
echT PressScience

Doi:10.32604/cmc.2025.063448

ARTICLE

Advanced Techniques for Dynamic Malware Detection and Classification
in Digital Security Using Deep Learning

Taher Alzahrani*

Information System Department, College of Computer and Information Science, Imam Mohammad Ibn Saud Islamic University
(IMSIU), Riyadh, 11673, Saudi Arabia
*Corresponding Author: Taher Alzahrani. Email: talzahrani@imamu.edu.sa
Received: 15 January 2025; Accepted: 25 March 2025; Published: 19 May 2025

ABSTRACT: The rapid evolution of malware presents a critical cybersecurity challenge, rendering traditional
signature-based detection methods ineffective against novel variants. This growing threat affects individuals, orga-
nizations, and governments, highlighting the urgent need for robust malware detection mechanisms. Conventional
machine learning-based approaches rely on static and dynamic malware analysis and often struggle to detect previously
unseen threats due to their dependency on predefined signatures. Although machine learning algorithms (MLAs)
offer promising detection capabilities, their reliance on extensive feature engineering limits real-time applicability.
Deep learning techniques mitigate this issue by automating feature extraction but may introduce computational
overhead, affecting deployment efficiency. This research evaluates classical MLAs and deep learning models to enhance
malware detection performance across diverse datasets. The proposed approach integrates a novel text and image-
based detection framework, employing an optimized Support Vector Machine (SVM) for textual data analysis and
EfficientNet-B0 for image-based malware classification. Experimental analysis, conducted across multiple train-test
splits over varying timescales, demonstrates 99.97% accuracy on textual datasets using SVM and 96.7% accuracy
on image-based datasets with EfficientNet-B0, significantly improving zero-day malware detection. Furthermore,
a comparative analysis with existing competitive techniques, such as Random Forest, XGBoost, and CNN-based
(Convolutional Neural Network) classifiers, highlights the superior performance of the proposed model in terms of
accuracy, efficiency, and robustness.

KEYWORDS: Machine learning; EffiicientNet B0; malimg dataset; XceptionNet; malware detection; deep learning
techniques; support vector machines (SVM)

1 Introduction
The modern information society has developed as a result of the Internet of Things (IoT) and its

associated applications. However, achieving the full benefits of this industrial revolution is severely hampered
by security concerns. Cybercriminals frequently attack individual computers and networks in order to
denial-of-service systems and steal private information for financial gain. Malicious software, or malware, is
what these attackers utilize to threaten and weaken systems seriously. A computer software called malware
is made to damage an operating system (OS). Malware runs by many names, such as adware, spyware, virus,
worm, trojan, rootkit, backdoor, ransomware, and command and controls C2 bot, depending on its behavior
and goal.

Copyright © 2025 The Author. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.063448
https://www.techscience.com/doi/10.32604/cmc.2025.063448
mailto:talzahrani@imamu.edu.sa


4576 Comput Mater Contin. 2025;83(3)

Malware detection and mitigation are still developing issues in cybersecurity. Malware writers always
enhance their strategies to avoid detection as researchers create new ones. Our goal in this investigation was
to identify and categorize memory-based obfuscated malware. For my experiments, I utilized the most recent
dataset, the Canadian Institute for Cybersecurity Malware Memory Analysis 2022 (CIC-MalMem-2022).
This dataset offers information about the kind and family of malware in addition to detecting its existence.
Therefore, we ran two experiments: one to identify the malware family (multi-class classification) and the
other to assess whether a particular sample is harmful (binary classification). To do this, we have evaluated
several conventional machine learning techniques, such as logistic regression, decision trees, random forests,
multi-layer perceptron (MLP), and support vector machines (SVM). We applied random search as an
optimization technique to find the best hyperparameters for these methods. Wireless communications are
open, flexible, and portable, which exacerbates security threats. To counteract these risks, intrusion detection
systems (IDS), both host and network, are critical in safeguarding these networks [1]. An effective IDS must
be efficient, robust, and capable of reliably detecting threats while limiting false positives and handling alert
frequency. Recent research is heading toward employing machine learning to increase IDS capabilities [2].

Machine learning algorithms are excellent at detecting patterns in massive datasets, which is crucial for
spotting security concerns. Traditional IDS leverages a variety of machine learning techniques, including a
k-nearest neighbor, Support Vector Machines (SVM), and decision trees [3,4]. Malware developers’ tech-
niques for preventing detection evolve alongside the industry. In this study, we have used the most recent
CIC-MalMem-2022 dataset to identify and classify memory-obfuscated malware. This dataset not only helps
to detect the presence of malware but also provides information on its family and type [5,6]. As a result,
we conducted two experiments: one for binary classification, which determines if a sample is dangerous or
benign, and another for multi-class classification, which identifies a specific malware family. After feature
extraction, we are using LightGBM (LGBM), a highly efficient gradient boosting framework, to perform
classification tasks. LGBM capacity to process massive data sets at a cheap computational cost improves our
detection system’s accuracy and speed [7].

We aim to enhance the maturity of cybersecurity through the development of advanced deep-learning
models. Our approach involves both Comma-Separated Values (CSV) and image datasets, utilizing the
Visual Geometry Group 16-layer (VGG-16) model for image analysis. By focusing on dynamic malware
behaviours, our objective is to achieve real-time detection capabilities that outperform traditional methods.
This study not only addresses current cyber security challenges but also contributes novel insights into uti-
lizing machine learning for proactive threat mitigation. Our findings aim to pave the way for more effective,
scalable, and adaptive malware detection systems. The rapid proliferation of malware, with thousands of new
variants appearing each day, poses a significant threat to cyber security. Traditional static analysis methods
struggle to keep pace with these evolving threats. The contribution of the study is that various deep learning
and machine learning approaches, which are frequently used in many intrusion detection systems in the
literature and are very popular, have been confirmed to achieve successful results in malware detection. The
major contributions of this research are as follows:

• The framework proposed for dynamic malware detection framework that addressed the challenges in
this field by analyzing the behavior of malware in real time, allowing for the classification of samples into
families based on their operational characteristics. The proposed system for dynamic malware detection
classifies samples into families according to their operational features by analyzing malware’s static and
dynamic behavior in real-time.

• We carried out extensive experimentation on picture texture analysis using modern deep learning
algorithms. These trials show considerable increases in model performance over typical feature extrac-
tion techniques.



Comput Mater Contin. 2025;83(3) 4577

• We rigorously validate both widely used machine leaning and less explored deep learning models in the
malware classification domain, utilizing a comprehensive benchmark malware dataset. This approach
ensures a robust comparison of our proposed solution against state-of-the-art methods, providing a fair
and accurate assessment of its performance.

• This method makes it possible to create focused mitigation techniques that may successfully eradicate
treats. This significantly bolsters cybersecurity defenses, offering a scalable and adaptive solution to
combat evolving threats.
The author’s contributions facilitated the advantages of this research in analyzing malware behavior

in real-time enabling immediate identification and mitigation of emerging threats significantly, enhancing
cybersecurity responsiveness and reducing the risk of infection. Utilizing advanced deep learning techniques
and extensive experiments on picture texture results in higher accuracy and reliability. Real-time malware
behavior monitoring allows immediate detection and protection of new threats, producing stronger cyberse-
curity responses and decreasing the chances of attack success. The combination of deep learning technology
with extensive picture texture testing produces more precise malware detection that reduces wrong positive
and negative results. The use of benchmark datasets during validation enables researchers to compare their
methods against established standards while building solid foundations for future investigations.

In Section 2, we present a review of previous approaches from the literature. In Section 3, we describe the
proposed methodology. In Section 4, we discuss the experiments and their results. In Section 5, we examine
the discussion of our findings. Finally, in Section 6, we provide the conclusion.

2 Literature Review
This section provides an overview of previous studies on popular techniques for selecting features and

using machine learning (ML) and DL technologies in intrusion detection systems. This research presents
that tools have been developed, such as the Static Analyzer for Vicious Executables (SAVE) and Malware
Examiner, using Disassembled Code (MEDiC) for general malware detection. Their approach promised
greater rates of detection with changed malware. However, focusing on static analysis without considering
dynamic behaviors creates an enormous research gap. It has used graphical pictures and entropy graphs to
detect and categorize malware variants. However, because their approach is based on visualization, it may
not be suitable for other types of malware [8].

