

 ICCES, 2024, vol.32, no.1

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

DOI:	10.32604/icces.2024.013297	
	

PROCEEDINGS	

Automated	Vulnerability	Detection	Using	Deep	Learning	Technique	

Guan-Yan	Yang1,*,	Yi-Heng	Ko1,	Farn	Wang1,	Kuo-Hui	Yeh2,	Haw-Shiang	Chang1	and	Hsueh	Yi	
Chen1	

1 Department	of	Electrical	Engineering,	National	Taiwan	University,	Taipei	City,	106319,	Taiwan	R.O.C.	
2 Institute	of	Artificial	Intelligence	Innovation,	National	Yang	Ming	Chiao	Tung	University,	Hsinchu	City,	300093,	Taiwan	
R.O.C.	
*Corresponding	Author:	Guan-Yan	Yang.	Email:	f11921091@ntu.edu.tw	
	

ABSTRACT	

1	Introduction	
Ensuring	the	absence	of	exploitable	vulnerabilities	within	applications	has	always	been	a	critical	aspect	

of	software	development	[1-3].	Traditional	code	security	testing	methods	often	rely	on	manual	inspection	
or	 rule-based	 approaches,	 which	 can	 be	 time-consuming	 and	 prone	 to	 human	 errors.	With	 the	 recent	
advancements	in	natural	 language	processing,	deep	learning	has	emerged	as	a	viable	approach	for	code	
security	testing.	In	this	work,	we	investigated	the	application	of	deep	learning	techniques	to	code	security	
testing	to	enhance	the	efficiency	and	effectiveness	of	security	analysis	in	the	software	development	process.	
In	2022,	Wartschinski	et	al.	[1]	utilized	a	Word2Vec	model	for	Python	source	code	embedding,	followed	by	
a	Long	Short-Term	Memory	(LSTM)	[2]	model	 to	 identify	vulnerable	code	patterns.	Building	upon	their	
research,	 we	 evaluated	 the	 performance	 of	 two	 embedding	 methods	 in	 generating	 code	 vector	
representations	to	improve	training	efficiency.	By	leveraging	the	CodeBERT	[3]	model	instead	of	Word2Vec,	
we	 achieved	 enhancements	 in	 detecting	 SQL	 injection	 vulnerabilities	 [4].	 Additionally,	 we	 applied	 our	
proposed	models	to	multiple	projects	collected	from	GitHub,	compared	the	scan	results	with	existing	static	
testing	 tools,	 and	 evaluated	 their	 performance.	 The	 results	 indicate	 that	 our	 approach	 outperforms	
commercially	available	static	application	security	testing	(SAST)	tools	[5-6],	showcasing	the	potential	of	
deep	learning	in	advancing	code	security	testing.	

2	Methodology	

In	 this	 section,	 we	 present	 our	 approach.	 Figure.1	 is	 an	 overview	 of	 our	 method.	We	 collected	 the	
vulnerability	dataset	from	Github,	and	adopted	CodeBERT	[3]	as	the	embedding	method.	After	transferring	
the	source	code	into	a	vector	representation,	we	trained	an	LSTM	model	to	extract	the	vulnerable	pattern	
from	the	code.	
2.1	Data	Collection	and	Labeling	
We	chose	SQL	injection	vulnerability	[4]	as	our	detecting	objective	since	it	is	reported	as	one	of	the	most	

common	 vulnerabilities	 by	 OWASP	 (https://owasp.org/Top10)	 and	 CVE	 databases	
(https://cve.mitre.org/).	On	top	of	that,	SQL	injection	has	syntactic	features	that	can	be	learned	by	a	deep	
learning	model.	To	collect	the	SQL	injection	dataset	from	GitHub,	we	employ	the	PyDriller	[7].	We	apply	
keywords	to	filter	the	commits	we	want,	such	as	commit	messages	containing	“SQL	injection	fixed”	or	“SQL	
injection	 prevented,”	 etc.	 We	 consider	 the	 changed	 part	 as	 it	 potentially	 would	 cause	 SQL	 injection.	
Therefore,	we	mined	the	commit	and	marked	the	changed	part	as	vulnerable.	
2.2	Embedding	Layers	
CodeBERT	is	a	bimodal	pre-trained	model	for	NL-PL(Natural	Language-Programming	Language)	tasks,	

which	uses	a	multi-layer	bidirectional	Transformer	as	the	model	architecture,	training	at	a	large	dataset	for		

