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Abstract
The majority of the flowshop scheduling literature focuses on regular performance 
measures like makespan, flowtime etc. In this paper a flowshop scheduling problem is 
addressed where the objective is to minimize completion time variance (CTV). CTV is a non-
regular performance measure that is closely related to just-in-time philosophy. A Microsoft 
Excel spreadsheet-based genetic algorithm (GA) is proposed to solve the problem. The 
proposed GA methodology is domain-independent and general purpose. The flowshop 
model is developed in the spreadsheet environment using the built-in formulae and 
function. Addition of jobs and machines can be catered for without the change in the basic 
GA routine and minimal change to the spreadsheet model. The proposed methodology 
offers an easy to handle framework whereby the practitioners can implement a heuristic-
based optimization tool with the need for advanced programming tools. The performance 
of the proposed methodology is compared to previous studies for benchmark problems 
taken from the literature. Simulation experiments demonstrate that the proposed 
methodology solves the benchmark problems efficiently and effectively with a reasonable 
accuracy. The solutions are comparable to previous studies both in terms of computational 
time and solution quality.
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1. Introduction
Manufacturing plays a vital role in developing the economy as well as the human resources. In today’s competitive 
world efficent use of materials and resources has become imperative to generate improved revenues. Scheduling 
research primarily focuses on regular performance measures where the objective function increases as a function of 
job completion times. Commonly used regular performance measures are: makespan, mean flowtime, tardiness, etc. 
For regular performance measures, the determination of an optimal solution is relatively simple. Most manufacturing 
compnaies nowadays prefer just-in-time (JIT) service or production systems. Earliness and tardiness are both 
undesirable in a JIT environment. CTV is one such non-regular perfomance measure that penalizes earliness as well as 
tardiness. It is also closely related to quality of service provided to each customer. CTV minimization is especially 
important when all jobs must spend the same time in the system, i.e., each job requires the same treatment. Smaller 
CTV ensures more stable service. CTV applications are found in many real-world applications such as production 
planning and internet data packet dispatching.

The first reported instance of the application of CTV minimization was proposed by Merten and Muller [1] in computer 
systems for solving the file organization problem where uniform response time was desired to be provided to users’ 
requests to retrieve data files. Research has shown that an optimal CTV solution has a V -shape property [2]. In a V
-shaped optimal solution, the jobs before the smallest job are scheduled in decreasing order of the processing times, 
while the jobs after the smallest job are scheduled in an ascending order of the processing times. 

Since the first application of CTV by Merten and Muller [1], most of the scheduling literature addressed CTV 
minimization in a single machine environment, e.g., Nasini and Nessah [3], Wang and Lu [4], Viswanathkumar and 
Srinivasan [5], Sharma [6], Gupta et al. [7], etc. Minimization of CTV is considered NP -hard even for a single machine 
case [8]. However, very little work has been reported for CTV minimization in a flowshop environment.

Flowshop scheduling research has attracted wide attention among researchers due to its many industrial as well as 
economic applications. Some of the recent reviews highlighting the importance of flowshop scheduling has been 
presented by Çolak and Keskin [9], Lee and Loong [10] and González-Neira et al. [11]. In a regular flowshop, a set of n
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-jobs are required to be processed on m -groups of machines. Each of the n  jobs follows the same process sequence. 
Minimization of CTV in a flowshop ensures uniform turnover of jobs and delivery to customer. 

2. Literature review
The first instance of CTV minimization was reported by Marangos et al. [12]. They applied a simulated annealing 
algorithm (SA) to minimize CTV in a two-machine flowshop. The authors reported that the proposed approach obtains 
a solution in the range of 5-10% of the lower bounds. Additionally, the SA algorithm can guarantee an optimal solution 
for problems having up to 10 jobs. Gowrishankar et al. [13] addressed CTV minimization in an n -jobs m -machine 
flowshop. The authors state that this is the first attempt to minimize CTV in an n -jobs m -machine flowshop. A breadth 
first branch & bound procedure as developed to solve the problem. Experimental analysis showed that the proposed 
method can effectively solve flowshop problems with CTV objective function.