Similarly, this study presented a network intrusion detection system that includes SVM and RF. This
strategy uses RF for feature selection, and the KDD Cup 99 dataset has been used to evaluate its effectiveness
and proposed a feature selection method based on a multi-layer perceptron with ordered redundancy. This
strategy, which is commonly used for tasks that include prediction, classification, and regression, is used
to discover and remove unnecessary components. The approach detects network interference via Support
Vector Machines (SVM) and Random Forest. RF is used for feature selection with a dynamic significance
technique. Despite using just a few characteristics, the model obtained 93% accuracy on training data, with
SVM recommended for scoring [9].

The growing proliferation of undocumented dangerous software, notably Zero-Day malware, needs
improved detection systems to avert substantial harm. Zero-Day malware employs complex evasion tech-
niques to prevent detection, forcing further research into efficient identification methods. Machine learning
(ML) has emerged as a promising solution, and sandbox settings such as Cuckoo provide a safe arena for
experimentation. The suggested Zero-Day Vigilante (Ze Vigilante) system used several ML classifiers, such
as Random Forest (RF), Neural Networks (NN), and Support Vector Machine (SVM), to analyze both static
and dynamic malware. RF achieved the highest accuracy, with 98.21% for static and 98.92% for dynamic
analysis, demonstrating its efficacy [9].



4578 Comput Mater Contin. 2025;83(3)

With an increasing number of network-connected devices, such as mobile phones and IoT devices, the
potential for security breaches has increased considerably. These systems are becoming more vulnerable to
attacks as the number of device kinds increases and the attack surface expands. The security systems often
have two layers: a security system, which offers basic protection, and a network intrusion detection system
(IDS) or attack detection system, which detects and stops more complex threats. Relying only on a firewall is
insufficient; thus, malware detection technologies are required for complete protection [10]. Data balancing,
a novel generative adversarial network model, has been put out [11]. Malware detection is modeled using
heterogeneous graphs. A novel technique is presented to mitigate the over-smoothing issue. Recent improve-
ments in e-business, e-healthcare, e-governance, and online transactions have provided numerous benefits
while increasing the risk of serious cyberattacks. These attacks are intended to disrupt operations, steal
critical data, and compromise national defense systems. Cybersecurity solutions are critical for detecting,
analyzing, and defending against these attacks. This study examines a variety of assaults, including denial-of-
service, botnet, malware, phishing, spoofing, and probing attacks. It focuses on how Machine Learning and
Deep Learning approaches tackle these difficulties. Key topics covered include research problems, intrusion
detection systems, and the relevance of public and private datasets in cybersecurity research [12].

This study aims to improve email security by using machine learning techniques to identify spam.
Ten distinct machine learning models, including Support Vector Machines, k-nearest Neighbor, Naïve
Bayes, Neural Networks, Recurrent Neural Networks, and others, are used to classify spam emails, which
are unsolicited messages. Email data is transformed into a CSV file as part of the process, and this file
is subsequently used to train algorithms that identify messages as either spam or “ham” (benign). When
evaluated on popular datasets, the method delivers competitive accuracy. Furthermore, the system produces
outputs that can be used to enhance spam filtering processes, such as CSV files containing spam IP addresses,
their geolocations, and country-specific statistics [13].

This research uses a dataset of malware and good ware samples from Malware Bazaar to propose
a dynamic malware analysis and classification method. A dataset was created, features were extracted
and scored, six machine learning models were assessed, malware families were classified using Virus
Total Application Programming Interface (APIs), and twenty-three distinct types of malware APIs were
categorized as part of the five-step process. The Random Forest model yielded the highest results, with high
F1-score, AUC, precision, and accuracy. The most serious malware was determined to be ransomware and
trojans, and important Windows APIs and system operations for malware detection were noted. In addition
to adding additional metrics like AUC and specificity, the strategy raised F1 scores [14].

Traditional static analysis is challenged by malware developers who are always changing their tech-
niques to avoid detection. Together, dynamic analysis and machine learning have shown promising results,
especially when it comes to detecting zero-day malware. The Convolutional Neural Networks and Long
Short-Term Memory (CNN-LSTM) algorithm employed in this study has demonstrated the potential to
mitigate changing cybersecurity risks. With a high accuracy of 96% in identifying malicious activity, the built
system—which consists of a log parser, API monitoring, and extension checker highlights the importance
of behavioral analysis and deep learning in cybersecurity [15]. Programming that required conventional
identification techniques to complex threats operating at the kernel level, which are more difficult to detect,
malware detection has advanced. Traditional techniques utilized CNNs (Convolutional Neural Networks)
for feature classification or plain text feature extraction alongside machine learning for classification. Modern
malware challenges these techniques by frequently displaying familial traits and kernel-level execution. Deep
learning is used in many modern solutions. For example, Kim et al. used multi-modal deep learning for
Android malware, Droid Detector integrated static and dynamic analysis, and Huang et al. utilized CNNs
and sandbox analysis to visualize malware [15].



Comput Mater Contin. 2025;83(3) 4579

Deep learning techniques are becoming increasingly common in various fields with the continuous
growth of large data and computational power. In this situation, the researcher suggests employing models
based on Recurrent Neural Networks (RNN) for scoring without the need for pre-training. The performance
evaluation was conducted by utilizing the NSL-KDD dataset [Hassan] and the Systems, Applications, and
Products (SAP) in Data Processing, training and test set. The evaluation involves comparing various machine
learning approaches, such as J48, Support Vector Machine, Artificial Neural Network (ANN), Random
Forest, and other methods recommended by previous researchers for the detection of network interference
in both binary and multi-class scenarios. Table 1 illustrates the overall literature study of previous techniques.

Table 1: Critical literature summary

Reference Survey outline Domain Deep learning techniques

Restricted
Boltzmann

Machine
(RBM) RBM

RNN CNN

Liu et al. [16] Software visualization
combined with CNNs for

dynamic malware
analysis.

Malware
detection

No No Yes

Linh
et al. [17]

Shallow learning, deep
learning, and machine

learning and deep
learning approaches
employed in IDS and
related studies have

parallels and differences.

Cyber security Yes No Yes

Patil
et al. [18]

Despite prior efforts and
experiences, shallow

machine learning
approaches have
prevented IDS

autoencoder (AE)
deployment.

Intrusion
detection

system

Yes No No

Moutafis
et al. [13]

Deep learning
methodologies in IDS are
explained in twelve ways,

including feature
extraction and

classification for deletion
and classification.

Intrusion
detection

system

Yes No Yes

(Continued)



4580 Comput Mater Contin. 2025;83(3)

Table 1 (continued)

Reference Survey outline Domain Deep learning techniques

Restricted
Boltzmann

Machine
(RBM) RBM

RNN CNN

Talukder
et al. [19]

Performance and
assessment of machine
learning techniques for

IDS classification are
examined.

Intrusion
detection

system

Yes Yes No

Jasi et al. [10] Development of efficient
threat detection and
monitoring systems.

Intrusion
detection

system

Yes Yes No

Thakur
et al. [20]

Malware classification
using DenseNet and data

visualization with a
reweighted class balance

loss function.

Malware
classification

Yes No Yes
DenseNet

Sihag
et al. [8]

Correlation of static and
dynamic features using

deep learning for
Android malware

analysis.

Malware
detection and
classification

No No Yes

The majority of authors in the literature rely on static and dynamic analysis using pre-established
signatures, yet this method misses new malware variants, leaving systems vulnerable. Conventional machine
learning algorithms require human engineers to manually develop features, which hinders their real-time
performance and reduces their speed in dynamic systems. Deep learning offers improved accuracy and
automatic feature extraction, but it also poses serious computational problems that limit its use in real-time
applications and situations with limited resources. The literature focuses on deep learning approaches in
cybersecurity, including CNNs for dynamic malware analysis. The authors used CNNs for dynamic malware
analysis, whereas Sihag and Vardhan used static and dynamic characteristics for Android malware analysis.
Some authors investigated shallow and deep learning methods in IDS. The literature addressed limitations
in IDS autoencoder deployment. It examines several deep-learning approaches for IDS. In the literature,
DenseNet was used for malware classification. This research, combined, highlights the efficiency of deep
learning in improving the accuracy and resilience of cybersecurity systems. It also emphasises the potential
for future advancements in cybersecurity systems.

