response
to infection especially trans retinoic acid (RA), which is
an active form of the vitamin that ensures immune
homeostasis through regulating cell homing and
differentiation. During infections and autoimmune
disease, it activates and enhances T-cell responses [162]
to cancer, infections, intestinal inflammation, and
immune-mediated diseases as autoimmune diseases
associated with aging [162].

Vitamin B12 and folate
Vitamin B12 and folate are associated with preventing
chronic diseases associated with aging through the
methylation of homocysteine [163]. Elevated homo-
cysteine and lower vitamin B12 levels impact the
immune system, causing increased inflammation and
antioxidant agents damage that catalyzes physiological
aging in all systems [164]. A recent study by Laird et al.,
(2018) revealed that adults over 50 are at risk of
deficiency in vitamin B12 and folate because their
ability to absorb B12 from food decreases; thus, they
recommended that B12 must be obtained from
supplements and B12-fortified foods like cereals
[165]. It is worth noting that most of elderly suffer

from megaloblastic anemia, due to vitamin B12
deficiency [166].

Vitamin E
Recently, it was found that aged people have lower
levels of vitamin E and magnesium that was found to
associate age-related diseases [167]. Many studies
recommend daily vitamin E supplementation in the
elderly, as it enhances the differentiation of immature
T cells in thymus [168], the function of immune cells as
neutrophils, T-cells, B-cells, and NK-cells [169], and
the age-associated decline in naive T-cell function
[170]. Moreover, it was found that vitamin E regulates
lipid rafts and membrane fluidity on the surface of
immune cells in naive CD4+ T cells of old mice; it also
improves age-related early T-cell signaling events in
naive helper T cells [171]. As a result, resistance to
infection increases [169] and reduces the risk of
influenza virus in elderly [168].

Vitamin D
Vitamin D (Vit. D) is an important factor for immune
functioning because it stimulates the clearance and
phagocytosis of macrophages, and protects immune
cells against apoptosis by regulating both extranuclear
protein functions and gene expression signaling [172].
Vitamin D intake decreases with age [173], in early life,
exposure to the sun activates pre-vitamin D under the
skin, by aging, the body composition changes and thus
pre-vitamin D is lost. As a result, older people produce
less Vit. D even if they get plenty of sunlight [173],
where supplementation with Vit. D modulates aging-
related systemic inflammation including immunose-
nescence [174]. In addition it was found that magne-
sium is essential for vitamin D metabolism. Otherwise
vitamin D will remain stored and inactive [175]. Vit. D
has also emerged as a key modulator of a range of
immune functions including monocyte differentiation
into macrophages, less production of pro-inflammato-
ry cytokines by macrophages inhibition of Th1 and
Th17 responses, and regulation of B-cell proliferation
[176].

Vitamin C
Vitamin C supplementation maintains immune func-
tion as we age [177], supports the functions of both the
innate and adaptive immune systems, plays an
important role in the defense against bacteria and
viruses [178], and reduces the duration of common cold
[177]. In addition to stimulating immunity, vitamin C
also appears to restrain excessive immune activity,
perhaps in part by interfering with the synthesis of
inflammatory cytokines [178].

Zinc. Zinc is a trace element required for multiple
immune cell tasks including suppression of production
of pro-inflammatory cytokines (IL1b, TNFa) by
monocytes/macrophages and reduction of reactive
oxygen species (ROS) [179]. Additionally, it was found
that supplementation of Zinc for six months improves
antiinflammatory cytokines profile [180], and
decreases the markers of inflammation like IL-6 and
C-reactive protein [181]. Another study on older
individuals in nursing homes residents observed that
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older individuals with normal zinc levels had lower
incidence of both the pneumonia and antibiotic usage
compared with zinc-deficient individuals [182]. Zinc
supplementation has been shown to reduce infection
incidence in older adults [180] and has many effects
indicative of reversed immunesenescence including:
improved NK cell cytotoxicity [183], modification of
Th1/Th2 balance [184], restores the serum thymulin
activity [185] and improves vaccine responses [186].

Iron. Mocchegiani et al., 2012 revealed that iron is
essential for maintaining immune and antioxidant
function during aging [187]. In chronic states of
inflammation such as obesity or aging, iron status
becomes impaired [188] and malnutrition exacerbates
these effects of inflammation [189].

