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ABSTRACT	

1	Introduction	
This	paper	explores	various	strategies	to	enhance	neural	network	performance,	including	adjustments	

to	network	architecture,	selection	of	activation	 functions	and	optimizers,	and	regularization	techniques.	
Hyperparameter	optimization	is	a	widely	recognized	approach	for	improving	model	performance	[2],	with	
methods	 such	as	grid	 search,	 genetic	 algorithms,	 and	particle	 swarm	optimization	 (PSO)	 [3]	previously	
utilized	to	identify	optimal	solutions	for	neural	networks.	However,	these	techniques	can	be	complex	and	
challenging	for	beginners.	Consequently,	this	research	advocates	for	the	use	of	SSO,	a	straightforward	and	
effective	 method	 initially	 applied	 to	 the	 LeNet	 model	 in	 2023	 [4].	 SSO	 optimizes	 various	 parameters,	
including	kernel	number,	size,	stride,	number	of	units	in	fully	connected	layers,	and	batch	size,	but	has	not	
previously	focused	on	activation	functions,	optimizers,	or	regularization.	These	elements	are	the	focus	of	
the	 current	 study.	 Additionally,	 as	 Graph	 Convolution	 Neural	 Networks	 (GCN)	 also	 incorporate	
convolutional	structures,	SSO	is	applied	to	GCN	models	as	well.	The	primary	contributions	of	this	study	are:	
1.	Demonstrating	the	applicability	of	SSO	to	GCN.	
2.	Highlighting	importance	of	choosing	activation	functions	and	optimizers	over	structural	modifications.	
3.	Providing	a	systematic	approach	to	identify	effective	parameters	through	SSO.	

2	The	Proposed	Method	

The	SSO	algorithm	is	characterized	by	its	straightforwardness.	The	update	mechanism	for	SSO	is	detailed	
in	Table	1.	

Table	1.	Update	mechanism	of	SSO	[3]	

0	<=	random	variable	<	Cg	 xi,j	=	gj	
Cg	<=	random	variable	<	Cp	 xi,j	=	pi,j	
Cp	<=	random	variable	<	Cw	 xi,j	=	xi,j	(no	change)	
Cw	<=	random	variable	<=	1	 xi,j	=	random	value	

The	update	of	 each	variable	 xi,j	within	 a	 solution	vector	Xi	 =	 (xi,1,	 xi,2,	…)	 is	 determined	by	 a	 random	
variable	between	0	and	1.	Here,	gj	represents	the	variable	from	the	best	solution,	and	pi,j	denotes	the	variable	
from	the	original	solution.	The	probabilities	Cg,	Cp	and	Cw	dictate	the	 likelihood	that	the	updated	xi,j	will	
match	gj,	pi,j,	xi,j,	and	a	random	value,	respectively,	set	at	0.4,	0.7,	and	0.9	in	this	study.	The	experimental	
configurations	 for	 GCNs	 are	 detailed	 in	 Tables	 2,	 highlighting	 the	 extensive	 range	 of	 variables	 or	
hyperparameters	involved. 
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Table	2:	Experiment	setting	

Variable	 Hyperparameter	 Range	
x1	 No.	of	conv	layers	 1	-	5	
x2	 Optimizer	 Adam/AdamW/	

Adagrad/Amsgrad	
x3	 Activation	function	 Leaky	ReLU/ReLU/	

Tanh	
x4	 Patience	for	early	stop	 100	-	200	
x5	 No.	of	epochs	 200	-	2000	

x6	–	x10	 No.	of	neurons	in	1st	–	5th	layers	 16	-	128	
x11	 Dropout	rate	 0.4	–	0.8	
x12	 Learning	rate	 0.001	-	0.1	

x13	-	x17	 Weight	decay	in	different	conv	
layers	

5e-4	–	0.01	

x18	 Weight	decay	in	fc	layer	 5e-4	–	0.01	

3	Experiment	

In	this	study,	GCNs	employed	the	Cora,	Citeseer,	and	Pubmed	datasets.	All	experiments	were	conducted	
using	Python	3.10.12	and	Pytorch	2.2.1	on	Google	Colab,	executed	on	an	Intel®	Xeon®	CPU	@	2.00GHz	with	
16	GB	of	RAM	and	an	NVIDIA	Tesla	T4	GPU.	
The	application	of	the	Simplified	Swarm	Optimization	(SSO)	algorithm	involved	three	steps:	

1. Conduct	an	initial	run	to	identify	the	optimal	activation	function	and	optimizer	without	constraints.	
2. With	the	activation	function	and	optimizer	fixed,	determine	the	optimal	network	structure	and	other	

hyperparameters	such	as	dropout	rate	or	weight	decay.	
3. Optionally,	implement	a	learning	rate	scheduler	or	data	augmentation	upon	finding	the	optimal	solution	

if	deemed	necessary.	
The	results,	indicating	the	optimal	activation	function	and	optimizer,	are	presented	in	Figures	1	to	2.	

	 	
Fig.	1.	Relationship	between	activation	function	and	

accuracy	
Fig.	2.	Relationship	between	optimizer	and	accuracy	

Following	 steps	 2,	 the	 SSO	 algorithm	 identified	 an	 optimal	 solution	with	 the	 best	 activation	 function	
(Tanh)	and	optimizer	(Adagrad),	as	detailed	in	Tables	3.	
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Table	3.	Result	of	GCN	experiment	

Dataset	 Method	 Accuracy	
Cora	 GCN	[5]	

(ReLU)	
0.8150	

SSO-GCN	
(Tanh)	

0.8348	

Citeseer	 GCN	[5]	
(ReLU)	

0.7030	

SSO-GCN	
(Tanh)	

0.7262	

PubMed	 GCN	[5]	
(ReLU)	

0.7900	

SSO-GCN	
(Tanh)	

0.7968	

4	Conclusion	

This	research	demonstrates	that	SSO	is	an	effective	method	for	identifying	optimal	solutions	in	GCN.	
SSO	 systematically	 suggests	 crucial	 hyperparameters,	 such	 as	 activation	 functions	 and	 optimizers.	
Additionally,	 SSO's	 applicability	 extends	 to	 other	 neural	 network	 architectures.	 Currently,	 we	 are	 also	
conducting	research	to	make	SSO	applicable	to	more	different	neural	networks.	For	future	work,	we	think	
SSO	potentially	can	improve	the	test	case	generation	[6],	test	prioritization	[7],	deep	learning	process	[8],	
and	blockchain	latency	[9,	10].	
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