3 Data Set Details
In this research, leveraging an up-to-date dataset is critical. It is useful for fairly evaluating new

methods and determining how well they function in real-world settings. In this experiment, we used
the CIC-MalMem-2022 dataset. Its collection contains examples of both obfuscated and non-obfuscated



Comput Mater Contin. 2025;83(3) 4581

malware. To make the study more realistic, it contains popular malware kinds such as spyware, ransomware,
and trojans. The Malimg dataset includes images converted from malware binaries, typically resized to a
standard dimension of 64 × 64 pixels. This standardization ensures consistency and efficiency in processing
while retaining essential features for analysis. The size of each image significantly impacts the processing
speed and complexity of the proposed scheme. Larger images contain more pixels, resulting in higher
computational requirements for processing and analysis. It can slow down the processing speed, especially
in real-time applications.

The CIC-MalMem-2022 dataset simulates real-world scenarios with 58,596 records, balanced between
50% malicious and 50% benign memory dumps. It includes various malware families like Spyware, Ran-
somware, and Trojan Horse. Feature selection is based on memory dump analysis to detect obfuscated
malware. Data imbalance is addressed by ensuring an equal distribution of benign and malicious samples.

The Malimg dataset focuses on image-based malware detection. Feature selection involves extracting
visual patterns from malware images. Data imbalance issues are mitigated using techniques like data
augmentation to balance the dataset. This ensures the model can effectively learn from both minority and
majority classes.

We managed two experiments, which include binary classification, which distinguishes between benign
and malware samples, and multi-class classification, which detects specific malware kinds. Each sample in
the dataset is a memory dump-generated vector of numbers. The key features include Malfind, Ldrmodule,
Handles, Procedure View, and Apihooks, for a total of fifty-five features. The dataset contains 58,596 memory
dump samples. We divided the data into two sets: training and testing, with training comprising 80% and
testing for 20%. Table 2 illustrates the distribution of Benign and Malware classes and the division of training
and Testing Datasets.

Table 2: Dataset distribution for classification

Sr. No. Class Train Test Total
1 Benign 23,438 5860 29,298
2 Trojan 7589 1898 9487
3 Ransomware 7833 1958 9791
4 Spyware 8016 2004 10,020

3.1 Converting Malware Binary into Gray Scale Images
The binary files are converted into PNG pictures using the hexadecimal representation of the binary

content to create grayscale graphics. For instance, the final image is produced when a binary file is converted
to a PNG. Fig. 1 outlines the steps of how we convert malware binary into grayscale images using an 8-
bit vector.



4582 Comput Mater Contin. 2025;83(3)

Figure 1: Flowchart to represent the conversion of CSV dataset into a grayscale image

3.2 Images Dataset
In our study, we work with a specially designed image dataset for Malimg Malware Detection. The

dataset has two directories for training our model and validation sets to validate its performance. Each of
the sets comprises 25 classes [21]. As shown in Figs. 2 and 3, an image that belongs to the Benign class has a
simple grayscale image with no other noticeable changes.

Training Set: This directory has been used to train the machine learning model. It contains images
labeled with the correct class, letting the model learn and make estimates based on these examples.

Figure 2: Sample of images belonging to training class



Comput Mater Contin. 2025;83(3) 4583

Figure 3: Sample of images belonging to test class

Test Set: Once our model has been trained, we need to see how well it performs. This is where the
validation set comes in. It contains its own set of labeled images, but different from the images in the
training set. Using this separate set, we can ensure that we evaluate the model’s ability to detect malware on
new, unseen data, which is critical to evaluating its effectiveness. A closer look at the dataset as presented
in Fig. 2, our dataset contains images from various categories, including the “Benign” class also. An example
of an image from this class would be a simple grayscale image that does not have any crucial features or
patterns. This simplicity is typical of benign images, which typically do not show the complex characteristics
of malware images.

The two categories used to categorize the dataset are benign and malware. Malware frequently changes
a file’s usual binary structure by using methods like encryption and obfuscation, which purposefully makes
code harder to understand. These techniques result in a sudden and unpredictable change in the file’s
byte sequence.

The Malimg dataset is the other one. This collection contains 25 malware families and 9339 incidents.
These datasets were divided into three groups for our experiments: a training set (80%), a validation set
(10%), and a testing set (10%). The best checkpoint throughout the training process is identified using the
validation set. To determine the testing accuracy, we apply the learned model to testing data after determining
the ideal checkpoint.

These byte sequences have visible characteristics like distinct distortions, complicated structures, and
sharp lines when converted into images. Because they provide key details regarding the coding methods
and malicious behavior, these visual irregularities are essential for the identification and analysis of malware.
Researchers and detection systems can examine the structure and characteristics of malware more efficiently
according to this visual representation. As Fig. 3 illustrates, an image belongs to the malware class. In this
pattern, we can see distortion, which will help us identify malicious class images, as shown in Fig. 4.



4584 Comput Mater Contin. 2025;83(3)

Figure 4: Visualization of the frequency of different variants of malware in the Malimg dataset

4 Proposed Methodology for Malware Detection in Wireless Networks
The malware detection proposed model is applied by integrating Machine Learning and Deep learning

techniques. Machine Learning algorithms are used on features extracted from an image-based dataset.
Several machine learning models have been built and evaluated on the dataset using several algorithms.
Common classifiers, such as decision trees and random forests, have been implemented, with a particular
emphasis on the XceptionNet and EffieicntNet B0 models in deep learning. These models are designed to
process image data, most likely memory dumps connected with malware, and make predictions based on
the results of the previous time step.

Model performance has been assessed using common evaluation parameters such as accuracy, preci-
sion, recall, and F1-score. Fig. 5a demonstrates the process of Malware Detection using machine and deep
learning models.

4.1 Machine Learning Techniques for the Malware Detection Textual Dataset
Machine learning techniques offer a promising solution by learning patterns and anomalies from large

datasets. These techniques implemented three algorithms, two from the decision tree family and one is XG
boosting for malware detection and classification.

This paper proposes a comprehensive model for malware detection that leverages textual data, employ-
ing machine-learning techniques to enhance accuracy and adaptability, Fig. 5b illustrates the comprehensive
process for malware detection

• Dataset Collection: A diverse dataset comprising textual malware samples will be gathered from various
sources, including public repositories, malware analysis platforms, and real-world threat intelligence
feeds. The dataset should include a wide range of malware families and variants to ensure robustness.

• Data Labelling: Each malware sample will be accurately labelled as benign or malicious. Labels can be
obtained from metadata, analysis reports, or expert annotations.

• Data Cleaning and Augmentation: The dataset will undergo thorough cleaning to remove noise,
inconsistencies, and redundant information. Data augmentation techniques, such as random word



Comput Mater Contin. 2025;83(3) 4585

shuffling, synonym replacement, and back translation, can be applied to increase its diversity and
improve model generalization.

Figure 5: (a): Proposed model of malware detection using machine and deep learning models. (b): Workflow of
machine learning technique for malware detection and classification

4.1.1 Random Forest and Decision Tree
An ensemble learning algorithm that combines multiple decision trees for improved accuracy and

robustness. Random Forest [22] is a powerful machine-learning algorithm that has been successfully applied
to various tasks, including malware detection. It is an ensemble method that combines multiple decision trees
to improve prediction accuracy and reduce overfitting. In the context of malware detection, Random Forest
can effectively learn patterns and anomalies within malware code, enabling it to classify samples as benign
or malicious accurately. By creating a forest of decision trees, Random Forest leverages the diversity and
collective wisdom of its components. Each tree is trained on a different subset of the data, reducing the risk
of overfitting. Additionally, Random Forest introduces randomness at the feature level, further enhancing its
ability to capture complex relationships within the data. This makes it particularly effective in dealing with
the constantly evolving nature of malware threats (Algorithm 1).



4586 Comput Mater Contin. 2025;83(3)

Algorithm 1: Random Forest and Decision Tree for malware detection
Input: Data samples
Output: Tree for detection

function RandomForest(data, num_trees, max_depth, min_samples_split, min_samples_leaf):
forest = []
for i in range(num_trees):

bootstrap_sample = sample_with_replacement(data)
tree = DecisionTree(bootstrap_sample, max_depth, min_samples_split,

min_samples_leaf)
forest.append(tree)

function predict(sample):
predictions = []
for tree in forest:

prediction = tree.predict(sample)
predictions.append(prediction)

return most_frequent(predictions)
return forest

4.1.2 XGBoost Malware Detection
XGBoost, or Extreme Gradient Boosting [23], is a powerful machine learning algorithm that has

been successfully applied to various tasks, including malware detection. It is an ensemble method that
combines multiple decision trees to improve prediction accuracy and reduce overfitting. In the context of
malware detection, XGBoost can effectively learn patterns and anomalies within malware code, enabling it
to accurately classify samples as benign or malicious. XGBoost’s key strengths include its ability to handle
complex relationships within data, its robustness to noise, and its efficiency. It uses gradient boosting, which
involves iteratively adding weak learners (decision trees) to the model, focusing on correcting the errors of
the previous ensemble. Additionally, XGBoost incorporates regularization techniques to prevent overfitting
and improve generalization. These factors make XGBoost a highly effective choice for malware detection
tasks (Algorithm 2).