2 ICCES, 2024, vol.32, no.1

six	different	programming	languages	and	natural	language.	Different	from	[1],	we	use	CodeBERT	for	Python	
source	code	embedding	and	feed	all	output	tokens	to	an	LSTM	model.	
2.3	LSTM	Model	Training	
After	pre-processing	the	data,	we	can	start	training	our	LSTM	model.	To	implement	the	LSTM	model,	we	

used	the	Keras	library.	There	are	three	layers	in	the	LSTM	architecture:	LSTM	layer,	dropout	layer,	and	dense	
layer.	To	yield	a	better	performance,	the	hyper-parameters	setting	of	the	model	must	be	carefully	chosen.	
Table.1	shows	the	hyper-parameters	of	the	LSTM	model.	Due	to	space	constraints,	we	will	not	discuss	the	
details	of	parameter	settings.	
2.4	Result	
Table.2	illustrates	the	model	performance	on	detecting	SQL	injection	vulnerabilities	within	source	code.	

One	thing	that	has	to	be	mentioned	is	that	the	accuracy	here	is	reported	only	for	completeness	reasons.	Due	
to	the	data	imbalance,	most	of	the	code	will	be	clean,	and	vulnerable	parts	are	relatively	rare,	meaning	there	
are	many	more	negative	parts	than	positive	parts.	We	can	see	that	our	model	yields	a	satisfying	result	on	
vulnerability	detection	by	reaching	86.2%	precision,	80.0%	recall,	and	83.1%	f1-score.	

3	Evaluation	

To	analyze	performance,	we	used	the	model	architectures	in	[1]	and	trained	them	on	our	dataset.	The	
results	are	presented	in	Table.2.	Our	observation	indicates	that	our	model	outperforms	the	research	of	[1],	
attributed	to	CodeBERT's	utilization	of	a	self-attention	mechanism,	facilitating	better	retrieval	of	contextual	
information	compared	to	Word2Vec.	Furthermore,	CodeBERT	is	trained	with	natural	language	concurrently.	
In	 contemporary	 software	development,	 there	 is	 a	notable	emphasis	on	writing	human-readable	 source	
code,	 involving	the	use	of	meaningful	names	for	functions	and	variables,	as	well	as	documenting	code	in	
natural	language	[8].	Therefore,	CodeBERT	has	better	results	in	this	scenario.	
To	further	evaluate	our	model	in	real-world	scenarios,	we	curated	an	additional	dataset	focusing	on	SQL	

injection	vulnerabilities	and	tested	it	with	SAST	tools,	namely	Bandit	[5]	and	Checkmarx	[6].	Bandit	is	an	
open-source	 tool	 for	 Python	 source	 code	 vulnerability	 detection,	while	 Checkmarx	 is	 a	 commercial	 tool	
offering	a	comprehensive	suite	of	application	security	testing,	including	SAST.	Table.3	presents	the	testing	
results	on	97	Python	files	potentially	containing	SQL	injection	vulnerabilities.	Our	model	exhibited	superior	
performance,	attributable	to	SAST	tools	often	relying	on	predefined	features	crafted	by	humans.	However,	
given	the	diverse	forms	of	vulnerabilities,	human-defined	features	may	not	cover	all	vulnerable	modes.	In	
contrast,	 our	 method	 learns	 from	 large	 amounts	 of	 data,	 allowing	 it	 to	 capture	 semantics	 and	 predict	
vulnerabilities	more	effectively.	

4	Conclusion	

In	 this	work,	we	proposed	a	method	 for	Python	SQL	 injection	vulnerability	detection.	By	reproducing	
previous	work,	we	found	that	CodeBERT	is	more	suitable	than	Word2Vec	for	source	code	embedding	tasks.	
After	that,	we	compare	our	model	with	two	SAST	tools	in	real-world	cases,	and	the	result	shows	that	the	
deep	 learning	 model	 has	 the	 potential	 to	 win	 against	 traditional	 static	 analysis	 tools	 on	 vulnerability	
detection.	In	addition,	our	model	architecture	can	further	expand	to	other	vulnerabilities	and	even	other	
languages.	Also,	we	are	conducting	more	experiments	to	ensure	that	our	method	can	detect	more	different	
types	of	vulnerabilities.	
	
