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Abstract
The basic principle of robust parameter design (RPD) is to determine the optimal values of a 
set of controllable parameters that minimize the quality performance fluctuations caused by 
noise factors. The dual response surface method is one of the most widely applied 
approaches in RPD that tries to simultaneously minimize the deviation of the process mean 
from target and the process variance. However, there are situations when a compromise 
between the process mean and process variance is necessary, then the trade-off between 
them becomes an intractable problem. In order to solve the problem, we introduce a 
method that attempts to integrate the bargaining game theory concept into RPD to 
determine the optimal solutions. To verify the efficiency of our proposed method, the 
lexicographic weighted Tchebycheff method is applied to identify if the calculated solution is 
on the associated Pareto frontier. Two numerical examples show that our model works well 
in convex frontier cases. Lastly, several sensitivity analyses are conducted to examine the 
effect of the disagreement point value on the final solution.
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1. Introduction
Due to fierce competition among manufacturing companies and an increase in customer quality requirements, robust 
parameter design (RPD), an essential method for quality management, is becoming ever more important. RPD was 
developed to decrease the degree of unexpected deviation from the requirements that are proposed by customers or 
a DM and thereby helps to improve the quality and reliability of products or manufacturing processes. The central idea 
of RPD is to build quality into the design process by identifying an optimal set of control factors that make the system 
impervious to variation [1]. The objectives of RPD are set out to ensure that the process mean is at the desired level 
and process variability is minimized. However, in reality, a simultaneous realization of those two objectives sometimes 
is not possible. As Myers et al. [2] stated there are circumstances where the process variability is robust against the 
effects of noise factors but the mean value is still far away from the target. In other words, a set of parameter values 
that satisfies these two conflicting objectives may not exist. Hence, the tradeoffs that exist between the process mean 
and variability are undoubtedly crucial in determining a set of controllable parameters that optimize quality 
performance. 

The tradeoff issue between the process bias and variability can be associated with assigning different weights or 
priority orders. Weight-based methods assign different weights to the process bias and variability, respectively, to 
establish their relative importance and transform the bi-objective problem into a single objective problem. The two 
most commonly applied weight-based methods are the mean square error model [3] and the weighted sum model 
[4,5]. Alternatively, priority-based methods sequentially assign priorities to the objectives (i.e., minimization of the 
process bias or variability). For instance, if the minimization of the process bias is prioritized, then the process 
variability is optimized with a constraint of zero-process bias [6]. Other priority-based approaches are discussed by 
Myers and Carter [7], Copeland and Nelson [8], Lee et al. [9], and Shin and Cho [10]. In both weight-based and priority-
based methods, the relative importance can be assigned by the decision maker’s (DM) preference, which is obviously 
subjective. Additionally, there are situations in which the DM could be unsure about the relative importance of the 
process parameters in bi-objective optimization problems.

Therefore, this paper aims to solve this tradeoff problem from a game theory point of view by integrating bargaining 
game theory into the RPD procedure. First, the process bias and variability are considered as two rational players in 
the bargaining game. Furthermore, the relationship functions for the process bias and variability are separately 
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estimated by using the response surface methodology (RSM). In addition, those estimated functions are regarded as 
utility functions that represent players’ preferences and objectives in this bargaining game. Second, a disagreement 
point, signifying a pair of values that the players expect to receive when negotiation among players breaks down, can 
be defined by using the minimax-value theory which is often used as a decision rule in game theory. Third, Nash 
bargaining solution techniques are then incorporated into the RPD model to obtain the optimal solutions. Then, to 
verify the efficiency of the obtained solutions, a lexicographic weighted Tchebycheff approach is used to generate the 
associated Pareto frontier so that it can be visually observed if the obtained solutions are on the Pareto frontier. Two 
numerical examples are conducted to show that the proposed model can efficiently locate well-balanced solutions. 
Finally, a series of sensitivity analyses are also conducted in order to demonstrate the effects of the disagreement 
point value on the final agreed solutions.

This research paper is laid out as follows: Section 2 discusses existing literature for RPD and game theory applications. 
In Section 3, the dual response optimization problem, the lexicographic weighted Tchebycheff method, and the Nash 
bargaining solution are explained. Next, in Section 4, the proposed model is presented. Then in Section 5, two 
numerical examples are addressed to show the efficiency of the proposed method, and sensitivity studies are 
performed to reveal the influence of disagreement point values on the solutions. In Section 6, a conclusion and further 
research directions are discussed.

2. Literature review

2.1 Robust parameter design

Taguchi proposed both experimental design concepts and parameter tradeoff issues into a quality design process. In 
addition, Taguchi developed an orthogonal-array-based experimental design and used the signal-to-noise (SN) ratio to 
measure the effects of factors on desired output responses. As discussed by Leon et al. [11] in some situations, the SN 
ratio is not independent of the adjustment parameters, so using the SN ratio as a performance measure may often 
lead to far from the optimal design parameter settings. Box [12] also argued that statistical analyses based on 
experimental data should be introduced, rather than relying only on the maximization of the SN ratio. The controversy 
about the Taguchi method is further discussed and addressed by Nair et al. [13] and Tsui [14].