Chandrasekaran et al. [14] applied a particle swarm optimization (PSO) algotithm to minimize CTV. Benchmark 
flowshop problems proposed by Taillard [15] are used to check the performance and efficiency of the proposed PSO. 
The authors reported that the results obtained are better when compared with the previously published results. Gajpal 
and Rajendran [16] applied an ant colony optimization (ACO) algorithm to minimize CTV. The authors developed a new 
ACO algorithm (NACO) for the problem. The performance of the proposed NACO is compared with exisiting ACO 
algorithms. Experimental analysis showed that, on average, the proposed ACO finds better results as compared to 
exisiting ACO algorithms.

Chandrasekaran et al. [17] proposed a PSO algorithm for multi-objective flowshop scheduling problems where the 
objective is simultaneous minimization of flowtime, makespan and CTV. The performance of the proposed PSO is 
enhanced by a local search mechanism. Experimental analysis showed that the proposed PSO yields more non-
dominated solutions as compared to other approaches. Chen et al. [18] considered CTV minimization in an 
unrestricted parallel machine scheduling problem. A heuristic algorithm is proposed to solve the problem. The 
proposed heuristic algorithm can generate almost optimal schedules for small-sized problems. Ponnambalam et al. 
[19] proposed a discrete PSO to solve a multi-objective flowshop scheduling problem where the objective is 
simultaneous minimization of flowtime, makespan and CTV. Computational analysis showed that the proposed 
discrete PSO performs better in terms of quality of solution as compared to previous studies. Srirangacharyulu and 
Srinivasan [20] proposed a GA and a heuristic algorithm to minimize CTV in multi and single machine systems. 
Comparative analysis demonstrated that the propsed algorithms can provide better results as compared to the 
exisiting algorithms.

Li et al. [21] considerd minimization of CTV in an unrestricted parallel machine environment and proposed an efficient 
heuristic Wavy Assignment, Verified Schedule (WAVS). The proposed algorithm produces near optimal solutions for 
small sized problems while outperforming existing algorithms for large sized instances. Rameshkumar et al. [22] 
proposed two PSO algorithms: an ACO-inspired PSO and a discrete PSO. Extensive computational analysis was carried 
out to compare the performance of the two proposed algortithms with previous studies for Taillard [15] benchmark 
problems. On average, the proposed algorithm provides good and promising solutions. Krishnaraj et al. [23] proposed 
an adaptation of ACO to minimize CTV in n -jobs m -machines flowshop scheduling problem. Although the proposed 
algorithm does not provide best schedules for Taillard [15] benchmark problems, it does provide good and promising 
solutions for most of the instances. Mehta et al. [24] proposed a two-phase local search algorithm to minimise CTV in a 
permutation flowshop. In the first phase, an initial V -shaped solution is constructed using a local search method and 
then improved it to obtain a locally optimal V -shaped solution. In the second phase, any possible sequences are 
traversed that may improve the solution.

Eren [25] considerd minimization of CTV for a two-machine flowshop. A non-linear programming (NLP) method is 
proposed to solve the problem. The proposed algorithm can effectively solve problems up to 30 jobs. Problems up to 
500 jobs are solved using a heuristic method. The author demonstrated that the proposed algorithm is very practical in 
solving real-world problems more effectively than the NLP models. Lee et al. [26] considered minimization of total 
weighted completion time (TWCT) for identical parallel machine scheduling. A two-agent based solution method is 
used to solve the problem. For fewer number of jobs, a branch & bound procedure is also developed. Rajkanth et al. 
[27] considerd minimization of CTV for single and identical parallel machines. A heuristic method is proposed to solve 
the problem. The proposed heuristic method produces results better than the exisiting heuristics. It can also be 
modified and adapted to handle other non-regular performance measures like flow time variance and mean squared 
deviation as well as solve non-identical parallel machine problems.