KEYWORDS	
Static	Analysis;	Deep	Learning;	Embedding;	Vulnerability	Detection	

ICCES, 2024, vol.32, no.1 3

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Fig.	1.	Overview	of	approach

	

Table	1.	Hyper-parameters	of	LSTM	model	

Training	parameters Value
Epochs	
Batch	size	
Neurons	
Dropout	
Learning	rate	
Optimizer

100	
128	
100	
20%	
le-3	
Adam

	
Table	2.	Comparison	of	the	results

Name	 Approach	 Accuracy	 Precision	 Recall	 F1	
Wartschinski	et	al.	
[3]	
Our	model	

Word2Vec	+	LSTM	
CodeBERT	+	LSTM	

92.5%	
92.5%	

82.2%	
86.2%	

78.0%	
80.0%	

80.1%	
83.1%	

Table	3.	Scanning	results	on	real	world	project	with	SQL	injection		

	 Acc	 Precision	 Recall	 F1	
Our	model	
Bandit	[4]	

Checkmarx	[5]	

93.1%	
78.9%	
88.3%	

98.0%	
-	

94.1%	

94.2%	
76.9%	
92.3%	

96.1%	
87.0%	
93.2%	

4 ICCES, 2024, vol.32, no.1

Funding Statement: This work was partly supported by the National Science and Technology Council
(NSTC) of Taiwan under grants MOST 110-2221-E-002-069-MY3, NSTC 112-2634-F-011-002-MBK,
NSTC 113-2634-F-011-002-MBK, and NSTC 111-2221-E-A49-202-MY3. Additionally, it was supported
by the 2024 CITI Visible Project: Questionnaire-based Technology for App Layout Evaluation, Academia
Sinica, Taiwan, ROC. Moreover, this work received partial funding from the National Taiwan University
under Grant 113L7256, within the framework of the Higher Education Sprout Project by the Ministry of
Education, Taiwan. Guan-Yan Yang is supported by National Science and Technology Council Graduate
Research Fellowship (NSTC-GRF), under Grant 113WFA0110119.

Acknowledgements: Thanks to Security Researcher Zhao Min Chen from CyCraft Technology, Taiwan,
for his invaluable suggestions. CRediT authorship contribution statement: conceptualization, Y.-H.K. and
G.-Y.Y.; investigation Y.-H.K.; resources, K.-H.Y.; methodology, G.-Y.Y and Y.-H.K.; software, Y.-H.K.
and F.W.; validation, G.-Y.Y, H.-S.C., H.-Y. Chen and F.W.; writing—original draft preparation, G.-Y.Y.;
writing—review and editing, G.-Y.Y. and F.W.; supervision, F.W., G.-Y.Y. and K.-H.Y.; project
administration, G.-Y.Y.; funding acquisition, F.W. All authors have read and agreed to the published
version of the manuscript.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Yeh, K. -H., Yang, G. -Y., Butpheng, C., Lee, L. -F., Liu, Y. -H. (2022). A Secure Interoperability Management

Scheme for Cross-Blockchain Transactions. Symmetry, 14(12), 2473.
2. Yang, Guan-Yan, Kuo-Hui Yeh, Lin-Fa Lee. (2021). Towards a novel interoperability management scheme for

cross-blockchain transactions. Proceedings of 2021 IEEE 10th Global Conference on Consumer Electronics
(GCCE), pp. 942-943. Kyoto, Japan.

3. Yang, G. -Y., Wang, F., Gu, Y. -Z., Teng, Y. -W., Yeh, K. -H., Ho, P. -H., Wen, W. -L. (2024). TPSQLi: test
prioritization for SQL injection vulnerability detection in web applications. Applied Sciences, 14(18), 8365.

4. Wartschinski, Laura, et al. (2022). VUDENC: vulnerability detection with deep learning on a natural codebase
for Python. Information and Software Technology, 144, 106809.

5. Hochreiter, S., Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8).
6. Feng, Z. Y., et al. (2020). Codebert: A pre-trained model for programming and natural languages. arXiv preprint

arXiv:2002.0815.
7. Clarke-Salt, J. (2009). SQL injection attacks and defense. Elsevier.
8. Bandit homepage, [online] Available: https://bandit.readthedocs.io/en/latest/.
9. Checkmarx homepage, [online] Available: https://www.checkmarx.com.
10. Spadini, D., Aniche, M., Bacchelli, A. (2018). Pydriller: Python framework for mining software repositories.

Proceedings of the 2018 26th ACM Joint meeting on european software engineering conference and symposium
on the foundations of software engineering, pp. 908-911. Lake Buena Vista FL USA.

11. Han, S., Wang, D., Li, W., Lu, X. (2021). A comparison of code embeddings and beyond. arXiv preprint
arXiv:2109.07173.

https://bandit.readthedocs.io/en/latest/
https://www.checkmarx.com/