Based on Taguchi’s philosophy, further statistical based methods for RPD have been developed. Vining and Myers [6] 
introduced a dual response method, which takes zero-process bias as a constraint and minimizes the variability. 
Copeland and Nelson [15] proposed an alternative method for the dual response problem by introducing a 
predetermined upper limit on the deviation from the target. Similar approaches related to upper limit concept are 
further discussed by Shin and Cho [10] and Lee et al. [9] For the estimation phase, Shoemaker et al. [16] and Khattree 
[17] suggested a utilization of the response surface model approaches. However, when a homoscedasticity 
assumption for regression is violated, then other methods, such as the generalized linear model, can be applied [18]. 
Additionally, in cases where there is incomplete data, Lee and Park [19] suggested an expectation-maximization (EM) 
algorithm to provide an estimation of the process mean and variance, while Cho and Park [20] suggested a weighted 
least squares (WLS) method. However, Lin and Tu [3] pointed out that the dual response approach had some 
deficiencies and proposed an alternative method called mean-squared-error (MSE) model. Jayaram and Ibrahim [21] 
modified the MSE model by incorporating capability indexes and considered the minimization of total deviation of 
capability indexes to achieve a multiple response robust design. More flexible alternative methods that could obtain 
Pareto optimal solutions based on a weighted sum model were introduced by many researchers [4,5,22]. In fact, this 
weighted sum model is more flexible than conventional dual response models, but it cannot be applied when a Pareto 
frontier is nonconvex [23]. In order to overcome this problem, Shin and Cho [23] proposed an alternative method 
called lexicographic weighted Tchebycheff by using an L − ∞ norm.

More recently, RPD has become more widely used not only in manufacturing but also in other science and engineering 
areas including pharmaceutical drug development. New approaches such as simulation, multiple optimization 
techniques, and neural networks (NN) have been integrated into RPD. For example, Le et al. [24] proposed a new RPD 
model by introducing a NN approach to estimate dual response functions. Additionally, Picheral et al. [25] estimated 
the process bias and variance function by using the propagation of variance method. Two new robust optimization 
methods, the gradient-assisted and quasi-concave gradient-assisted robust optimization methods, were presented by 
Mortazavi et al. [26]. Bashiri et al. [27] proposed a robust posterior preference method that introduced a modified 
robust estimation method to reduce the effects of outliers on functions estimation and used non-robustness distance 
to compare non-dominated solutions. However, the responses are assumed to be uncorrelated. To address the 
correlation among multiple responses and the variation of noise factors over time, Yang et al. [28] extended offline 
RPD to online RPD by applying Bayesian seemingly unrelated regression and time series models so that the set of 
optimal controllable factor values can be adjusted in real-time.
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2.2 Game Theory

The field of game theory presents mathematical models of strategic interactions among rational agents. These models 
can become analytical tools to find the optimal choices for interactional and decision-making problems. Game theory 
is often applied in situations where the "roles and actions of multiple agents affect each other" [29]. Thus, game theory 
serves as an analysis model that aims at helping agents to make the optimal decisions, where agents are rational and 
those decisions are interdependent. Because of the condition of interdependence each agent has to consider other 
agents’ possible decisions when formulating a strategy. Based on these characteristics of game theory, it is widely 
applied in multiple disciplines, such as computer science [30], network security and privacy [31], cloud computing [32], 
cost allocation [33], and construction [34]. Because game theory has a degree of conceptual overlap with optimization 
and decision-making, three concepts (i.e., game theory, optimization, and decision-making) can often be combined, 
respectively. According to Sohrabi and Azgom [29], there are three kinds of basic combinations associated with those 
three concepts as follows: game theory and optimization, game theory and decision-making, game theory, 
optimization, and decision-making.

The first type of these combinations (i.e., game theory and optimization) further has two possible situations. In the first 
situation, optimization techniques are used to solve a game problem and prove the existence of equilibrium [35,36]. In 
the second situation, game theory concepts are integrated to solve an optimization problem. For example, Leboucher 
et al. [37] used evolutionary game theory to improve the performance of a particle swarm optimization (PSO) 
approach. Additionally, Annamdas and Rao [38] solved a multi-objective optimization problem by using a combination 
of game theory and a PSO approach. The second type kind of combination (i.e., game theory and decision-making) 
integrates game theory to solve a decision-making problem, as discussed by Zamarripa et al. [39] who applied game 
theory to assist with decision-making problems in supply chain bottlenecks. More recently, Dai et al. [40] attempted to 
integrate the Stackelberg leadership game into RPD model to solve a dual response tradeoff problem. The third type 
of combination (i.e., game theory, optimization and decision-making) integrates game theory and optimization to a 
decision-making problem. For example, a combination of linear programming and game theory was introduced to 
solve a decision-making problem [41]. Doudou et al. [42] used a convex optimization method and game theory to 
settle a wireless sensor network decision-making problem.

2.3 Bargaining game

A bargaining game can be applied in a situation where a set of agents have an incentive to cooperate but have 
conflicting interests over how to distribute the payoffs generated from the cooperation [43]. Hence, a bargaining 
game essentially has two features: Cooperation and conflict. Because the bargaining game considers cooperation and 
conflicts of interest as a joint problem, it is more complicated than a simple cooperative game that ignores individual 
interests and maximizes the group benefit [44]. Typical three bargaining game examples include a price negotiation 
problem between product sellers and buyers, a union and firm negotiation problem over wages and employment 
levels, and a simple cake distribution problem.

Significant discussions about the bargaining game can be addressed by Nash [45,46]. Nash [45] presented a classical 
bargaining game model aimed at solving an economic bargaining problem and used a numerical example to prove the 
existence of multiple solutions. In addition, Nash [46] extended his research to a more general form and 
demonstrated that there are two possible approaches to solve a two-person cooperative bargaining game. The first 
approach, called the negotiation model, is used to obtain the solution through an analysis of the negotiation process. 
The second approach, called the axiomatic method, is applied to solve a bargaining problem by specifying axioms or 
properties that the solution should obtain. For the axiomatic method, Nash concluded four axioms that the agreed 
solution called Nash bargaining solution should have. Based on Nash’s philosophy, many researchers attempted to 
modify Nash's model and proposed a number of different solutions based on different axioms. One famous modified 
model replaces one of Nash’s axioms in order to reach a fairer unique solution which is called the Kalai-Smorodinky’s 
solution [47]. Later, Rubinstein [48] addressed a bargaining problem by specifying a dynamic model which explains a 
bargaining procedure. 