Krishnaraj et al. [28] proposed a simulated annealing (SA) algorithm to minimize CTV in n -job m -machine flowshop 
shceduling problem. The proposed algorithm works in three phases. In the first phase, the algorithm minimizes CTV of 
jobs without right shifting of completion time (RSCT) of jobs. In phase two, the algorithm minimizes CTV of jobs with 
RSCT of jobs, except the last job. In phase three, sequences are converted to follow a V -shaped property with respect 
to processing time of jobs on the last machine, followed by RSCT except that of the last job so that the makespan and 
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the machine utilization in the shop floor remain the same. Extensive computational analysis was carried out with the 
existing heuristic algorithms. The proposed algorithm is able to find good results. Krishnaraj and Thiagarajan [29] also 
proposed a two-phase SA algorithm to minimize CTV in a flowshop environment. The performance of the proposed SA 
algorithm is tested on 90 benchmark flowshop problems from Taillard [15]. The proposed algorithm performs well in 
minimizing CTV especially in medium- and large-sized problems. 

In this paper, we address the minimization of CTV in a flowshop environment using a general-purpose domain-
independent GA embedded in a Microsoft Excel spreadsheet environment. The performance of the proposed 
methodology is compared with existing heuristics for a wide range of benchmark problems taken from the literature. 
Comparison is made with single machine, paralel machine and flowshop environments.

3. Problem definition & formulation of permutation flowshop scheduling problem

In a permutation flowshop shceduling problem, where the objective is to minimize completion time variance, n  jobs 
from a set of j = {1, 2, 3, ⋯, n} are to be processed on m  machines k = {1, 2, 3, ⋯, n}. Each job j  has a set of operations 
{oj 1, oj 2, oj 3, ⋯, ojk } that are required to be processed through m  machines requiring pjk  processing time.

Other assumptions used in the modeling of flowshop in this research application are as folows:

1. The number of n  jobs and m  machines are known before the planning horizon, i.e., t = 0.

2. All n  jobs follow the same routing through the machines.

3. There is an umlimited buffer between the machines.
4. A different machine is required for the processing of each of the ojk  operations and there is only one machine of 

its kind in the flowshop.

5. A particular machine can process only one job at any given time and similarly, every job can only be processed by 
only one machine.

6. All processing times pjk  are known and deterministic.

7. Setup times for any operation, if any, are included in the processing time pjk .

8. All machines are continuously available and there is no breakdown of machines.

9. Once started, an operation cannot be stopped, i.e., no pre-emption is allowed.

 The problem then is to efficiently schedule the job to minimize the completion time variance (CTV). CTV for n  jobs in a 
schedule is given by:

CTV = 1
n ∑

i =1

n

(Ci − C̄ )2

where Ci = completion time of job i

C̄ = 1
n ∑

i =1

n

Ci

n  = total number of jobs.

4. Proposed methodology

In the proposed methodology, a proprietry genetic algorithm Evolver 4.8 [30] is used for the optimization. Evolver 
works as an add-in to the Microsoft Excel spreadsheet. The flowshop model for minimization of CTV is developed 
within the spreadsheet using the buil-in functions and formulae.

Research shows that, in the past few decades, spreadsheets have been extensivly used in various fields of engineering. 
Spreadsheets are popular among the practitioners because they eliminate tedious and repetitive calculations. Some of 
the recent spreadsheet applications in engineering are: project scheduling [31], process planning and scheduling [32], 
airport ground crew scheduling [33], supply chain management (Amaral and Kuettner [34] and Othman et al. [35].

