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Abstract
One of the greatest challenges in the area of applied mathematics continues to be the 
design of numerical methods capable of approximating the solution of partial differential 
equations quickly and accurately. One of the most important equations, due to the hydraulic 
and transport applications it has, and the large number of difficulties that it usually presents 
when solving it numerically is the Diffusion Equation.
 
In the present work, a Method of Lines applied to the numerical solution of the said 
equation in irregular regions is presented using a scheme of Generalized Finite Differences. 
The second-order finite difference method uses a central node and 8 neighbor points in 
order to address the spatial approximation. A series of tests and numerical results are 
presented, which show the accuracy of the proposed method.
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1. Introduction
When a substance is been transported with a speed equal to zero, i.e. no flow moves it, then, according to the 
transport equation [1], the initial profile of the substance should remain the same as time goes by, maintaining the 
substance concentration at each point in the fluid.

However, in practice, this does not happen due to molecular diffusion; this is due to the molecules being in constant 
motion, causing collisions and rebounds in different directions. The molecules will tend to separate, or diffuse, within 
the flow. In general, this movement moves from areas with a higher density of molecules to areas with a lower 
density; this is called diffusion and can be described by a well-known Partial Differential Equation:

∂u
∂t = ν∇2u (1)

where ν  represents the diffusion coefficient, which tells how easy a substance diffuses in a medium.

In the past years, many people have worked in different methods to achieve good numerical solutions to this 
equation, involving a great variety of modern and classical techniques. Nevertheless, even though a large number of 
numerical methods have been proposed to solve it, a large number of these have a rather limited application to real-
world scenarios since they are designed for regular regions.

This is due to the fact that the spatial discretization of the diffusion equation imposes bounds on the time step size in 
order to achieve numerical stability. However, the use of semidiscretization schemes allows for overcoming many 
stability issues by using well-known and widely used one-step methods for ordinary initial value problems. For 
example, in Manshoor et al. [2], a Method of Lines, involving solutions with a  Runge-Kutta method, is presented along 
with its stability analysis; the results presented show that it is possible to use this kind of method to compute 
numerical solutions of the equation, yet, the regions where the method is tested are unidimensional regions. On the 
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side of the Generalized Finite Difference methods, Ureña et al. [3] present a scheme to achieve numerical solutions 
using this method; the results presented in this work show that it is possible to solve different Partial Differential 
Equations using finite differences over non-regular clouds of points; this work presents that the solutions obtained 
with this method satisfactorily match with the exact solution of the proposed tests. Some other authors, like Li et al. 
[4,5,6,7,8,9], and Wang et al. [10] have addressed a large number of applications. Nevertheless, the computational cost 
of the method as proposed in the aforementioned papers is high, so for each node of the cloud it is required to take 
up to twenty-six support nodes, even in 2D problems, which increases the computational cost of the implementation.

On the other hand, some variations of the presented generalized finite difference method for several transport 
equations, which produce satisfactory numerical solutions using a low-cost implementation for the spatial 
discretization were presented in [11,12,13,14,15]. Even though, the use of several straightforward time integration 
schemes remained an important issue to take into account.

For the case of interest of this work, it is important to obtain an approximation in generalized finite differences, for the 
spatial part, to the solution of the problem

∂
∂t u (x , y , t ) = ν ( ∂2

∂x2 u (x , y , t ) + ∂2

∂y2 u (x , y , t ))Ω × [0, T ]ν ∈ IR ,

u (x , y , 0) = g (x , y )(x , y ) ∈ Ω,

u (x , y , t )|∂Ω = g (x , y , t )(x , y ) ∈ Ωt ∈ [0, T ],

where Ω is a simply connected planar domain, and its boundary, and ∂Ω is a positively oriented Jordan polygon, as the 
domain shown in Figure 1.

Figure 1. Example of an Ω domain

 On the other hand, for the temporal discretization, a Method of Lines (MOL) is proposed [16]. The basic idea of the 
MOL is to solve a time-dependent Partial Differential Equation (PDE) by discretizing the spatial derivatives and then, 
integrating the semi-discretized problem as an Ordinary Differential Equations (ODE) system.