3. Models and methods

3.1 Bi-objective robust design model

A general bi-objective optimization problem involves simultaneous optimization of two conflicting objectives (e.g., f1(x) 
and f2(x)) that can be described in mathematical terms as min [f1(x), f2(x)]. The primary objective of PRD is to minimize 
the deviation of performance of the production process from the target value and the variability of the performance, 
where this performance deviation can be represented by process bias and the performance variability can be 
represented by standard deviation or variance. For example, Koksoy [49], Goethals and Cho [50], and Wu and Chyu 
[51] utilized estimated variance functions to represent process variability. On the other hand, Shin and Cho [10,52], 
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Tang and Xu [53] used estimated standard deviation functions to measure process variability. Steenackers and 
Guillaume [54] discussed the effect of different response surface expressions on the optimal solutions, and they 
concluded that both standard deviation and variance can capture the process variability well but can lead to different 
optimal solution sets. Since it can be infeasible to minimize the process bias and variability simultaneously, a 
simultaneous optimization of these two process parameters, which are separately estimated by applying RSM, is then 
transformed into a tradeoff problem between the process bias and variability. This tradeoff problem can be formally 
expressed as a bi-objective optimization problem [23] as:

min [ { μ̂ (x) − τ }2, σ̂ 2(x)]T

s . t . x ∈ X
(1)

where x, X , τ , { μ̂ (x) − τ }2, and σ̂ 2(x) represent a vector of design factors, the set of feasible solutions under specified 
constraints, the target process mean value, and the estimated functions for process bias and variability, respectively.

3.2 Lexicographic weighed Tchebycheff method

A bi-objective robust design problem is generally addressed by introducing a set of parameters, determined by a DM, 
which represents the relative importance of those two objectives. With the introduced parameters, the bi-objective 
functions can be transformed into a single integrated function, thus the bi-objective optimization problem can be 
solved by simply optimizing the integrated function. One way to construct this integrated function is by using the 
weighted sum of the distance between the optimal solution and the estimated function. Different ways of measuring 
distance can lead to different solutions, and one of the most common methods is Lp  metric, where p = 1, 2, or ∞. When 
p = 1, the metric is called the Manhattan metric, whereas p = ∞, it is named the Tchebycheff metric [47]. Utopia point 
represents an initial point to apply L − ∞ metric in weighted Tchebycheff method and can be obtained by minimizing 
each objective function separately. The weak Pareto optimal solutions can be obtained by introducing different 
weights: 

min (∑
i =1

p

wi | fi (x) − ui
∗ |p )

1
p

(2)

where ui
∗ and wi  denote the utopia point values and weights associated with objective functions, respectively. When 

p = ∞, the above function (i.e., Eq.(2)) will only consider the largest deviation. Although the weighted Tchebycheff 
method is an efficient approach, its main drawback is that only weak non-dominated solutions can be guaranteed [56], 
which is obviously not optimal for the DM. So, Steuer and Choo [57] introduced an interactive weighted Tchebycheff 
method, which can generate every non-dominated point provided that weights are selected appropriately. Shin and 
Cho [23] introduced the lexicographic weighted Tchebycheff method to the RPD area. This method is proved to be 
efficient and capable of generating all Pareto optimal solutions when the process bias and variability are treated as a 
bi-objective problem. The mathematical model is shown below [23]:

min [ ξ , [ { μ̂ (x) − t }2 − u1
∗ ] + [ σ̂ 2 (x) − u2

∗ ] ]
s . t . λ [ { μ̂ (x) − t }2 − u1

∗ ] ≤ ξ

(1 − λ ) [ σ̂ (x) − u2
∗ ] ≤ ξ

x ∈ X

(3)

where ξ  and λ  represent a non-negative variable and a weight term associated with process bias and variability, 
respectively. The Lexicographic weighed Tchebycheff method is utilized as a verification method in this paper. 

3.3 Nash bargaining solution

A two-player bargaining game can be represented by a pair (U , d ), where U ⊂ R2 and d ⊂ R2. U = (u1(x), u2(x)) denotes 
a pair of obtainable payoffs of the two players, where u1(x) and u2 (x)  represent the utility functions for player 1 and 
2, respectively, and x = (x1, x2)  denotes a vector of actions taken by players. d  (d = (d1, d2)), defined as a disagreement 
point, represents the payoffs that each player will gain from this game when two players fail to reach a satisfactory 
agreement. In other words the disagreement point values are the payoffs that each player can expect to receive if a 
negotiation breaks down. Assuming ui (x) > di  where ui (x) ∈ U  for i = 1, 2, the set U ∩ { (u1(x), u2(x)) ∈ R2: u1(x
) ≥ d1; u2(x) ≥ d2}  is non-empty. As suggested by the expression of the Nash bargaining game (U , d ), the Nash 
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bargaining solution is affected by both the reachable utility range (U ) and disagreement point value (d ). Since U  
cannot be changed, rational players will decide a disagreement point value to optimize their bargaining position. 
According to Myerson [59], there are three possible ways to determine the value of a disagreement point. One 
standard way is to calculate the minimax value for each player

d1 = min max u1(x1, x2) and d2 = min max u2(x1, x2) (4)

To be more specific, Eq.(4) states that, given each possible action for player 2, player 1 has a corresponding best 
response strategy. Then, among all those best response strategies, player 1 chooses the one that returns the 
minimum payoff which is defined as a disagreement point value. Following this logic, player 1 can guarantee to receive 
an acceptable payoff. Another possible way of determining the disagreement point value is to derive the disagreement 
point value as an effective and rational threat to ensure the establishment of an agreement. The last possibility is to 
set the disagreement point as the focal equilibrium of the game.

