DOI: 10.32604/icces.2025.012370

PROCEEDINGS

Over Temperature of the Thermal Barrier Coating System with Local Spallation

Fan Sun^{1,2}, Yiwen Chen^{2,3}, Dingjun Li³, Rong Xu², Peng Jiang², Tiejun Wang² and Lei Yang^{1,2,*}

¹National Key Laboratory of Energetic Materials, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China

²State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China

³State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Dongfang Steam Turbine Co., Ltd., Deyang, 618000, China

*Corresponding Author: Lei Yang. Email: 137288620@qq.com

ABSTRACT

The capacity to maintain operational temperatures within safe thresholds is paramount for the longevity of thermal barrier coating systems (TBCs). Nonetheless, TBC spallation during service can lead to localized over temperature, which may result in catastrophic failure. In this study, we examine the phenomenon of over temperature in locally spalled TBCs through a combination of numerical simulations and experimental investigations. We perform numerical calculations to determine the temperature distributions in locally spalled TBCs with varying spallation depths and diameters, and we analyze the correlation between the maximum temperature within the spalled regions and the dimensions of the spallation based on dimensional analysis. Subsequently, we conduct experimental studies to explore the localized over temperature induced by spallation in TBCs, validating our findings through the established relationship between peak temperature and spallation size. We evaluate the impact of gas temperature (ranging from 1700 K to 1800 K), spallation depth (from 0.2 mm to 0.6 mm), and spallation diameter (spanning 0 to 20 mm) on the maximum temperature observed in locally spalled TBCs. Moreover, we determine a critical spallation threshold for TBCs, beyond which over temperature becomes a concern. Our findings underscore the critical significance of TBCs spallation size in the thermal management of gas turbines.

KEYWORDS

Thermal barrier coating system; over temperature; local spallation; spallation size

Funding Statement: This work was supported by the State S&T Major Project of China (2019-VII-0007-0147) and NSFC (12372082).

Conflicts of Interest: The author(s) declare(s) no conflicts of interest to report regarding the present study.