2. Proposed scheme

In order to apply a MOL for the case of the diffusion equation

∂
∂t u (x , y , t ) = ν ( ∂2

∂x2 u (x , y , t ) + ∂2

∂y2 u (x , y , t )) ,

it is possible to discretize the spatial derivatives applying a generalized finite differences method, for that it is 
convenient to considerate the approximation to the second or-er linear operator

https://www.scipedia.com/public/File:Tinoco_Guerrero_et_al_2022b_9158_fig01.png
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Lu = Auxx + Buxy + Cuyy + Dux + Euy + Fu , (2)

where A , B , C , D , E , and F  are given functions. Within an arbitrary distribution of nodes, like the one presented in 
Figure 2, it is possible to approximate its value at a node p0 = (x0, y0) using values of u  at some neighbor nodes pi = (xi ,
yi ), i  =  1, 2, …, q  [12]. For this work, a finite difference scheme is applied at the node p0, which can be written as a 
linear combination as

L0 = Γ0u (p0) + Γ1u (p1) + . . . + Γq u (pq ) = ∑
i =0

q

Γi u (pi ) . (3)

where Γ0, Γ1, ⋯, Γq  are adequate weighs.

Figure 2. Arbitrary distribution of p0 and its neighbors

 According to Strikwerda [17] and Thomas [18], a finite difference scheme L0 is consistent with the linear operator L  if 
the local truncation error τ  satisfies that

τ = [Lu ]p0 − [L0u ]p0 → 0 (4)

as p1, p2, …, pq → p0.

Using the six first terms of Taylor's series expansion, up to second order, of the consistency condition (4), it is possible 
to obtain the system

(
1 1 . . . 1
0 Δx1 . . . Δxq

0 Δy1 . . . Δyq

0 (Δx1)2 . . . (Δxq )2

0 Δx1Δy1 . . . Δxq Δyq

0 (Δy1)2 . . . (Δyq )2
) (

Γ0

Γ1

Γ2⋅⋅⋅
Γq

) = (
F (p0)
D (p0)
E (p0)

2A (p0)
B (p0)

2C (p0)
),

(5)

where Δxi = xi − x0 and Δyi = yi − y0. In order o solve this linear system, it is possible to separate the first equation of 
the system (5)

https://www.scipedia.com/public/File:Tinoco_Guerrero_et_al_2022b_5181_fig02.png
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∑
i =0

q

Γi − F (p0) = 0 (6)

and then, the problem defined by

(
Δx1 . . . Δxq

Δy1 . . . Δyq

(Δx1)2 . . . (Δxq )2

Δx1Δy1 . . . Δxq Δyq

(Δy1)2 . . . (Δyq )2 ) (
Γ1

Γ2⋅⋅⋅
Γq

) = (
D (p0)
E (p0)

2A (p0)
B (p0)

2C (p0)
) ,

(7)

can be solved using the reduced Cholesky factorization of its normal equations, as in Tinoco-Guerrero et al. [19], 
namely

MT MΓ = MT β ,

where

M = (
Δx1 . . . Δxq

Δy1 . . . Δyq

(Δx1)2 . . . (Δxq )2

Δx1Δy1 . . . Δxq Δyq

(Δy1)2 . . . (Δyq )2 ), Γ = (
Γ1

Γ2⋅⋅⋅
Γq

), β = (
D (p0)
E (p0)

2A (p0)
B (p0)

2C (p0)
) .

The value of Γ0 is then obtained from Eq.(6) assuming, for the case of the diffusion equation, F (p0) = 0.

Now, the scheme defined by Eq.(7) can be used to approximate the linear operator

Lu = ν ( ∂2u
∂x2 + ∂2u

∂y2 )
taking A = C = ν , and B = D = E = 0. The resulting Γi  coefficients, define the Finite-Difference Scheme

∂
∂t ui (t ) = ∑

j =0

q

Γj uj (t ), (8)

for diffusion equation, where ui (t ) is the approximation to the solution in the point pi = (xi , yi ), and pj  are the 
corresponding neighbor nodes of pi .