Nash proposed four possible axioms that should be possessed by the bargaining game solution [58,59]:

Pareto optimality

Independence of equivalent utility representation (IEUR)

Symmetry

Independence of irrelevant alternatives (IIA)

The first axiom states that the solution should be Pareto optimal, which means it should not be dominated by any 
other point. If the notation f (U , d ) = ( f1 (U , d ) , f2 (U , d ) )  stands for the Nash bargaining solution to the bargaining 
problem (U , d ), then the solution u∗ = (u1 (x∗ ) , u2 (x∗ ) )  can be Pareto efficient if and only if there exists no other point 
u′ = (u1 (x′ ) , u2 (x′ ) ) ∈ U  such that u1 (x′ ) > u1 (x∗ ) ; u2 (x′ ) ≥ u2 (x∗ )  or u1 (x′ ) ≥ u1 (x∗ ) ;  u2 (x′ ) > u2 (x∗ ) . This implies that 
there is no alternative feasible solution that is better for one player without worsening the payoff for other players.

The second axiom, IEUR also referred to as scale covariance, states that the solution should be independent of positive 
affine transformations of utilities.In other words, if a new bargaining game (G , w ) exists, where G = {α1u1(x) + β1,
α2u2(x) + β2}  and w = (α1d1 + β1, α2d2 + β2 )  and where (u1(x), u2(x)) ∈ U  and α1 > 0, α2 > 0, then the solution for this 
new bargaining game (i.e., f (G , w )) can be obtained by applying the same transformations, which is demonstrated by 
Eq.(5) and Figure 1:

f (G , w ) = (α1f1(U , d ) + β1, α2f2(U , d ) + β2) (5)

 The third axiom “symmetry” represents that the solutions should be symmetric when the bargaining positions of the 
two players are completely symmetric. This axiom can be explained as if there is no information that can be used to 
distinguish one player from the other, then the solutions should also be indistinguishable between players [46].

As shown in Figure 2, the last axiom states that if U1 ⊂ U2 and f (U2, d ) is located within the feasible area U1, then 
f (U1,d ) = f (U2, d ) [59].
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Figure 1. Explanation of IEUR axiom

Figure 2. Explanation of IIA axiom

 The solution function introduced by Nash [46] that satisfies all the four axioms as identified before can be defined as 
follows:

f (U , d ) = Max∏
i =1,2

(ui (x) − di ) = Max (u1(x) − d1)(u2(x) − d2) (6)

where ui (x) > di , i = 1, 2. Intuitively, this function is trying to find solutions that maximize each player’s difference in 
payoffs between the cooperative agreement point and the disagreement point. In simpler terms, Nash selects an 
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agreement point (u1 (x∗ ) , u2(x∗)) that maximizes the product of utility gains from the disagreement point (d1, d2).

4. The proposed model

The proposed method attempts to integrate bargaining game concepts into the tradeoff issue between the process 
bias and variability, so that not only the interaction between process bias and variability can be incorporated but also a 
unique optimal solution can be obtained. The detailed procedure includes problem description, calculation for 
response functions and disagreement points, bargaining game based RPD model, and verification can be illustrated in 
Figure 3. As illustrated in Figure 3, the objective of the proposed method is to address the tradeoff between process 
bias and variability. In the calculation phase, a utopia point can be calculated based on separately estimated functions 
for the process bias and variability. However, this utopia point is in an infeasible region, which means that a 
simultaneous minimization of the process bias and variability is unachievable. The disagreement point is calculated by 
first, optimizing only one of the objective functions (i.e., the estimated process variability or the process bias function) 
and obtaining a solution set, and second, inserting the obtained solution set into the other objective function to 
generate a corresponding value. In the proposed model, based on the obtained disagreement point, the Nash 
bargaining solution concept is applied to solve the bargaining game. While in the verification phase, the lexicographic 
weighted tchebycheff is applied to generate the associated Pareto frontier, so that the obtained game solution can be 
compared with other efficient solutions. 

Figure 3. The proposed procedure by integrating of bargaining game into RPD

 An integration of the Nash bargaining game model involves three steps. First step, the two players and their 
corresponding utility function should be defined. The process bias can be defined as player A, and variability can be 
regarded as player B. The RSM-based estimated functions of both responses will be regarded as the players’ utility 
functions in this bargaining game (i.e., uA (x) and uB (x)) where x stands for a vector of controllable factors. Then, the 
goal of each player is to choose a set of controllable factors while minimizing each individual utility function. Second 
step, a disagreement point can be determined by applying a minimax-value theory as identified in Equation 7. Based 
on the tradeoff between the process bias and variability, the modified disagreement point functions can be defined as 
follows:

dA = max min uA (x) and dB = max min uB (x) (7)

In this way, both player A (i.e., the process bias) and player B (i.e., the process variability) are guaranteed to receive the 
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worst acceptable payoffs. In that case, the disagreement point, defined as the maximum minimum utility value, can be 
calculated by minimizing only one objective (process variability or bias). The computational functions for the 
disagreement point values can be formulated as:

{dA = uA (x)|x = arg min uB (x) and x ∈ X } (8)

and

{dB = uB (x)|x = arg min uA (x) and x ∈ X } (9)

Thus, the idea of the proposed method to find the optimal solutions is to continuously perform bargaining games 
from the specified disagreement point (dA , dB ) to Pareto frontier as illustrated in Figure 4. To be more specific, as 
demonstrated in Figure 4, if the convex curve represents all Pareto optimal solutions, then each point on the curve can 
be regarded as a minimum utility value for one of the two process parameters (i.e., the process variability or bias). For 
example, at point A, when the process bias is minimized within the feasible area, the corresponding variability value is 
the minimum utility value for the process variability, since other utility values would be either dominated or infeasible. 
These solutions may provide useful insight for a DM when the relative importance between process bias and variability 
is difficult to identify. 