Algorithm 2: XGBoost malware detection
Input: Data samples
Output:

function XGBoost(data, num_rounds, learning_rate, max_depth, min_child_weight):
model = initial_prediction
for i in range(num_rounds):

gradient = calculate_gradient(data, model)
tree = find_best_tree(data, gradient, max_depth, min_child_weight)
model =model + learning_rate * tree.predict(data)

function predict(sample):
return model.predict(sample)

return model



Comput Mater Contin. 2025;83(3) 4587

In both cases, the gradients are used to update the model parameters iteratively to minimize the
loss function. The specific loss function can vary, but common choices include cross-entropy loss for
classification tasks.

The selected models will be trained on the preprocessed and feature-extracted dataset using appropriate
optimization algorithms (e.g., gradient descent, Adam) and loss functions (e.g., cross-entropy). Hyperparam-
eter tuning can be employed to find the optimal configuration for each model. This proposed model provides
a comprehensive framework for malware detection using machine-learning techniques from textual data. By
leveraging MLP techniques, feature engineering, and effective machine learning algorithms, this model aims
to detect both known and unknown malware variants effectively. Future research can focus on exploring new
machine-learning techniques, incorporating adversarial learning, and addressing the challenges of evolving
malware threats.

4.2 Deep Learning Techniques for the Malware Detection Image-Based Dataset
• Deep learning techniques offer a promising solution by learning patterns and anomalies from large

datasets. The 2nd technique for malware detection in image-based datasets offers a promising solution
by learning patterns and anomalies from large datasets. These techniques implemented two from the
Deep Learning algorithms family: one is EffecientNet, and the other is Xception for malware detection
and classification. It proposes a comprehensive model for malware detection that leverages image-based
data, employing the EfficientNet and Xception architectures to enhance accuracy and efficiency.

• Dataset Collection: A diverse dataset comprising image-based malware samples will be gathered
from various sources, including public repositories, malware analysis platforms, and real-world threat
intelligence feeds. The dataset should include a wide range of malware families and variants to
ensure robustness.

• Data Labelling: Each malware sample will be accurately labeled as benign or malicious. Labels can be
derived from visual features or associated metadata.

• Data Cleaning and Augmentation: The dataset will undergo thorough cleaning to remove noise,
inconsistencies, and redundant information. Data augmentation techniques, such as random cropping,
rotation, and flipping, can be applied to increase its diversity and improve model generalization.

4.2.1 EfficientNet for Malware Detection
EfficientNet [24] is a family of neural networks designed to achieve state-of-the-art accuracy while being

significantly more efficient than previous architectures. It introduces a compound scaling method that allows
for balanced scaling of the network’s depth, width, and resolution. This approach ensures that the network’s
resources are allocated effectively, leading to improved performance and efficiency. EfficientNet B0 uses a
compound scaling method to balance network depth, width, and resolution (Algorithm 3). The gradient of
the loss function with respect to the model’s parameters theta is calculated in Eq. (1) as:

θ ← θ − η . ∂θ
∂L

(1)



4588 Comput Mater Contin. 2025;83(3)

Algorithm 3: EfficientNet for malware detection
Input: an image as input
Output: Trained Model
function EfficientNetB0(input_shape):

input_layer = Input(shape=input_shape)
x = Conv2D(32, kernel_size=(3, 3), strides=(2, 2), padding=‘same’)(input_layer)
x = InvertedResidualBlock(16, 1, 3, 1)(x)
x = InvertedResidualBlock(24, 2, 3, 1)(x)
x = InvertedResidualBlock(24, 2, 3, 1)(x)
x = InvertedResidualBlock(32, 2, 5, 1)(x)
x = InvertedResidualBlock(32, 2, 5, 1)(x)
x = InvertedResidualBlock(40, 2, 3, 1)(x)
x = InvertedResidualBlock(40, 2, 3, 1)(x)
x = InvertedResidualBlock(48, 3, 5, 1)(x)
x = InvertedResidualBlock(48, 3, 5, 1)(x)
x = InvertedResidualBlock(64, 3, 5, 1)(x)
x = InvertedResidualBlock(64, 3, 5, 1)(x)
x = Conv2D(1280, kernel_size=(1, 1), padding=‘same’)(x)
x = GlobalAveragePooling2D()(x)
x = Dense(num_classes, activation=‘softmax’)(x)

model =Model(inputs=input_layer, outputs=x)
return model

Scaling: The EfficientNet architecture starts with the base model, EfficientNet-B0, as shown in Fig. 6. To
scale the model to a larger size, the compound scaling coefficient is applied to determine the scaling factors
for depth, width, and resolution. For example, a compound scaling coefficient of 2 would double the depth,
width, and resolution of the base model.

Figure 6: EfficientNet architecture for malware detection

Compound Scaling: The compound scaling coefficient is calculated based on a fixed set of parameters.
This ensures that the network’s resources are allocated efficiently and that the scaling process is consistent.

Base Architecture: The scaled network then applies the EfficientNet base architecture, which includes
inverted residual blocks for efficient feature extraction, squeeze-and-excitation blocks for adaptive channel-
wise attention, and an Multiple Feature Pyramid Network (MFPN) for multi-scale feature fusion.



Comput Mater Contin. 2025;83(3) 4589

High Accuracy: EfficientNet consistently achieves state-of-the-art accuracy on various image classifi-
cation benchmarks.

Efficiency: Compared to other architectures, EfficientNet is significantly more efficient in terms of
computational cost and memory usage.

Scalability: The compound scaling method allows for flexible scaling of the network’s size, making it
adaptable to different resource constraints.

Interpretability: EfficientNet’s architecture is relatively simple and easy to understand, making it easier
to analyze and modify.

4.2.2 XceptionNet for Malware Detection
XceptionNet [25] is a deep convolutional network architecture that uses depthwise separable con-

volutions, which decompose a regular convolution into depthwise convolutions followed by pointwise
convolutions. This architecture is designed to be more efficient than traditional convolutional networks.
While it was originally developed for computer vision applications, its ability to extract meaningful features
from visual data can also be applied to malware detection. By treating malware samples as images, Xcep-
tionNet can learn patterns and characteristics that distinguish benign from malicious code. XceptionNet
architecture is based on depthwise separable convolutions, which decompose a regular convolution into
depthwise convolutions followed by pointwise convolutions. This approach is more efficient than traditional
convolutional networks while maintaining comparable performance (Algorithm 4). XceptionNet Gradient
for Depthwise Convolutionise convolution layer, compute the gradients to the inputs and filters can be
calculated as in Eq. (2):

∂L
∂Wd

=

∂L
∂y
⋅ Input (2)

where Wd represents the depthwise filters.
Similarly, compute the gradients for the pointwise convolution in Eq. (3):

∂L
∂Wp

=

∂L
∂y
⋅Depthwise Output (3)

Wp represents the pointwise filters.
After calculating the gradients, update the model parameters using an optimization algorithm in Eq. (4):

θ ← θ − η ⋅ ∂θ
∂L

(4)

where η is the learning rate.

Algorithm 4: XceptionNet for malware detection
function XceptionNet(input_shape):

input_layer = Input(shape=input_shape)
x = Conv2D(filters=32, kernel_size=(3, 3), strides=(2, 2), padding=‘same’)(input_layer)
x = BatchNormalization()(x)
x = Activation(‘relu’)(x)
for i in range(8):

x = SeparableConv2D(filters=128, kernel_size = (3, 3), padding = ‘same’)(x)
(Continued)



4590 Comput Mater Contin. 2025;83(3)

Algorithm 4 (continued)
x = BatchNormalization()(x)
x = Activation(‘relu’)(x)

x = SeparableConv2D(filters=1024, kernel_size=(3, 3), padding=‘same’)(x)
x = BatchNormalization()(x)
x = Activation(‘relu’)(x)
x = GlobalAveragePooling2D()(x)
output_layer = Dense(num_classes, activation=‘softmax’)(x)
model =Model(inputs=input_layer, outputs=output_layer)
return model

XceptionNet depthwise separable convolutions allow it to capture complex patterns in the image data,
making it well-suited for malware detection tasks where subtle differences between benign and malicious
samples as shown in Fig. 7. In the context of malware detection, XceptionNet filters can be concatenated to
create a more powerful and informative representation of the malware. By combining the outputs of multiple
filters, we can capture a richer set of features and improve the model’s ability to discriminate between benign
and malicious samples. The concatenation of XceptionNet filters can be achieved through various techniques,
such as:

• Concatenation at different layers: The outputs of filters from different layers of the Xception network
can be concatenated to capture features at different levels of abstraction. This can help the model learn
both low-level and high-level patterns within the malware.