Protection strategy

Improving vaccine efficacy in elderly. Elderly individu-
als are more prone to severe infections and less
responsive to vaccination than the young [190], in
terms of the titer, efficacy, and affinity of antibody
production [191] and responses which are characte-
rized by shorter duration [192] due to immunosenes-
cence [193]. The vaccination against seasonal
influenza, pneumococcal disease, and reactivation of
varicella zoster virus (VZV), in addition to regular
booster shots against tetanus, diphtheria, pertussis,
polio are recommended in the elderly. An early study
revealed that the vaccination to influenza drops to 30–
50% for those over 65 years of age [194], in addition
vaccination to pneumococcal disease is recommended
for seniors [195] and it could reduce 63.8% of
pneumococcal pneumonia in elderly [196] and that
23-valent pneumococcal polysaccharide vaccine
reduces the incidence of all pneumococcal pneumonia
[197]. Herpes Zoster (HZ) is a major cause of
hospitalization in the elderly, the recombinant vaccine
containing AS01B adjuvant, has been licensed in 2017
[198], it elicits a robust and persistent memory response
in older adults [199], because it induces antibody and
T-cell responses in the elderly [200]. Efficacy of HZ
vaccine is about 97% in the prevention of HZ in older
adults [201]. Adjuvants such as AS01 can strongly
activate elements of innate immunity [202]. These
effects may underlie the strong, long-lasting efficacy
demonstrated against herpes zoster even in very old
individuals [203]. Vaccine efficacy against hepatitis B
virus (HBV) and A virus (HAV), tick-borne encepha-
litis (TBE), is significantly reduced in vaccinated
individuals �70–80-year-old [204]. Booster intervals
should be shortened for persons over 65 years because
of the rapid decline in antibodies with advancing age
[103]. Development of vaccine adjuvants specifically
designed to optimally stimulate the aging immune
system, the most currently used in the elderly areMF59
and AS03, included in influenza vaccines, and AS02
used for the recombinant HZ vaccine [205].

Cytokines, hormones, and pharmacological intervention
strategies. Restoration of the T-cell pool balance
should be done by stimulating the production of naive
T cells and exporting them to the periphery by using

cytokines and hormones such as growth hormone and
interleukin 7 [84]. Montecino-Rodriguez and colleagues
2013 revealed that the manipulation of the concen-
tration of various cytokines including interleukin-7,
IL-2 and hormones such as sex steroids, growth
hormone and keratinocyte growth factor (KGF) has
been shown to be promising for the rejuvenation of
aged thymus [84].

IL-7. IL-7 is a cytokine that is produced by stromal
cells and the thymus. It plays a pivotal role in
supporting thymocytes development, stimulates pe-
ripheral T-cell survival and expansion through the
induction of Bcl-2. It is thought to influence T-cell
progenitors directly [206]. Many experimental studies
carried out in old animals reported that IL-7 reversed
thymic atrophy, increased thymopoiesis improved
thymic output, boosting immune function [207].

IL-2. Interleukin-2 aids in the development of
thymocytes, the survival and proliferation of T cells,
increases the proportion of thymocytes that differenti-
ate into mature T lymphocytes. Many studies
suggested that it reverses thymic atrophy [208].

IL-15/IL-15Ra. IL-15 plays a critical role in the
development and homeostasis of naive CD8 T cells,
memory T cells, NK cells [209]; aging-related func-
tional NK cell deficiency was completely reversed by
injecting soluble IL-15/IL-15Ra complexes [210].
Gangemi et al., (2005) found higher levels of IL-15
in ultralongeval subjects denoting their strong immune
system that is able to defend itself from infections
through efficient immune-inflammatory responses
which is crucial for their longevity [211].

Gene therapy intervention. Telomere length could be
restored by reprogramming telomeres to increase the
cellular life span which can be induced by using
pharmacological agents or gene therapy in order to
increase telomerase activity [212].

Adoptive therapy. Adoptive therapy is based on the
replacement of senescent cells with effector or naive
cells [213].

Hormone treatment

Fibroblast growth factor 7 (FGF7) .
Aging is associated with increased expression of the
tumor suppressor gene Ink4a, (Montecino-Rodriguez
et al., 2013) and his working group showed that
fibroblast growth factor 7 administration (FGF7)
which is a hormone that acts on thymocytes, down-
regulates (Ink4a) in T cell progenitors and rejuvenates
a partial part of the involuted thymus [84] and reverses
the effects of aging [214].