Figure 4. Solution concepts for the proposed bargaining game based RPD method
 by integrating trafeoff between both process bias and variability

 In the final step, the Nash bargaining solution function Max (uA (x) − dA ) (uB (x) − dB )  is utilized. In an RPD problem, the 
objective of this problem is to minimize both process bias and variability, so a constraint of ui (x)< di , i = A , B  is applied. 
After the players, utility functions and the disagreement point are identified, the Nash bargaining solution function is 
applied as below:

max (uA (x) − dA ) (uB (x) − dB )
s . t . uA (x) ≤ dA , uB (x) ≤ dB , and x ∈ X

(10)

where

uA (x) = ( μ̂ (x) − τ )2, uB (x) = σ̂ 2(x) or σ̂ (x)

μ̂ (x) = α0 + xT α1 + xT Γx, and σ̂ 2(x) = β0 + xT β1 + xT Δx

σ̂ (x) = γ0 + xT γ1 + xT Ex
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and, where

x = [
x1
x2

⋮
xn −1
xn

], α1 = [
α̂ 1

α̂ 2

⋮
α̂ n −1

α̂ n

], β1 = [ β̂ 1

β̂ 2
⋮

β̂ n −1

β̂ n

], γ1 = [
γ̂ 1

γ̂ 2
⋮

γ̂ n −1

γ̂ n

], and Γ = [ α̂ 11 α̂ 12/2

α̂ 12/2 α̂ 22
⋯

α̂ 1n /2

α̂ 2n /2⋮ ⋱ ⋮

α̂ 1n /2 α̂ 2n /2 ⋯ α̂ nn
]

Δ = [ β̂ 11 β̂ 12/2

β̂ 12/2 β̂ 22

⋯
β̂ 1n /2

β̂ 2n /2⋮ ⋱ ⋮

β̂ 1n /2 β̂ 2n /2 ⋯ β̂ nn
], and E = [ γ̂ 11 γ̂ 12/2

γ̂ 12/2 γ̂ 22

⋯
γ̂ 1n /2

γ̂ 2n /2⋮ ⋱ ⋮

γ̂ 1n /2 γ̂ 2n /2 ⋯ γ̂ nn
]

where (dA , dB ), uA (x), uB (x), μ̂ (x), σ̂ 2(x), σ̂ (x), τ , X  and x represent a disagreement point, utility functions for player A 
and B, an estimated process mean function, process variance function, and standard deviation function, the target 
value, the feasible area, the vector of controllable factors, respectively. In Eq.(10), α1, β1, γ1, Γ, Δ, and E denote vectors 
and matrixes of estimated regression coefficients for the process mean, variance, and standard deviation, respectively. 
Here, the constraint ui (x) ≤ di , where i = A , B , ensures that the obtained agreement point payoffs will be at least as 
good as the disagreement point payoffs. Otherwise, there is no reason for players to participate in the negotiation.

5. Numerical illustrations and sensitivity analysis

5.1 Numerical example 1

 Two numerical examples are conducted to demonstrate the efficiency of the proposed method. As explained in section 
3.1, the process variability can be measured in terms of both the estimated standard deviation and variance functions, 
but the optimal solutions can be different if different response surface expressions are used. Therefore, the equations 
estimated in the original example were utilized for better comparison. Example 1 investigates the relationship 
between the coating thickness of bare silicon wafers (y ) and three controller variables: mould temperature (x1), 
injection flow rate (x2), and cooling rate (x3) [10]. A central composite design and three replications were conducted, 
and the detailed experimental data with coded values can be shown in Table 1. 

Table 1. Data for numerical example 1

Experiments number x1 x2 x3 y1 y2 y3 y4 ȳ σ

1 -1 -1 -1 76.30 80.50 77.70 81.10 78.90 2.28
2 1 -1 -1 79.10 81.20 78.80 79.60 79.68 1.07
3 -1 1 -1 82.50 81.50 79.50 80.90 81.10 1.25
4 1 1 -1 72.30 74.30 75.70 72.70 73.75 1.56
5 -1 -1 1 70.60 72.70 69.90 71.50 71.18 1.21
6 1 -1 1 74.10 77.90 76.20 77.10 76.33 1.64
7 -1 1 1 78.50 80.00 76.20 75.30 77.50 2.14
8 1 1 1 84.90 83.10 83.90 83.50 83.85 0.77
9 -1.682 0 0 74.10 71.80 72.50 71.90 72.58 1.06

10 1.682 0 0 76.40 78.70 79.20 79.30 78.40 1.36
11 0 -1.682 0 79.20 80.70 81.00 82.30 80.80 1.27
12 0 1.682 0 77.90 76.40 76.90 77.40 77.15 0.65
13 0 0 -1.682 82.40 82.70 82.60 83.10 82.70 0.29
14 0 0 1.682 79.70 82.40 81.00 81.20 81.08 1.11
15 0 0 0 70.40 70.60 70.80 71.10 70.73 0.30
16 0 0 0 70.90 69.70 69.00 69.90 69.88 0.78
17 0 0 0 70.70 71.90 71.70 71.20 71.38 0.54
18 0 0 0 70.20 71.00 71.50 70.40 70.78 0.59
19 0 0 0 71.50 71.10 71.20 70.00 70.95 0.66
20 0 0 0 71.00 70.40 70.90 69.90 70.55 0.51