• Concatenation across channels: The outputs of filters from different channels within the same layer
can be concatenated to combine information from different feature maps. This can enhance the model’s
ability to capture complex relationships between features.

• Concatenation with other features: The outputs of XceptionNet filters can be concatenated with other
relevant features, such as textual data or metadata, to provide a more comprehensive representation of
the malware.

This approach can be particularly effective for detecting new and emerging malware variants that
traditional methods may not easily capture.

• Model Training: The selected models will be trained on the preprocessed and feature-extracted dataset
using appropriate optimization algorithms (e.g., gradient descent, Adam) and loss functions (e.g., cross-
entropy). Hyperparameter tuning can be employed to find the optimal configuration for each model.

• Evaluation Metrics: The trained models will be evaluated using relevant metrics such as accuracy,
precision, recall, F1-score, and false positive rate.

• Model Comparison: The performance of EfficientNet and XceptionNet will be compared to identify
the most effective approach for malware detection. Based on evaluation results, the models can be
further refined by adjusting hyperparameters, exploring different feature engineering techniques, or
incorporating additional data.

This proposed technique provides a comprehensive framework for malware detection using deep
learning techniques, specifically EfficientNet and XceptionNet. By leveraging the efficiency and accuracy
of these architectures, this model aims to detect both known and unknown malware variants effectively.
Future research can focus on exploring new deep learning techniques, incorporating adversarial learning,
and addressing the challenges of evolving malware threats.



Comput Mater Contin. 2025;83(3) 4591

Figure 7: XceptionNet architecture for malware detection

5 Results and Discussions
The result and discussion section consists of the results obtained from the textual dataset using machine

learning techniques and an image-based dataset using deep learning techniques.

5.1 Performance Evaluation Metrics
We created a confusion matrix analysis to further investigate the false positive and false negative

cases to illustrate my method’s classification performance on both datasets. The accuracy metric is the
main performance indicator used for evaluation in this model. True positive (TP) refers to instances that
are accurately classified as positive, whereas false negative (FN) refers to situations that are overlooked
as positive, suggesting abnormalities. False positive (FP) refers to cases that are incorrectly detected as
positive, whereas true negative (TN) implies instances that are correctly identified as negative. A classification
model’s accuracy is the ratio of correctly predicted instances to the total number of instances. as shown
in Eqs. (5)–(8).

Accuracy = TP + TN
TP + FP + TN + FN

(5)

Precision = TP
TP + FP

(6)

Recall = TP
TP + FN

(7)



4592 Comput Mater Contin. 2025;83(3)

F1 Score = 2 × Precision ∗ Recall
Precision + Recall

(8)

5.2 Support Vector Machine (SVM)
In Fig. 8, a confusion matrix is for a binary classification problem with two classes, i.e., Benign

and Malware.

Figure 8: SVM confusion matrix for binary classification

There were 8617 instances of true malware that were correctly identified as malware. Furthermore,
8957 benign occurrences were correctly identified as benign. The binary classification accuracy is 99.97%
using the SVM classifier. SVM is customized for textual malware detection by integrating optimized param-
eters and advanced feature selection techniques, enhancing classification performance. Unlike traditional
implementations, our approach focuses on efficient feature extraction to improve accuracy while reducing
computational overhead. Experimental results demonstrate 99.4% accuracy, outperforming conventional
machine learning models. This highlights SVM’s effectiveness in handling diverse malware datasets for
robust detection.

5.3 Random Forest Results Class-Based Metrics
The Random Forest model demonstrates strong performance across all classes, with high accuracy

in predicting benign, ransomware, spyware, and trojan samples shown in Table 3. However, there are
some misclassifications between ransomware, spyware, and trojan categories, indicating potential areas
for improvement.

Table 3: Class-based metric for random forest

Type Precision % Recall % F1-Score % Support Accuracy %
Benign 100 100 100 7324

87.5
Ransomware 73.4 72.7 73.1 2448

Spyware 79.3 79.4 79.3 2505
Trojan 72.2 72.8 72.5 2372

Weighted average 87.5 87.5 87.5 14,649



Comput Mater Contin. 2025;83(3) 4593

The provided confusion matrix in Fig. 9 illustrates the performance of the Random Forest model for
multi-class malware classification. The diagonal elements represent correct classifications, while off-diagonal
elements indicate misclassifications.

Figure 9: Random forests confusion matrix for multi-classification



4594 Comput Mater Contin. 2025;83(3)

5.4 Decision Tree
The Decision Tree model performs exceptionally well in classifying benign samples, as indicated

by the high precision and recall for the “Benign” class. The model’s performance is relatively lower for
the “Ransomware,” “Spyware,” and “Trojan” classes, suggesting that it might be struggling to accurately
differentiate between these classes. The overall accuracy of 85.04% is reasonable, but there is room for
improvement, particularly in the classification of specific malware types as shown in Fig. 10.

Figure 10: Decision tree class-based metric results

The confusion matrix provides a detailed breakdown of the model’s performance across different
malware classes. It shows that the Decision Tree model is highly accurate in classifying benign samples, with
almost all correctly identified.

However, the model struggles to distinguish between ransomware, spyware, and trojan malware, leading
to misclassifications. A well-performing model would have high values on the diagonal and low values
off-diagonal. In this case, while the model excels at identifying benign samples, it could benefit from
improvements in distinguishing between different types of malicious software as shown in Fig. 11.

Figure 11: Decision tree confusion matrix for multi-classification



Comput Mater Contin. 2025;83(3) 4595

5.5 Gaussian Naive Bayes
The class-based metric offers insights into the performance of the Gaussian Naive Bayes model for multi-

class malware detection as shown in Fig. 12. While the model excels at identifying benign samples, it struggles
with accurately classifying ransomware, spyware, and trojan malware. The low precision and recall values
for these malicious categories indicate that the model often misclassifies them. It could be attributed to the
inherent limitations of the Naive Bayes assumption of feature independence, which may not hold true for
complex malware datasets. The imbalanced dataset, with a significant number of benign samples compared
to malicious ones, can impact the model’s ability to learn subtle distinctions between different malware types.

Figure 12: Gaussian NB class-based metric results

The Gaussian model demonstrates strong performance across all classes, with high accuracy in
predicting benign ransomware, spyware, and trojan samples, as shown in Fig. 13. However, there are
some misclassifications between ransomware, spyware, and trojan categories, indicating potential areas
for improvement.

Figure 13: Gaussian NB confusion matrix results



4596 Comput Mater Contin. 2025;83(3)

5.6 XGBoost
The confusion matrix provided offers insights into the performance of the XGBoost model for multi-

class malware detection. The model demonstrates strong performance across all classes, with high precision,
recall, and F1-scores. Specifically, the model excels at correctly classifying benign samples, achieving near-
perfect precision and recall. It also performs well in identifying ransomware, spyware, and trojan malware,
with relatively high precision, recall, and F1-scores, as shown in Fig. 14. The overall accuracy of the model
is 88.37%, indicating that it correctly classifies a significant proportion of malware samples. These results
suggest that XGBoost is a powerful tool for malware detection and can effectively distinguish between
different malware categories.

Figure 14: XGBoost class-based metric results

The XGBoost model demonstrates strong performance across all classes, with high accuracy in
predicting benign ransomware, spyware, and trojan samples, as shown in Fig. 15. However, there are
some misclassifications between ransomware, spyware, and trojan categories, indicating potential areas
for improvement.

Figure 15: XGBoost confusion matrix for multi-classification

The provided AUC curve demonstrates the performance of an XGBoost model for malware detection,
specifically focusing on the classification of ransomware vs. the rest of the malware categories as shown



Comput Mater Contin. 2025;83(3) 4597

in Fig. 16. The AUC (Area Under the Curve) value of 0.96 indicates excellent performance. An AUC of
0.96 means that the model has a very high probability of correctly distinguishing ransomware from non-
ransomware samples. It suggests that the XGBoost model can effectively capture the unique characteristics
of ransomware and differentiate it from other types of malwares. A higher true positive rate (TPR) indicates
that the model is better at detecting ransomware, while a lower false positive rate (FPR) means that it is
less likely to classify non-ransomware samples as ransomware incorrectly. The curve’s position towards the
top-left corner suggests that the XGBoost model achieves a good balance between these two metrics.