An important issue to be taken into account is the number of neighbors, q , to use in the scheme. In this paper, 8 
neighbor points were taken into account following the stencil shown in Figure 3.

 Once a discretization of the spatial operator is obtained, following the idea presented in Tinoco-Guerrero et al. [1], the 
semi-discretized PDE can be rewritten as a linear ODE system in time,

∂
∂t ui (t ) = ∑

j =0

8

Γj uj (t ), i = 1, ⋯, m ,

where m  is the total amount of grid points.
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Figure 3. Centered stencil used in the scheme

There exist several ways to approximate the solution of this ODE system, for example, it is possible to use a forward 
Euler method as

ui
k +1 − ui

k

Δt = ∑
j =0

8

Γj uj
k ,

nevertheless, this kind of implementation has proven to be conditionally stable and, in some cases, the stability 
conditions are difficult to accomplish.

Another way to solve this system is the Method of Lines, where each ui (t ) is solved for a fixed grid node pi = (xi , yi ), i.e. 
it is solved by “lines”. As we are now dealing with a set of ODEs, it is possible to use a Runge-Kutta method, to solve the 
ODE on each line in order to obtain stable and accurate results.

In the present work it is proposed to use Runge-Kutta [20] of 2nd, 3rd, and 4th order, as follows.

Second-order Runge-Kutta method

ui
k = ui

k −1 + Δt
2 (r1 + r2 ) ,

where

r1 = ui
k −1,

r2 = ui
k −1 + Δt

2 (r1) .

ui
k −1 = ∑

j =0

8

Γj uj
k −1

Third-order Runge-Kutta method

ui
k = ui

k −1 + Δt
6 (r1 + 4r2 + r3 ) ,

where

https://www.scipedia.com/public/File:Tinoco_Guerrero_et_al_2022b_6735_fig03.png
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r1 = ui
k −1,

r2 = ui
k −1 + Δt

2 (r1),

r3 = ui
k −1 + Δt (2r2 − r1),

ui
k −1 = ∑

j =0

8

Γj uj
k −1

Fourth-order Runge-Kutta method

ui
k = ui

k −1 + Δt
6 (r1 + 2r2 + 2r3 + r4 ) ,

where

r1 = ui
k −1,

r2 = ui
k −1 + Δt

2 (r1),

r3 = ui
k −1 + Δt

2 (r2),

r4 = ui
k −1 + Δt (r3),

ui
k −1 = ∑

j =0

8

Γj uj
k −1

in all the cases, k  represents the time level.

3. Numerical tests
To show the performance of the proposed scheme, the problem of obtaining a numerical solution to the diffusion 
equation in four different regions was proposed. The first region, denoted as A, corresponds to the unitary square, for 
comparison reasons, and the other three regions, denoted as B, C, and D, are non-rectangular planar domains. All the 
regions were scaled to fit on [0, 1] × [0, 1], and meshed with 21 × 21 nodes, following a variational procedure 
implemented in UNAMalla [21], then they were subdivided to obtain meshes with 41 × 41 nodes. The meshes for with 
21 × 21 nodes for each region can be seen in Figure 4.

https://www.scipedia.com/public/File:Tinoco_Guerrero_et_al_2022b_8782_fig04a.png
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Figure 4. Meshes of the test regions with 21×21 nodes

 For all the regions, two different tests were performed:

Test 1. Following the same idea as in Tinoco-Ruiz [22], where a well-known diffusion problem is presented, the initial 
and boundary conditions were taken from the closed-form solution:

g (x , y , t ) = e(−2π2νt )cos(πx )cos(πy ) .

Test 2. For comparison purposes, one of the tests presented in Sánchez et al. [23], was also taken into account; in this 
case, the initial and boundary conditions were taken from the closed-form solution:

g (x , y , t ) = e(−2π2νt )sin(πx + πy ) .