Dehydroepiandrosterone (DHEA)
Dehydroepiandrosterone (DHEA) is a steroid hor-
mone that is important for the functioning of immune
system [215], by aging DHEA levels decline markedly
[216]. A study released by Prall and Muchlenbein, 2015
revealed that the presence of DHEA levels in the saliva
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has a bactericidal activity, and acts as a measure of
innate immune function [217]. Supplementation with
DHEA improved immune parameters, including
monocyte levels, B- and T-cell function, and NK-cell
levels [218].

Natural products strategy that improves immune system
in elderly

Probiotics. Probiotics may have a particular applica-
tion in elderly populations, especially in terms of
protection against infections and perhaps also in the
prevention of several age-related diseases [219]; they
restore the gut flora and reduce chronic inflamma-
tion and pathogen colonization within the host
[220]. Many clinical trials have shown that probio-
tics enhance immune function in reducing the
recurrency and the severity of infectious diseases
[83]. A study by Toward et al. observed that
Bifidobacteria decreases after 60 years of age, and
this decrease was correlated with the occurrence of
immunosenescence [221]. The administration of B.
bifidium exerts an anti-senescence by reducing p16
expression in thymus and spleen; additionally, it has
antiinflammatory effects (lower IL6 and TNFa
levels) in old mice [222].

Yogurt. Yogurt has immunostimulatory effects. May-
dani and Han stated that increased yogurt consump-
tion, in immune compromised populations such as the
elderly, enhances the immune response, and increases
resistance to immune-related diseases [223]. A study by
Nagai revealed that yogurt intake increases interferon-
g production and augments the natural killer cell
activity in his experimental design [224]. Another study
in humans showed that yogurt’s bacterial components
were able to decrease the incidence of the common cold
in elderly people when administered daily [225].

Beta-Glucan. Beta-glucans are polysaccharides found
in the cell walls of fungi, bacteria, oats, and algae. They
are immunomodulators of immune activity with
notable anti-tumor and antimicrobial properties
[226], medicinal mushrooms such as Reishi are rich
in Beta-glucans [227]; they have anti-tumor, and cell-
killing effects. A portion of beta-glucan reishi poly-
saccharides has been found to stimulate both innate
and adaptive immune responses [228], regarding innate
immunity it was found to enhance both the killing and
phagocytic activities of NK cells [229] and macro-
phages [230]. Regarding adaptive immunity it was
found that beta glucan have the ability to influence T-
cells activation and proliferation [231, 232] and B cell
to proliferate and increase the secretion of immuno-
globulin [233].

Cistanche deserticola (C. deserticola). It is a plant used
in traditional medicine as a remedy for chronic
infections. Many studies on aged animals observed
that an extract of this plant extended lifespan and
reversed many laboratory indicators of immune
senescence, such as the increases in the population
of naive T cells and NK cells, reductions in memory T
cells in the peripheral blood, and decreased levels of the

inflammatory cytokine interleukin-6 (IL-6) [234];
increased helper T cells, and improved NK cell activity
[235].

Pu-erh tea extract. An early study on aged mice [236]
revealed that supplementation with Pu-erh tea extract
increased the fraction of naive T cells CD8(+)CD28(+)
whether helper or cytotoxic T cells, and NK cells. In
addition, elevated levels of the inflammatory cytokine
IL-6 decreased by 43% [236], increased the resistance to
infection and cancer in aging individuals [236].
Another study by (Chu, 2011) found that the Pu-erh
tea extract decreased CRP, TNF- a, and IL-6 while
levels of IL-10, an anti-inflammatory molecule,
increased [237].

Garlic Extract. Garlic has immune-modulating and
immune-stimulatory properties, as well as anti-tumor
effects [238], it stimulates immune function by
increasing macrophage activity, and production of T
and B cells [239] as well as increased proliferation and
activity of cytotoxic T-cells and NK-cells [240]. A
recent study found that garlic supplements reduce the
number, duration, and severity of upper respiratory
tract infections [239] and it was associated with
reduced cold and flu severity [240].

Quercetin. Quercetin, a bioflavonoid found in foods
such as onions, apples, berries, and green tea, has
potent antiinflammatory and free radical-scavenging
properties. It has been shown to induce cell death in
senescent cells, decreasing their numbers in human fat
tissue cultures [241].

Tomatoes. Tomatoes are rich in lycopene [242]. Riso
et al. stated that lycopene found in tomatoes slows
down aging by stopping free radicals from binding
with oxygen, a process that slows immune building,
cleansing, and repair, and that consumption of
tomatoes has been shown to be associated with a
lower risk of several types of cancer [243]. Another
study found that TNF-a levels were 34.4% lower in the
subjects who drank tomato juice in comparison to
those who do not [244]. These studies pointed out to
the potential antiinflammatory effect of tomato [245].