Evolver has also been used by many researchers for optimization problems of various applications. Some of the recent 
applications of using Evolver are: risk analysis of reservoir operation [36], choosing materials for eco-friendly buildings 



https://www.scipedia.com/public/Chaudhry_et_al_2022a 4

I. Chaudhry, I. Elbadawi, A. Rafique, A. Boudjemline, M. Boujelbene, M. Usman and M. Aichouni, Minimization of 
completion time variance in flowshops using genetic algorithms, Rev. int. métodos numér. cálc. diseño ing. (2022). 
Vol. 38, (2), 22

[37], energy efficient operation of submersible pumps [38], operational optimization of a heat pump system [39], 
optimization of repetitive scheduling [40], optimum crew selection for repetitive projects [41]. 

The use of Microsoft Excel and Evolver optimization software offers an easy-to-handle framework for the practitioner. 
This framework allows practitioners to implement a heuristic-based optimization tool without the need for advanced 
progamming skills. Furthermore, Microsoft Excel and Evolver offer a user-friendly interface and facilitates user 
specification of the optimization parameters without the need for any programming skills.

The schematic diagram of spreadsheet – GA component integration is shown in Figure 1.

Figure 1. Excel – GA component integration

Figures 2 and 3 show the pseudocode and flowchart respectively of the proposed algorithm.

Figure 2. Pseudocode of the proposed GA algorithm

4.1 Chromosome representation

Permutation representation for chromosome (solution) is required to be used for the minimization of CTV in a 
flowshop environment. To address a particular problem situation, Evolver has various solving methods. The Order 
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Figure 3. Flowchart of the proposed GA algorithm

Solving method of Evolver is used to handle permutation representation. Permutation representation is described by 
considering six jobs D-C-A-B-E-F. In a permutation representation, the order of the genes are changed to formulate 
new solution strings. Chromosome F-C-B-A-E-D would be one of the possible chromosome representing permutation 
representation while another could be B-F-A-C-E-D.

4.2 Reproduction and selection

Steady state reproduction method [42] is used in Evolver. Unlike other reproduction techniques used in GA, steady 
state reproduction method produces only one child in each generation. The fitness of the child solution is compared to 
the fitness of other chromosomes in the population. In case the child solution is fitter, it replaces the worst performing 
member of the population, else it is discarded. For selection, Evolver uses rank-based selection method.

4.3 Crossover operator

Crossover operator combines genes from two parents to formulate new solutions. Order crossover [43] is used in the 
Order solving method. Order crossover randomy selects genes from one parent, then finds their place in the second 
parent. The remaining genes are copied in the second parent in the same order as they appear in the first parent. This 
ensures that the sub-ordering in the original parents are preserved while creating some new sub-orderings. Consider 
the two representing solutions in Figure 4.

Figure 4. Example parents for order crossover

 The two cut points for each of the parents are indicated by green colour. The genes between the two cut points are 
copied in the child solution as they are in both parents, as shown in Figure 5.

https://www.scipedia.com/public/File:Review_623605406517_3720_Figure_3.jpg
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Figure 5. Partial child solutions

 Next, for child 1, starting from the second cut point of parent 1, the jobs from the second parent are copied, except 
those which are already in child 1, we get H-A-B- I-G. This sequence is placed in the first child. Similalry, the procedure 
is applied for child 2, where the genes are now copied from parent 1. The resulting child solutions would be as in 
Figure 6.

Figure 6. Final child solutions

4.4 Mutation operator

With successive iterations, the population loses diversity and gets stuck in local optima. Mutation operator ensures 
that diversity is maintained in the population. The order solving method performs order-based mutation [43]. In an 
order-based mutation, two positions are selected randomly, and then the genes in these position are swapped. For 
example, at position 3 and 6 in child 1 in Figure 6, we have genes C and F. By swapping these two genes, the resulting 
chromosome would be as shown in Figure 7.

Figure 7. Child solutions after mutation

5. Computation analysis

Simulation experiments were carried out to check the performance of the proposed methodology. Benchmark 
problems were taken from already published literature to validate the usefulness and performance of the proposed 
methodology. Evolver version 4.8 was used for the GA while Excel version 2003 was used to develop the flowshop 
models. The following GA parameters were used for the simulation experiments: crossover rate = 0.65, mutation rate = 
0.07 and population size = 70. Each of the benchmark problems was run for 30 replications. The simulation 
experiments were conducted on a 2nd generation i7 laptop computer with 8GB RAM.