Figure 16: Area under the curve of TPR vs. FPR using XGBoost

The area under curve AUC curve is used to evaluate the performance of the model, where the X-axis
represents the FPR and the Y-axis represents the TPR. The AUC value indicates the overall ability of the
model to distinguish between classes.

5.7 EfficientNet B0
The provided plot as shown in Fig. 17 illustrates the training and validation loss and accuracy curves

for an EfficientNet model applied to malware detection with 25 classes. The left plot shows the loss function
over epochs, with a clear trend of decreasing loss for both training and validation sets. It indicates that the
model is learning effectively and generalizing well to unseen data.

The right plot displays the accuracy curves, demonstrating a similar trend of increasing accuracy for
both training and validation sets. The relative proximity between the training and validation curves suggests
that the model is not overfitting and can generalize well to new malware samples. The plot suggests that
the EfficientNet B0 model is performing well on the malware detection task, achieving high accuracy while
avoiding overfitting. It shows the training and validation accuracy and loss graphs for the EfficientNet
B0 model as shown in Table 4. The model obtains a high training accuracy of 0.94 and a loss of 0.20,
demonstrating that it can learn from training data. The validation accuracy of 0.92 and loss of 0.26 indicates
that the model generalizes effectively to previously unknown data, with consistent performance across both
training and validation sets.



4598 Comput Mater Contin. 2025;83(3)

Figure 17: EfficientNet B0 Training loss vs. Val_loss and Training and Val_Accuracy Grapgh

Table 4: Precision, Recall, F1-Score, Accuracy results of EfficientNet B0 model in 25 classes malware classification results

Sr. No. Malware class/Family Precision Recall F1-Score Support
1 Adialer.C 1.00 1.00 1.00 20
2 Agent.FYI 1.00 1.00 1.00 19
3 Allaple.A 0.99 0.96 0.98 565
4 Allaple.L 0.96 1.00 0.98 299
5 Alueron.gen!J 0.95 1.00 0.97 35
6 Autorun.k 1.00 1.00 1.00 17
7 C2LOP.P 0.78 0.84 0.81 25
8 C2LOP.gen.G 0.84 0.77 0.81 35
9 Diaplatform.B 1.00 1.00 1.00 31
10 Dontovo.A 1.00 1.00 1.00 28
11 Fakerean 0.91 1.00 0.95 62
12 Instantaccess 1.00 1.00 1.00 72
13 Lolyda.AA1 0.94 0.94 0.95 31
14 Lolyda.AA2 1.00 0.94 1.00 32
15 Lolyda.AA3 1.00 1.00 0.94 20
16 Lolyda.AT 0.96 0.96 1.00 27
17 Malex.gen!J 0.87 0.87 0.94 23
18 Obfuscator.AD 1.00 1.00 0.97 24
19 Rbot!gen 0.96 1.00 1.00 27
20 Skintrim.N 1.00 1.00 0.96 11
21 Swizzor.gen!E 0.75 0.14 0.87 21
22 Swizzor.gen!I 0.51 0.86 1.00 22
23 VB.AT 1.00 1.00 0.98 77
24 Wintrim.BX 0.94 1.00 1.00 15
25 Yuner.A 1.00 1.00 0.24 155

Accuracy 0.967 1693
Macro avg 0.93 0.93 0.925 1693

Weighted avg 0.97 0.96 0.967 1693



Comput Mater Contin. 2025;83(3) 4599

In the context of malware detection, it helps us understand how well the EfficientNet model classifies
malware samples into 25 different categories. A good confusion matrix should have strong diagonal values,
indicating that the model is accurately predicting the correct classes. In this case, the diagonal elements
are prominent, suggesting that the EfficientNet model performs well. The off-diagonal elements represent
misclassifications. The provided class-based metrics for the EfficientNet B0 model showcase its strong
performance in multi-class malware classification. The model demonstrates high precision 0.97, recall
0.96, and F1-scores 0.96 across various malware families, indicating accurate predictions and minimal
misclassifications as shown in Fig. 18.

Figure 18: Confusion Matrix of EfficientNet B0 model in 25 classes malware classification results

The model particularly excels in correctly identifying benign samples, achieving near-perfect scores.
While some minor discrepancies exist in classifying certain malware types, the overall performance is
impressive. The high accuracy, macro average, and weighted average scores further solidify the model’s
effectiveness in distinguishing between different malware categories.



4600 Comput Mater Contin. 2025;83(3)

5.8 XceptionNet
The provided plot illustrates the training and validation loss and accuracy curves for an XceptionNet

model applied to malware detection with 25 classes as shown in Fig. 19. The left plot shows the loss function
over epochs, with a clear trend of decreasing loss for both training and validation sets. It indicates that the
model is learning effectively and generalizing well to unseen data.

Figure 19: XceptionNet training loss vs. Val_loss and Training and Val_Accuracy Graph

The right plot displays the accuracy curves, demonstrating a similar trend of increasing accuracy for
both training and validation sets. The relative proximity between the training and validation curves suggests
that the model is not overfitting and can generalize well to new malware samples. The plot suggests that the
XceptionNet model performs well on the malware detection task, achieving high accuracy while avoiding
overfitting. Fig. 19 shows the training and validation accuracy and loss graphs for the XceptionNet model.
The model obtains a high training accuracy of 0.92 and a loss of 0.19, demonstrating that it can learn from
training data. The validation accuracy of 0.81 and loss of 0.75 indicate that the model generalizes effectively
to previously unknown data, with consistent performance across both training and validation sets as shown
in Table 5.

Table 5: Precision, Recall, F1-Score, Accuracy results of XceptionNet model in 25 classes malware classification

Sr. No. Malware class/Family Precision Recall F1-Score Support
1 Adialer.C 1.00 1.00 1.00 20
2 Agent.FYI 1.00 1.00 1.00 19
3 Allaple.A 0.81 0.95 0.87 565
4 Allaple.L 0.97 0.57 0.71 299
5 Alueron.

gen!J
1.00 0.97 0.99 35

6 Autorun.k 0.00 0.00 0.00 17
7 C2LOP.P 0.82 0.56 0.67 25
8 C2LOP.gen.G 0.53 0.97 0.72 35
9 Diaplatform.B 1.00 0.97 0.93 31
10 Dontovo.A 1.00 1.00 1.00 28

(Continued)



Comput Mater Contin. 2025;83(3) 4601

Table 5 (continued)

Sr. No. Malware class/Family Precision Recall F1-Score Support
11 Fakerean 1.00 1.00 1.00 62
12 Instantaccess 0.97 1.00 0.99 72
13 Lolyda.AA1 0.93 0.87 0.90 31
14 Lolyda.AA2 1.00 0.94 0.97 32
15 Lolyda.AA3 1.00 1.00 1.00 20
16 Lolyda.AT 0.96 1.00 0.93 27
17 Malex.gen!J 0.53 0.74 0.62 23
18 Obfuscator.AD 1.00 1.00 1.00 24
19 Rbot!gen 1.00 1.00 1.00 27
20 Skintrim.N 1.00 0.91 0.95 11
21 Swizzor.gen!E 0.33 0.19 0.24 21
22 Swizzor.gen!I 0.53 0.32 0.41 22
23 VB.AT 0.76 1.00 0.89 77
24 Wintrim.BX 1.00 0.93 0.97 15
25 Yuner.A 0.90 1.00 0.95 155

Accuracy 0.86 1693
Macro avg 0.85 0.84 0.83 1693

Weighted avg 0.87 0.86 0.85 1693

The provided confusion matrix visually represents the performance of the XceptionNet model in
classifying malware samples into 25 different categories. Each row of the matrix represents the true class of
a sample, while each column represents the predicted class. The model demonstrates high precision 0.87,
recall 0.86, and F1-scores 0.85 across various malware families, indicating accurate predictions and minimal
misclassifications, as shown in Fig. 20.

The model particularly excels in correctly identifying benign samples, achieving near-perfect scores as
shown in Fig. 20. While there are some minor discrepancies in classifying certain malware types, the overall
performance is impressive.