The time interval [0, 1] was subdivided with different discretizations, the number of time steps was chosen to satisfy 
the classical Courant condition [24]:

Δt =
( max (Δx ))2 + ( max (Δy ))2

2ν ,

where Δx  and Δy  are the spatial steps on each grid, taken from the meshes with 41 × 41 nodes, and ν = 0.2.

The norm of the quadratic error, at a k − the time level can be computed as

∥ ek ∥2 = ∑
i ,j

(ui ,j
k − Ui ,j

k )2Ai ,j

where Ui ,j
k  and ui ,j

k  are the approximated and theoretical solutions, respectively, at the i , j -th grid node, and Ai ,j  is the 
area of the polygon defined by the points Pi +1,j , Pi ,j +1, Pi −1,j  and Pi ,j −1.

Figure 5 presents a comparison of the numerical results obtained with the proposed scheme using the second-order 
Runge-Kutta approximation and the exact solutions for the test region A at time t = 0.66s. The approximation is 
presented on the left, and the exact solution on the right.
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Figure 5. Comparison between numerical results (left) and exact solution (right) for test region A. Test 1 (Top) and Test 2 (Bottom)

 Similarly, Figures 6, 7, and 8 present the respective comparisons for the regions B, C, and D.
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Figure 6. Comparison between numerical results (left) and exact solution (right) for test region B. Test 1 (Top) and Test 2 (Bottom)
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Figure 7. Comparison between numerical results (left) and exact solution (right) for test region C. Test 1 (Top) and Test 2 (Bottom)
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Figure 8. Comparison between numerical results (left) and exact solution (right) for test region D. Test 1 (Top) and Test 2 (Bottom)

 Figures 9 to 12 present the maximum value of the error ∥ ek ∥2 computed for all the regions. For each figure, both tests 
were performed in the regions meshed with 21 × 21 nodes and 41 × 41 nodes.
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Figure 9. Maximum ∥ek ∥2 computed for test region A with 21×21 nodes (Left) and 41×41 nodes (Right)

Figure 10. Maximum ∥ek ∥2 computed for test region B with 21×21 nodes (Left) and 41×41 nodes (Right)

Figure 11. Maximum ∥ek ∥2 computed for test region C with 21×21 nodes (Left) and 41×41 nodes (Right)
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Figure 12. Maximum ∥ek ∥2 computed for test region D with 21×21 nodes (Left) and 41×41 nodes (Right)

4. Conclusions
The numerical results show that the proposed method of Lines applied to the diffusion equation produces satisfactory 
numerical solutions. In the tests carried out, no spurious oscillations or instabilities were perceived. In addition, the 
results show that it is not necessary to “work more” by using higher Runge-Kutta methods; this scheme accomplishes 
better results when second-order Runge-Kutta is used to solve the Ordinary Differential Equations system.

It is possible to appreciate that with the presented discretizations, even with the fourth-order Runge-Kutta method, 
acceptable numerical results can be obtained. Additionally, the numerical results shown in Figures 9 to 12 show that a 
refinement of the spatial mesh can improve the approximations carried out with the method; as expected in these 
kinds of methods. It is worth mentioning that, for all the tests, a minimum number of time steps was used, taking into 
account the classical theory for the diffusion equation, which makes the computational cost of this method low, since it 
does not require making very small temporary discretizations, as in other cases.

Furthermore, the proposed scheme can produce stable results for non-standard initial conditions in highly irregular 
regions. For example, in the following videos

https://youtu.be/soUxe5uUY_U

https://youtu.be/479YeBjqmSs

 solutions of the diffusion equation are presented on domains that are geometrical approximations of real 
geographical locations, where the boundary conditions are fixed as 0 and the initial condition is stated as:

g (x , y ) = {1 x , y  in [0.35, 0.65]
0  All the other cases.

It is possible to see that even for these conditions in these regions, the scheme produces stable results that show the 
expected behavior.

An important remark is that, even when in this work structured convex grids were used, the development of the 
method doesn't take into account a particular data structure, i.e. this method can be used not only on structured 
meshes but also as a meshless method, that would be developed as future work.
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