Comparison is made with various heuristics developed in previous studies based on relative percentage deviation 
(RPD) from the best found solution among all heuristics. The RPD is calculated as follows:

RPD = 100 ×
(CTVproposed − CTVbest )

CTVbest

where

CTVpropsed  = completion time variance result found by the proposed methodology, and

CTVbest  = best completion time variance found among all previous heuristics.

A positive RPD means that the CTV result found by the given heuristic is worse than the best CTV result among all 
heuristics, while a negative RPD means that the result found by a given heuristics is worse than the best CTV result.
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5.1. Problem set 1
The first problem set is taken from Gupta et al. [7]. The data set is a single machine scenario with jobs ranging from 10 
to 20. The data set consists of 15 instances. Data for problem set 1 is presented in Table A1.

The perfomance of the proposed methodology is compared with results from GGA (GA by Gupta et al. [7]), HAS (hybrid 
simulated annealing algorithm by Mittenthal et al. [44]) and TSA (tabu search algorith by Al-Turki et al. [45]). The 
comparative analysis with three approaches is presented in Table 1.
 Table 1. Comparative analysis of proposed methodology with previous studies for data set 1

Prob Instance No of Jobs Optimum Solution GGA HAS TSA Proposed GA
P1 10 7027.96 0 0 0 0
P2 10 12269.76 0 0 0 0
P3 10 20903.36 0 0 0 0
P4 10 14094.01 0 0 0 0
P5 10 18884.8 0 0 0 0
P6 15 16052.2 0.0044 0.0066 0 0
P7 15 27082.8 0.0029 0 0 0
P8 15 29805.4 0.0060 0 0 0
P9 15 57713.76 0.0025 0.0024 0 0

P10 15 36005.18 0.0006 0.0002 0 0
P11 20 70843.39 0.1806 0.0192 0 0
P12 20 76050.66 0.0333 0.0001 0.0006 0
P13 20 58912.59 0.0669 0 0 0
P14 20 54589.11 0.1972 0.0028 0.0001 0
P15 20 50015.15 0.1093 0.0016 0.0003 0

Average RPD 0.0402 0.0022 0.0001 0.0000

 From Table 1, we can see that the average RPD for CGA, HAS, TSA and the proposed GA are 0.0402%, 0.0022%, 
0.0001% and 0%, respectively. It is clear that, compared to CGA, HAS and TSA, the proposed GA methodology was able 
to find an optimal solution for all problem instances. The computation time required to find the optimum solution was 
less than 2 secs.

5.2. Problem set 2
Problem set 2 is taken from Srirangacharyulu and Srinivasan [20]. Problem set 2 is also a sinlge machine scenario with 
jobs ranging from 15 to 25. The data set consists of nine instances. Data for problem set 2 is presented in Table A2.

The performance of the proposed methodology is compared with results from EC1.1 and EC1.2 (heuristic methods by 
Eilon and Chowdhury [2]), JJK (heuristic method by Kanet [46]), GGB (GA by Gupta et al. [7], MP (heuristic method by 
Prasad and Manna [47]), VS (verified spiral heuristic method by Ye et al. [48], HA (hybrid GA algorithm by 
Srirangacharyulu and Srinivasan [20]), SMH1 (heuristic algorithm by Rajkanth et al. [27]). The comparative analysis with 
three approaches is presented in Table 2.
Table 2. Comparative analysis of proposed methodology with previous studies for data set 2