Berries. Berries and their phytochemicals are immu-
nomodulators that delay cancer development and
contain a wide spectrum of phytochemicals that
influence the functions of multiple immune cells and
many aspects of cancer immunity [246] by boosting T
cells to recognize tumor cells and destruct it.
Recognition occurs after dendritic cells present anti-
gen, such as tumor antigen, to T cells, generating an
adaptive response [246]. NK cells are an essential
component of innate immunity against cancer devel-
opment [247]. Pan et al., 2018 demonstrated that
an increased number of NK cells and enhancement
in their cytotoxicity occur after black raspberry
intervention [246].

Brocolli. Carr and Maggini , 2017 showed that
sulforaphane, which is a key bioactive compound in
broccoli, has the capacity to slow the biochemical
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process of aging [248] by increasing the expression of
antioxidant genes [249] in addition it was demonstrat-
ed that Kaempferol, which is a flavonoid in broccoli,
has a strong anti-inflammatory capacity [250].

CLINICAL TRIALS TO REJUVENATE

IMMUNESENESCENCE

A National Institute of Aging sponsored randomized
trial of a 2 year caloric restriction (CR) regimen in
healthy humans (CALERIE) revealed that CR slow
of biological ageing by reducing cardiovascular
disease risk biomarkers and decreasing the levels of
pro-inflammatory cytokines [251, 252]. Another
study with 125 older subjects, RISTOMED, observed
that Mediterranean diet has an anti-inflammaging
effect [253]. Regarding probiotics a study on aged
individuals reported that probiotic consumption for
6 months increased the number of naive T cells and
decreased the number of senescent CD8 CD28null T
cells [254]. Another trial revealed that healthy seniors
that consume fermented dairy product for 3 months
have a reduced risk of respiratory infection [255].
Regarding vitamins, a study by (Shelbaya et al., 2017)
observed that the majority of elderly that live in
nursing home or homebound are at risk of develop-
ing vitamin D deficiency because of lack of exposure
to sunlight [256]. Concerning exercise (El–Sabbagh
and colleagues, 2015) revealed that TNF alpha and
CRP that are responsible for low grade inflammation
in elderly were decreased significantly after training
in aged healthy Egyptians [257]. Another study
showed that the exercise intervention gave a signifi-
cant benefit with respect to antibody titer prior to an
influenza vaccination and that exercise can improve
immune responses and specifically vaccination in the
aged [258].

CONCLUSIONS

The fountain of youth is not a myth. After all methods
explored in this review as current evidence underlines
the importance of consuming a healthy diet best
exemplified in the Mediterranean diet “which contains
all the essential micronutrients”, exercising, avoiding
stress and sleeping well would slow down immunose-
nescence but are unlikely to reverse the decline of
immunity completely, because they are only targeting a
specific aspect of immunosenescence rather than
stopping it from occurring. Nevertheless, improvement
in immune function is beneficial to the elderly
population, hence improving the quality of life in
seniors.

RECOMMENDATIONS

By discussing the different aspects of immunesenes-
cence and the strategies that can reduce it we
recommend:
1. By easing stress cortisol levels decrease and sleeping
patterns will be improved thus improving immune
function.

2. Eating healthy nutrients, such as fruits, vegetables
rich in beta-carotene, vitamins C and E, and zinc.
3. Probiotics are very important because they protect
against infections and prevent several age-related
diseases.
4. Regular physical activity promotes circulation and
relaxes the body and mind. As walking, yoga classes
are anti-immunesenescence and anti-inflammaging
therapy that boost a senior’s immune system perfor-
mance .
5. The elderly should receive regular booster vaccines
with shortened vaccination intervals to maximize their
immune response, especially vaccination against
seasonal influenza, pneumococcal disease, and reacti-
vation of varicella zoster virus (VZV), in addition
regular booster shots against tetanus, diphtheria,
pertussis, polio.
6. As elderly thirst less so they must stay hydrated
because water keeps mucous membrane moist and
lowers the chance of colds.
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202. Coccia M, Collignon C, Hervé C, et al. Cellular and molecular

synergy in AS01-adjuvanted vaccines results in an early IFNg
response promoting vaccine immunogenicity. NPJ Vaccin

2017; 2 : 25.
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