 The fitted response functions for the process bias and standard deviation of the coating thickness are estimated by 
using LSM through MINITABsoftware package as:

μ̂ (x ) = 72.21 + xT α1 + xT Γx (11)
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where

α1 = [ 0.59
− 0.35
− 0.01] , and Γ = [ 0.28 0.045 0.83

0.045 1.29 0.755
0.83 0.755 1.85 ]

σ̂ (x ) = 2.55 + xT γ1 + xT Ex (12)

where

γ1 = [ 0.38
− 0.43
0.56 ] , and E = [ 0.49 − 0.235 0.36

− 0.235 0.61 − 0.06
0.36 − 0.06 0.85 ]

Based on the proposed RPD procedure as described in Figure 3, those two functions (i.e., process bias and standard 
deviation) as shown in Eqs.(11) and (12) are regarded as two players and also their associated utility functions in the 
bargaining game. The disagreement point as shown in Figure 4 can be computed as d = (dA , dB ) = (1.2398, 3.1504) by 
using Eqs.(8) and (9). Then, the optimization problem can be solved by applying Eq.(10) under an additional constraint, 

∑
l =1

3
xl

2 ≤ 3. which represents a feasible experiment region.

The solution (i.e., ( μ̂ (x∗) − τ )2 = 0.2967 and σ̂ (x∗) = 2.6101) are calculated by using a MATLAB software package. To 
perform a comparative study, the optimization results of the proposed method and the conventional dual response 
approach are summarized in Table 2. Based on Table 2, the proposed method provides slightly better MSE results in 
this particular numerical example. To check the efficiency of the obtained results, the lexicographic weighted 
Tchebycheff approach is adopted to procure an associated Pareto frontier which is shown in Figure 5.

Table 2. The optimization results of example 1

x1
∗ x2

∗ x3
∗

(μ̂ (x∗)−τ )2 σ̂ 2(x∗) MSE

Dual response model with WLS -1.4561 -0.1456 0.5596 0 3.0142 9.0854
Proposed model -0.8473 0.0399 0.2248 0.2967 2.6101 7.1093

Figure 5. The optimization results plot with the Pareto frontier of example 1

 As exhibited in Figure 5, the obtained Nash bargaining solution, which is plotted as a star, is on the Pareto frontier. By 

https://www.scipedia.com/public/File:News.png
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using the concept of bargaining game theory, the interaction between process bias and variability can be incorporated 
while identifying a unique tradeoff result. As result, this proposed method might provide well-balanced optimal 
solutions associated with the process bias and variability in this particular example.

5.2 Sensitivity analysis for numerical example 1

Based on the optimization results, sensitivity analysis for different disagreement point values are then conducted for 
verification purposes as shown in Table 3. While changing dB  values by both 10% increment and decrement with fixed 
dA  value at 3.1504, the changing patterns of the process bias and variability values are investigated in this sensitivity 
analysis.

Table 3. Sensitivity analysis results for numerical example 1 by changing dA

dA dB ((μ̂ (x)−τ )2−dA )∗(σ̂ (x)−dB ) x (μ (x∗)−τ )2 σ (x∗)

0.6589 3.1504 0.2218 [-1.0281 -0.0159 0.3253] 0.157 2.7085
0.7321 3.1504 0.2547 [-1.0017 -0.0078 0.3107] 0.1753 2.6930
0.8134 3.1504 0.2925 [-0.9739 0.0007 0.2953] 0.1953 2.6771
0.9038 3.1504 0.3361 [-0.9445 0.0098 0.2790] 0.2174 2.6608
1.0042 3.1504 0.3861 [-0.9137 0.0193 0.2619] 0.2416 2.6441
1.1158 3.1504 0.4435 [-0.8813 0.0293 0.2438] 0.2680 2.6272
1.2398 3.1504 0.5095 [-0.8473 0.0399 0.2248] 0.2967 2.6101
1.3638 3.1504 0.5775 [-0.8153 0.0499 0.2069] 0.3248 2.5946
1.5002 3.1504 0.6543 [-0.7820 0.0603 0.1881] 0.3549 2.5791
1.6502 3.1504 0.7412 [-0.7475 0.0711 0.1687] 0.3869 2.5637
1.8152 3.1504 0.8393 [-0.7120 0.0824 0.1486] 0.4209 2.5484
1.9967 3.1504 0.9499 [-0.6754 0.0939 0.1278] 0.4567 2.5335
2.1964 3.1504 1.0746 [-0.6381 0.1058 0.1065] 0.4942 2.5191
2.4160 3.1504 1.2148 [-0.6002 0.1180 0.0847] 0.5331 2.5052

 As shown in Table 3, if only dA  increases, the optimal squared bias (μ̂ (x∗) − τ )2 increases while the process variability 
σ̂ (x∗ )  decreasing. All of the optimal solutions obtained by using the proposed methods are plotted as circles and 
compared with the Pareto optimal solutions generated by using the lexicographic weighted Tchebycheff method. 
Clearly, the obtained solutions are on the Pareto frontier, as shown in Figure 6.

Figure 6. Plot of sensitivity analysis results with the Pareto frontier for numerical example 1 by changing dA

https://www.scipedia.com/public/File:Draft_Shin_691882792-image7.png
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 On the other hand, if dA  is considered as a constant and dB  is changed by 5% each time, the transformed data is 
summarized and plotted in Table 4 and Figure 7, respectively.