Prob No of Jobs Optimum Result EC1.1 EC1.2 JJK MP GGB HA VS SMH1 Proposed GA
P1 15 38922.65 0.1669 0.1613 0.0003 0.0253 0.0003 0 0.0003 0.0012 0
P2 15 20102.38 0.2553 0.0882 0.0006 0.0049 0.0006 0 0.0006 0 0
P3 15 29217.09 0.0732 0.0061 0.0016 0.0016 0.0016 0 0.0016 0 0
P4 15 32551.32 0.1642 0.1351 0.0012 0.0072 0 0 0.0012 0 0
P5 20 64341.63 0.0898 0.0898 0.0030 0.0030 0.0009 0 0.0030 0 0
P6 20 51736.99 0.1830 0.1774 0.0049 0.0049 0.0474 0.0031 0.0049 0.0011 0
P7 25 107559.44 0.0550 0.0538 0.0003 0.0016 0.0002 0 0.0003 0.0003 0
P8 25 67358.88 0.0433 0.0434 0.0005 0.0006 0.0005 0 0.0005 0 0
P9 25 91018.42 0.0924 0.0686 0.0009 0.0013 0.0071 0.0006 0.0009 0.0015 0

Avg RPD 0.1248 0.0915 0.0015 0.0056 0.0065 0.0004 0.0015 0.0005 0

 From Table 2, we can see that the average RPD for EC1.1, EC1.2, JJK, MP, GGB, HA, VS, SMH1 and proposed GA are 
0.1248%, 0.0915%, 0.0015%, 0.0056%, 0.0065%, 0.0004%, 0.0015%, 0.0005% and 0%, respectively. It is evident from the 
results in Table 2 that the proposed GA was able to find an optimal solution for all problem instances of data set 2.

5.3. Problem set 3
Problem set 3 is taken from Li et al. [21]. The problem set is an unrestricted parallel machine scernario and consists of 
nine jobs to be scheduled on two parallel machines to minimize CTV. The problem set consists of four subsets with 
processing times following four kinds of distributions: the uniform distribution of Uniform (1, 59), the normal 
distribution of Normal (30; 102), the exponential distribution of Exponential (30), and the Pareto distribution of Pareto 
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(1.0345,1). Each of the subsets has five problem instances. The comparative analysis with WAVS algorithm [21] is given 
in Table 3 to Table 7.

The comparative results in Table 3 to Table 6 shows the superior performance of the proposed GA methodology with 
respect to WAVS heuritics. The proposed GA methodology was able to find an optimal solution in all the instances. In 
all the twenty instances, the best solution was obtained withn 4 secs on a 2nd generation i7 laptop computer with 8GB 
RAM.
Table 3. Comparative analysis of proposed methodology for data set 3 – Processing times from Uniform (1, 59)

Prob Instance Optimal CTV
WAVS Proposed GA

CTV RPD CTV RPD
1 1512.85 1515.84 0.198 1512.85 0
2 831.28 840.4 1.097 831.28 0
3 322.74 324.98 0.694 322.74 0
4 737.5 737.5 0.000 737.50 0
5 630.59 632.53 0.308 630.59 0

Table 4. Comparative analysis of proposed methodology for data Set 3 – Processing times from Normal (30; 102)

Prob Instance Optimal CTV
WAVS Proposed GA

CTV RPD CTV RPD
1 948.09 948.98 0.094 948.09 0
2 1719.99 1732.44 0.724 1719.99 0
3 849.74 858.49 1.030 849.74 0
4 1073.74 1074.59 0.079 1073.74 0
5 1525.98 1528.85 0.188 1525.98 0

Table 5. Comparative Analysis of Proposed Methodology for Data Set 3 – processing times from Exponential (30)

Prob Instance Optimal CTV
WAVS Proposed GA

CTV RPD CTV RPD
1 333.9 335.23 0.398 333.90 0
2 1161.78 1162.74 0.083 1161.78 0
3 1102.99 1102.99 0.000 1102.99 0
4 2250.94 2255.94 0.222 2250.94 0
5 362.19 362.34 0.041 362.19 0

Table 6. Comparative analysis of proposed methodology for data set 3 – Processing times from Pareto (1.0345,1)