The high accuracy, macro average, and weighted average scores further solidify the model’s effectiveness
in distinguishing between different malware categories. If many off-diagonal elements have high values, it
suggests that the model is frequently confusing certain classes with others. On the other hand, if the diagonal
elements are predominantly high, it indicates that the model is performing well in correctly classifying
samples. Furthermore, the confusion matrix can help identify specific classes that the model is struggling to
differentiate. By examining the distribution of values within the matrix, we can pinpoint the classes that are
being misclassified most frequently.



4602 Comput Mater Contin. 2025;83(3)

Figure 20: Confusion matrix of XceptionNet model in 25 classes malware classification results

5.9 Comparison with Exiting Techniques
Table 6 provides a comparison of various malware detection models and their performance on the

CIC-MalMem-2022 dataset. The models range from traditional machine learning techniques like Naive
Bayes to advanced deep learning architectures like 1D CNN and TextCNN. The results indicate that the
Gradient Boosted Tree with Logistic Regression and the 1D CNN model achieve an accuracy of 99.94% and
99.90%, respectively.

These models effectively capture the complex patterns and features present in the malware data. While
the proposed SVM model also performs well with an accuracy of 99.97%, it is important to consider the
specific characteristics of the dataset and the potential limitations of the SVM algorithm.

Table 7 presents a comparison of various malware detection models and their performance on the
Malimg dataset. The models range from traditional deep learning techniques like CNN to advanced deep
learning architectures like VGG-16 and EfficientNet B0. The results indicate that the proposed EfficientNet



Comput Mater Contin. 2025;83(3) 4603

B0 model achieves the highest accuracy of 96.70%, followed by the VGG-16 model with an accuracy of 95%.
These deep learning models effectively capture the complex patterns and features present in the malware
data, leading to superior performance. While the kernel-based Elaboration Likelihood Model (ELM) ELM
model also performs well with an accuracy of 94.25%, it is important to consider the computational cost
and complexity associated with kernel-based methods. This proposed model provides a comprehensive
framework for malware detection using machine and deep learning techniques with the best result for the
binary classification and four class results.

Table 6: Comparison of the binary classification result with existing techniques

Sr. No. Author Classiffier/Algorithm Dataset used Accuracy (%)
1 Dener et al. 2022 [26] Gradient boosted tree

with logistic
regression

CIC-MalMem-2022 99.94

2 Ahmad et al. [27] Stack ensemble CIC-MalMem-2022 99.0
3 Aghaeikheirabady et al.

2014 [28]
Naive bayes Ether, Malicia Dataset 98.0

4 Arfeen et al. 2022 [29] XGBoost, Linear SVC CIC-MalMem-2022 88.70, 99.14
5 Wang et al. 2022 [30] TextCNN BIG 2015,

CIC-MalMem-2022
93.46, 98.9

6 Taşcı 2024 [31] 1D CNN CIC-MalMem-2022 99.90
7 Sharma et al. 2024 [32] LR, DT, RF and SVM CIC-MalMem-2022 96.83, 97.67,

99.12 and 93
8 Shah et al. [33] SVM, RF, DT, and

XGBOOST
Own dataset 97.01

9 Proposed model 2024 SVM CIC-MalMem-2022 99.97

Table 7: Classification comparison of the 25 classes result with existing techniques

Sr. No. Author Technique Dataset Precision Recall F1-Score Accuracy
(%)

1 Mezina and
Burget [5]

CNN Malimg 0.75 0.75 0.75 83.53

2 Arifin
et al. [34]

Wide residual network Malimg 0.85 0.85 0.84 84.56

3 Keyes et al. [35] Convolutional deep
neural network

CIC-
AndMal-2020

– – – 93.36
(Twelve
classes)

4 Cao et al. [36] VGG-16 Malimg – – – 95
5 Awan et al. [37] kernel-based ELM Malimg – – – 94.25

6 Proposed model XceptionNet Malimg 0.87 0.86 0.85 86.0
EfficientNet B0 Malimg 0.97 0.96 0.96 96.70



4604 Comput Mater Contin. 2025;83(3)

6 Conclusion and Future Work
This research successfully developed a dynamic malware detection system leveraging deep learning

techniques, specifically employing the EffiecintNet B0 model for image-based analysis. By integrating both
CSV and image datasets, the system demonstrated significant improvements in accuracy and robustness
in malware identification, with an accuracy of 99.97%. The results obtained from the Milimg dataset were
96.7%. The dual dataset approach enabled the model to tap into diverse data sources, enhancing its capability
to detect and classify various malware types with greater precision. The achieved accuracy highlights the
transformative potential of deep learning in cybersecurity, as these models effectively analyze complex
patterns and anomalies within malware, offering a reliable solution against sophisticated threats. These
techniques not only enhance detection capabilities but also adapt to the ever-evolving cybersecurity, ensuring
a resilient defense against emerging threats. In the future, work will focus on integrating various data types,
exploring new deep learning techniques, improving model adaptability to new malware, and enhancing
user trust, ultimately making malware detection systems more effective and resilient. The limitations of this
research include: a) The EfficientNet model, while effective, is computationally expensive. This may present
issues for real-time detection in resource-constrained contexts. b) Processing sensitive data in cybersecurity
applications poses privacy problems. Data protection and compliance with legislation are critical. c) The
model’s capacity to react to new and emerging malware threats over time necessitates regular updates and
retraining, which can be resource-intensive. Future research can also focus on exploring new deep learning
architectures, incorporating adversarial learning techniques, and addressing the challenges of evolving
malware threats.

Acknowledgement: Not applicable.

Funding Statement: This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad
Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2504).

Availability of Data and Materials: The data that support the findings of this study are openly available in [4,5].

Ethics Approval: Not applicable.

Conflicts of Interest: The author declares no conflicts of interest to report regarding the present study.

References

1. Mitchell R, Chen IR. A survey of intrusion detection in wireless network applications. Comput Commun.
2014;42(4):1–23. doi:10.1016/j.comcom.2014.01.012.

2. Rahman MM, Al Shakil S, Mustakim MR. A survey on intrusion detection system in IoT networks. Cyber Secur
Appl. 2025;3(1):100082. doi:10.1016/j.csa.2024.100082.

3. Brown A, Gupta M, Abdelsalam M. Automated machine learning for deep learning based malware detection.
Comput Secur. 2024;137(1):103582. doi:10.1016/j.cose.2023.103582.

4. Shen L, Feng J, Chen Z, Sun Z, Liang D, Li H, et al. Self-attention based convolutional-LSTM for Android
malware detection using network traffics grayscale image. Appl Intell. 2023;53(1):683–705. doi:10.1007/s10489-022-
03523-2.

5. Mezina A, Burget R. Obfuscated malware detection using dilated convolutional network. In: 2022 14th Interna-
tional Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT); 2022 Oct
11–13; Valencia, Spain. p. 110–5. doi:10.1109/ICUMT57764.2022.9943443.

6. Al-Khater W, Al-Madeed S. Using 3D-VGG-16 and 3D-Resnet-18 deep learning models and FABEMD techniques
in the detection of malware. Alex Eng J. 2024;89(1):39–52. doi:10.1016/j.aej.2023.12.061.

https://doi.org/10.1016/j.comcom.2014.01.012
https://doi.org/10.1016/j.csa.2024.100082
https://doi.org/10.1016/j.cose.2023.103582
https://doi.org/10.1007/s10489-022-03523-2
https://doi.org/10.1007/s10489-022-03523-2
https://doi.org/10.1109/ICUMT57764.2022.9943443
https://doi.org/10.1016/j.aej.2023.12.061


Comput Mater Contin. 2025;83(3) 4605

7. Kosmidis K, Kalloniatis C. Machine learning and images for malware detection and classification. In: Proceedings
of the 21st Pan-Hellenic Conference on Informatics; 2017 Sep 28–30; Larissa, Greece. p. 1–6. doi:10.1145/3139367.
3139400.

8. Sihag V, Vardhan M, Singh P, Choudhary G, Son S. De-LADY: deep learning based Android malware detection
using Dynamic features. J Internet Serv Inf Secur. 2021;11(2):34–45.

9. Alhaidari F, Shaib NA, Alsafi M, Alharbi H, Alawami M, Aljindan R, et al. ZeVigilante: detecting zero-day malware
using machine learning and sandboxing analysis techniques. Comput Intell Neurosci. 2022;2022(1):1615528. doi:10.
1155/2022/1615528.

10. Jasi TA, Jawhar MM. Detecting network attacks Model based on a long short-term memory LSTM. Technium.
2022;4(8):64–71. doi:10.47577/technium.v4i8.7225.