Table 4. Sensitivity analysis results for numerical example 1 by changing dB

dA dB ((μ̂ (x)−τ )2−dA )∗(σ̂ (x)−dB ) x (μ̂ (x∗)−τ )2 σ̂ (x∗)

1.2398 2.4377 0.0076 [-0.2082 0.2495 -0.1539] 0.9764 2.4089
1.2398 2.5660 0.0592 [-0.4198 0.1770 -0.0212] 0.7286 2.4501
1.2398 2.7011 0.1394 [-0.5607 0.1307 0.0618] 0.5746 2.4916
1.2398 2.4832 0.2425 [-0.6726 0.0948 0.1262] 0.4595 2.5324
1.2398 2.9929 0.3664 [-0.7666 0.0651 0.1795] 0.3690 2.5721
1.2398 3.1504 0.5095 [-0.8473 0.0399 0.2248] 0.2967 2.6101
1.2398 3.3079 0.6626 [-0.9141 0.0192 0.2621] 0.2412 2.6444
1.2398 3.4733 0.8316 [-0.9727 0.0011 0.2946] 0.1962 2.6764
1.2398 3.6470 1.0162 [-1.0241 -0.0147 0.3231] 0.1597 2.7061
1.2398 3.8293 1.2159 [-1.0692 -0.0285 0.3480] 0.1303 2.7334
1.2398 4.0208 1.4308 [-1.1088 -0.0406 0.3698] 0.1065 2.7583

Figure 7. Plot of sensitivity analysis results with the Pareto frontier for numerical example 1 by changing dB

 As demonstrated by Table 4, the value of (μ̂ (x∗) − τ )2 declines while σ̂ (x∗ )  grows if dB  is increased and dA  is kept 
constant. However, all of the solution points are still on the Pareto frontier, as shown in Figure 7.

5.3 Numerical example 2

In the second example [20], an unbalanced data set is utilized to investigate the relationship between coating 
thickness (y ), mould temperature (x1) and injection flow rate (x2). A 32 factorial design with three levels as -1, 0, and +1 
is applied as shown in Table 5.

Table 5. Experimental data for example 2

Experiments number x1 x2 y1 y2 y3 y4 y5 y6 y7 ȳ σ2

1 -1 -1 84.3 57.0 56.5 65.93 253.06
2 0 -1 75.7 87.1 71.8 43.8 51.6 66.00 318.28
3 1 -1 65.9 47.9 63.3 59.03 94.65
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4 -1 0 51.0 60.1 69.7 84.8 74.7 68.06 170.35
5 0 0 53.1 36.2 61.8 68.6 63.4 48.6 42.5 53.46 139.89
6 1 0 46.5 65.9 51.8 48.4 64.4 55.40 83.11
7 -1 1 65.7 79.8 79.1 74.87 63.14
8 0 1 54.4 63.8 56.2 48.0 64.5 57.38 47.54
9 1 1 50.7 68.3 62.9 60.63 81.29

 Based on Cho and Park [20], a weighted least square (WLS) method was applied to estimate the process mean and 
variability functions as:

μ̂ (x) = 55.08 + xT α1 + xT Γx (13)

where

α1 = [ − 5.76
− 0.52] , and Γ = [ 5.51 − 0.92

− 0.92 5.47 ]
σ̂ 2(x) = 154.26 + xT β1 + xT Δx (14)

where

β1 = [ − 39.34
− 93.09] , and Δ = [ − 38.31 22.07

22.07 17.81]
Applying the same logic as utilized in example 1, the ranges for the process bias and variability are calculated by 
[12.0508, 420.25] and [45.53, 310.39], respectively. The disagreement points are computed as dA = 63.0436 and dB =
112.0959. Applying Eq.(10), the optimal solutions can be obtained as follows: (μ̂ (x∗) − τ )2 = 23.6526 and σ̂ 2(x∗) =
58.3974. Based on the optimization results of both the proposed method and the conventional MSE model as 
demonstrated in Table 6, the optimization results of the proposed method provide a significantly small MSE compared 
to the conventional MSE model in this particular example.

Table 6. The optimization results of example 2

x1
∗ x2

∗ |μ̂ (x∗)−τ | σ̂ 2(x∗) MSE

MSE model 0.998 0.998 7.93 45.66 108.48
Proposed model 1.000 0.4440 4.8606 58.3974 82.023

 A Pareto frontier including all non-dominated solutions can be obtained by applying a lexicographic weighted 
Tchebycheff approach. As illustrated by Figure 8, the Nash bargaining solution is on the Pareto frontier, which may 
clearly verify the efficiency of the proposed method.

5.4 Sensitivity analysis for numerical example 2

Applying the same logic for example 2, dB  is kept constant as dA  is changed by 10%. Table 7 exhibits the effect of 
changes in dA , and Figure 9 demonstrates the efficiency of the calculated solutions.

Table 7. Sensitivity analysis results for numerical example 2 by changing dA

dA dB ((μ̂ (x)−τ )2−dA )∗(σ̂ 2(x)−dB ) x (μ̂ (x∗)−τ )2 σ̂ 2(x∗)
37.2266 112.0959 790.0487 [ 0.9510 0.3554] 19.9778 66.2928
41.3629 112.0959 986.2591 [0.9813 0.3624] 21.2437 63.0751
45.9588 112.0959 1218.3 [1.0000 0.3751] 22.2248 60.7647
51.0653 112.0959 1482.5 [1.0000 0.3978] 22.6267 59.9662
56.7392 112.0959 1780.6 [1.000 0.4208] 23.0925 59.1766
63.0436 1120959 2116.7 [1.0000 0.4440] 23.6256 58.3974
69.3480 112.0959 2457.5 [1.0000 0.4653] 24.1686 57.7026
76.2828 112.0959 2837.1 [1.0000 0.4867] 24.7721 57.0185
83.9110 112.0959 3259.8 [1.0000 0.5083] 25.4386 56.346
92.3021 112.0959 3730.5 [1.0000 0.5300] 26.1709 55.686

101.5323 112.0959 4254.2 [1.0000 0.5518] 26.9716 55.0393
111.6856 112.0959 4836.8 [1.0000 0.5738] 27.8435 54.407
122.8541 112.0959 5484.6 [1.0000 0.5958] 28.7892 53.7896
135.1396 112.0959 6204.7 [1.0000 0.6179] 29.8115 53.1879
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Figure 8. The optimization results plot with the Pareto frontier of example 2]]

Figure 9. Plot of sensitivity analysis results with the Pareto frontier for numerical example 2 by changing dA

 On the other hand, another sensitivity analysis is conducted by changing dB  with 10% increment and decrement while 
holding dA  at a fixed value (63.0436) as shown in Table 8 and plotted in Figure 10.

Table 8. Sensitivity analysis results for numerical example 2 by changing dB
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dA dB ((μ̂ (x)−τ )2−dA )∗(σ̂ 2(x)−dB ) x (μ̂ (x∗)−τ )2 σ̂ 2(x∗)
63.0436 48.2536 15.4253 [1.0000 0.9166] 52.7429 46.7561
63.0436 53.6151 102.0493 [1.0000 0.8094] 42.2936 48.6971
63.0436 59.5724 245.6339 [1.0000 0.7284] 36.1567 50.4366
63.0436 66.1915 438.1362 [1.0000 0.6620] 32.0892 52.0372
63.0436 73.5461 677.0693 [1.0000 0.6055] 29.2313 53.5218
63.0436 81.7179 962.4337 [1.0000 0.5567] 27.1579 54.8985
63.0436 90.7977 1295.7 [1.0000 0.5140] 25.6262 56.1698
63.0436 100.8863 1679.3 [1.0000 0.4767] 24.4832 57.3359
63.0436 112.0959 2116.7 [1.0000 0.4440] 23.6256 58.3974
63.0436 123.3066 2562.1 [1.0000 0.4181] 23.0342 59.2691
63.0436 135.6372 3058.4 [1.0000 0.3951] 22.5764 60.0593
63.0436 149.2010 3609.9 [1.0000 0.3748] 22.2214 60.7721
63.0436 164.1211 4223.7 [0.9829 0.3628] 21.3147 62.9025
63.0436 180.5332 4919.9 [0.9512 0.3554] 19.9864 66.2698
63.0436 198.5865 5708.3 [0.9199 0.3472] 18.7938 69.5842

Figure 10. Plot of sensitivity analysis results with the Pareto frontier for numerical example 2 by changing dB

 In general, for both cases, an increase in the value of di  will increase the corresponding bargaining solution value. For 
example, an increasement of dA  will lead to an increase in process bias and a decrease in the variability value. This 
conclusion also makes sense from the perspective of game theory since it can be explained as disagreement point 
monotonicity [60] which can be defined as:

For two points, d = (dA , dB )  and d′ = (dA′ , dB′ ) , if di′ ≥ di , dj
, = dj ,  then fi (U , d′ ) ≥ fi (U , d ) ; j ≠ i , and i , j ∈ {A , B}, where 

fi (U , d′ )  and fi (U , d )  represent the solution payoff for player i after and before the incensement of his disagreement 
point payoff, respectively. More specifically, the more disagreement point value (di ) a player demands for participation 
in an agreement, the more the player will get. Although, a gain achieved by one player comes at the expense of the 
other player. This is because if the agreed solution is not an improvement for one player, then the player would not 
have any incentive to participate in the bargaining game. However, in the RPD case, the objective for a player is to 
minimize instead of maximize the utility value, so the less di  a player proposes, the higher the requirement the player 
is actually proposing to participate in a bargaining game.

6. Conclusion and future direction
In a robust design model, when considering the simultaneous minimization of both process bias and variability as a bi-
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objective problem, there is an intractable tradeoff problem between them. Most existing methods tackle this tradeoff 
problem by either prioritizing a process parameter or assigning weights to process parameters to indicate the relative 
importance determined by a DM. However, the DM may struggle with assigning the weights or priority orders to 
different types and units of responses. Furthermore, the prioritizing or combining response procedure involves a 
certain degree of subjectivity, as different DMs may have different viewpoints on which process parameter is more 
important. Thus, in this paper, a bargaining game-based RPD method is proposed to solve this tradeoff problem by 
integrating Nash bargaining solution techniques and letting the two objectives (e.g., process bias and variability) 
“negotiate”, so that unique, fair, and efficient solutions can be obtained. These solutions can provide valuable 
suggestions to the DM, especially when there is no prior information of the relative importance for the process bias 
and variability. To inspect the efficiency of the obtained solutions, the associated Pareto frontier was generated 
through applying the lexicographic weighted Tchebycheff method, and thus, the solution position was visually 
confirmed. As validated by the two numerical examples, compared with the conventional dual response surface 
method and mean squared error method the proposed method can provide more efficient solutions based on MSE 
criterion. In addition, a number of sensitivity studies were conducted to investigate the relationship between the 
disagreement point values (di ) and the agreement solutions. This research illustrates the possibility of combining the 
concept of game theory with an RPD model. For further study, the proposed method will be extended to solve the 
multiple response optimization problems. The tradeoff issue among multiple responses can be addressed by applying 
the multilateral bargaining game theory, where each quality response is regarded as a rational player who attempts to 
reach an agreement with others on which set of control factors to choose. In the game, each response proposes a 
solution set that optimizes the respective estimated response function and is subject to the expectations of the other 
responses.
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