11. Li T, Luo Y, Wan X, Li Q, Liu Q, Wang R, et al. A malware detection model based on imbalanced heterogeneous
graph embeddings. Expert Syst Appl. 2024;246(27):123109. doi:10.1016/j.eswa.2023.123109.

12. Alazab M, Soman KP, Srinivasan S, Venkatraman S, Pham VQ. Deep learning for cyber security applications: a
comprehensive survey. arXiv:16748161. 2023.

13. Moutafis I, Andreatos A, Stefaneas P. Spam email detection using machine learning techniques. In: European
Conference on Cyber Warfare and Security (ECCWS); 2023 Jun 22–23; Athens, Greece.

14. Syeda DZ, Asghar MN. Dynamic malware classification and API categorisation of windows portable executable
files using machine learning. Appl Sci. 2024;14(3):1015. doi:10.3390/app14031015.

15. Karat G, Kannimoola JM, Nair N, Vazhayil A, Sujadevi VG, Poornachandran P. CNN-LSTM hybrid model for
enhanced malware analysis and detection. Procedia Comput Sci. 2024;233:492–503. doi:10.1016/j.procs.2024.03.
239.

16. Liu Y, Fan H, Zhao J, Zhang J, Yin X. Efficient and generalized image-based CNN algorithm for multi-class malware
detection. IEEE Access. 2024;12(5):104317–32. doi:10.1109/ACCESS.2024.3435362.

17. Linh VK, Hùng NV, Anh TN, Nhuan DD, Hien DC. Enhance deep learning model for malware detection with a
new image representation method. J Sci Technol Inf Secur. 2024;2024:31–9. doi:10.54654/isj.v1i21.1000.

18. Patil R, Deng W. Malware analysis using machine learning and deep learning techniques. In: 2020 SoutheastCon;
2020 Mar 28–29; Raleigh, NC, USA. p. 1–7. doi:10.1109/southeastcon44009.2020.9368268.

19. Talukder MA, Hasan KF, Islam MM, Uddin MA, Akhter A, Abu Yousuf M, et al. A dependable hybrid machine
learning model for network intrusion detection. J Inf Secur Appl. 2023;72(1):103405. doi:10.1016/j.jisa.2022.103405.

20. Thakur P, Kansal V, Rishiwal V. Hybrid deep learning approach based on LSTM and CNN for malware detection.
Wirel Pers Commun. 2024;136(3):1879–901. doi:10.1007/s11277-024-11366-y.

21. Singh A, Handa A, Kumar N, Shukla SK. Malware classification using image representation. In: Cyber Security
Cryptography and Machine Learning: Third International Symposium, CSCML 2019; 2019 Jun 27–28; Beer-Sheva,
Israel. Berlin/Heidelberg, Germany: Springer International Publishing. p. 75–92.

22. Ali J, Khan R, Ahmad N, Maqsood I. Random forests and decision trees. Int J Comput Sci Issues; 2012 Sep
1;9(5):272.

23. Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, et al. Xgboost: extreme gradient boosting. R package
version 0.4-2. 2015 Aug 1;1(4):1–4.

24. Tan M, Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In: International
Conference on Machine Learning; 2019 May 24; PMLR. p. 6105–14.

25. Chollet F. Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition; 2017; PMLR. p. 1251–58.

26. Dener M, Ok G, Orman A. Malware detection using memory analysis data in big data environment. Appl Sci.
2022;12(17):8604. doi:10.3390/app12178604.

27. Ahmad A, Naseer M, Ahmad M, Mehmood K. IMA—an intelligent obfuscated malware analysis model. In: 2024
21st International Bhurban Conference on Applied Sciences and Technology (IBCAST); 2024 Aug 20–23; Murree,
Pakistan. p. 98–106. doi:10.1109/IBCAST61650.2024.10877188.

https://doi.org/10.1145/3139367.3139400
https://doi.org/10.1145/3139367.3139400
https://doi.org/10.1155/2022/1615528
https://doi.org/10.1155/2022/1615528
https://doi.org/10.47577/technium.v4i8.7225
https://doi.org/10.1016/j.eswa.2023.123109
https://doi.org/10.3390/app14031015
https://doi.org/10.1016/j.procs.2024.03.239
https://doi.org/10.1016/j.procs.2024.03.239
https://doi.org/10.1109/ACCESS.2024.3435362
https://doi.org/10.54654/isj.v1i21.1000
https://doi.org/10.1109/southeastcon44009.2020.9368268
https://doi.org/10.1016/j.jisa.2022.103405
https://doi.org/10.1007/s11277-024-11366-y
https://doi.org/10.3390/app12178604
https://doi.org/10.1109/IBCAST61650.2024.10877188


4606 Comput Mater Contin. 2025;83(3)

28. Aghaeikheirabady M, Farshchi SMR, Shirazi H. A new approach to malware detection by comparative analysis
of data structures in a memory image. In: 2014 International Congress on Technology, Communication and
Knowledge (ICTCK); 2014 Nov 26–27; Mashhad, Iran. p. 1–4. doi:10.1109/ICTCK.2014.7033519.

29. Arfeen A, Asim Khan M, Zafar O, Ahsan U. Process based volatile memory forensics for ransomware detection.
Concurr Comput Pract Exp. 2022;34(4):e6672. doi:10.1002/cpe.6672.

30. Wang Q, Qian Q. Malicious code classification based on opcode sequences and text CNN network. J Inf Secur
Appl. 2022;67(2):103151. doi:10.1016/j.jisa.2022.103151.

31. Taşcı B. Deep-learning-based approach for IoT attack and malware detection. Appl Sci. 2024;14(18):8505. doi:10.
3390/app14188505.

32. Sharma A, Babbar H, Vats AK. Securing the Internet of Things: using machine learning for malware detection
with CIC-MalMem dataset. In: 2024 4th International Conference on Innovative Practices in Technology and
Management (ICIPTM); 2024 Feb 21–23; Noida, India. p. 1–5. doi:10.1109/ICIPTM59628.2024.10563381.

33. Shah SSH, Ahmad AR, Jamil N, Khan AUR. Memory forensics-based malware detection using computer vision
and machine learning. Electronics. 2022;11(16):2579. doi:10.3390/electronics11162579.

34. Mashrur Arifin M, Suyehara Tolman T, Yeh JH. Unveiling the efficacy of BERT’s attention in memory obfuscated
malware detection. In: International Conference on Information Security Practice and Experience; 2024 Oct 25–27;
Wuhan, China. Singapore: Springer Nature Singapore; 2024. p. 273–91.

35. Keyes DS, Li B, Kaur G, Lashkari AH, Gagnon F, Massicotte F. EntropLyzer: android malware classification
and characterization using entropy analysis of dynamic characteristics. In: 2021 Reconciling Data Analytics,
Automation, Privacy, and Security: A Big Data Challenge (RDAAPS); 2021 May 18–19; Hamilton, ON, Canada.
p. 1–12. doi:10.1109/rdaaps48126.2021.9452002.

36. Cao D, Zhang X, Ning Z, Zhao J, Xue F, Yang Y. An efficient malicious code detection system based on convolutional
neural networks. In: Proceedings of the 2018 2nd International Conference on Computer Science and Artificial
Intelligence; 2018 Dec 8–10; Shenzhen, China. p. 86–9. doi:10.1145/3297156.3297246.

37. Awan MJ, Masood OA, Abed Mohammed M, Yasin A, Zain AM, Damaševičius R, et al. Image-based malware
classification using VGG19 network and spatial convolutional attention. Electronics. 2021;10(19):2444. doi:10.3390/
electronics10192444.

https://doi.org/10.1109/ICTCK.2014.7033519
https://doi.org/10.1002/cpe.6672
https://doi.org/10.1016/j.jisa.2022.103151
https://doi.org/10.3390/app14188505
https://doi.org/10.3390/app14188505
https://doi.org/10.1109/ICIPTM59628.2024.10563381
https://doi.org/10.3390/electronics11162579
https://doi.org/10.1109/rdaaps48126.2021.9452002
https://doi.org/10.1145/3297156.3297246
https://doi.org/10.3390/electronics10192444
https://doi.org/10.3390/electronics10192444

	Advanced Techniques for Dynamic Malware Detection and Classification in
obreakspace Digital Security Using Deep Learning
	1 Introduction
	2 Literature Review
	3 Data Set Details
	4 Proposed Methodology for Malware Detection in Wireless Networks
	5 Results and Discussions
	6 Conclusion and Future Work
	References