Prob Instance Optimal CTV
WAVS Proposed GA

CTV RPD CTV RPD
1 225.5 316.38 40.302 225.50 0
2 70.19 70.19 0.000 70.19 0
3 78.99 78.99 0.000 78.99 0
4 137.84 139.09 0.907 137.84 0
5 41.13 41.19 0.146 1.13 0

5.4. Problem set 4
Problem set 4 consists of flowshop problems proposed by Taillard [15]. The problem set has six different settings of n
-jobs and m -machines. The data set consists of 20 × 5, 20 × 10, 20 × 20, 50 × 5, 50 × 10, 50 × 20 settings. Each setting has 
10 problem instances thus, in total 60 different problems were solved to compare the performance of the proposed 
GA methodology with previously reported results. The problem instances can be accessed at http://mistic.heig-
vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html.

The performance is compared with the following heuristics: SA – 2020 (simulated annealing heuristics by Krishnaraj 
and Thiagarajan [29], SA – 2019 (simulated annealing algorithm by Krishnaraj et al. [28]), ACO (ant colony algorithm by 
Gajpal and Rajendran [16]), MACO (modified ant colony algorithm by Krishnaraj et al. [23]), DPSO 1 (discrete particle 
swarm algorithm by Rameshkumar et al. [22]) and DPSO 2 (discrete particle swarm algorithm by Ponnambalam et al. 
[19]. The comparative analyses for CTV results for all 60 instances are presented in Table 7 to Table 12.

It can be seen from Table 7 to Table 12, that the proposed methodology was able to find a solution very close to 
previously best known solutions. For 20 × 5 problem instances, the proposed method provided the same solutions for 
five instances, and the average RPD was 0.03%. Overall, the proposed GA results were worse than SA – 2020 and DPSO 
1.

For 20 × 10 problem instances, the proposed method provided the same solutions for three instances with an average 
RPD of 0.23%. The proposed methodology solution was only better than ACO.

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html.
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html.
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html.
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For 20 × 20 problem instances, the proposed method provided the same solutions for two instances with an average 
RPD of 0.61%. In this case also, the proposed methodology solution was only better than ACO.

For 50 × 5 problem instances, the proposed method did not find the same solutions for any of the instances. The 
average RPD was 0.61% for the proposed method. In this case too, the proposed methodology solution was only 
better than ACO.
Table 7. Comparative analysis of proposed methodology with previous studies for data set 4 – 20×5

Instance SA - 2020 SA - 2019 ACO MACO DPSO 1 DPSO 2 Proposed GA
1 0.00 0.00 1.36 0.00 0.00 0.00 0.00
2 0.00 0.00 1.85 0.00 0.00 0.00 0.00
3 0.06 0.03 0.27 0.06 0.00 0.19 0.00
4 0.00 0.00 3.12 0.00 0.00 0.00 0.00
5 0.00 0.27 0.73 0.27 0.00 0.27 0.27
6 0.00 0.00 1.20 0.00 0.00 0.00 0.00
7 0.00 0.00 1.05 0.00 0.00 0.00 0.00
8 0.00 0.06 0.60 0.06 0.00 0.00 0.00
9 0.00 0.00 1.44 0.00 0.00 0.00 0.06

10 0.00 0.02 1.09 0.02 0.00 0.00 0.02
Avg RPD 0.01 0.04 1.27 0.04 0.00 0.05 0.03

Table 8. Comparative analysis of proposed methodology with previous studies for data set 4 – 20×10

Instance SA - 2020 SA - 2019 ACO MACO DPSO 1 Proposed GA
1 0.00 0.00 2.38 0.00 0.00 0.45
2 0.00 0.67 0.85 0.85 0.00 0.67
3 0.00 0.00 1.28 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.22
5 0.00 0.07 1.49 0.07 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.06
7 0.00 0.00 7.97 0.00 0.00 0.00
8 0.87 0.87 2.10 0.87 0.00 0.87
9 0.00 0.31 0.61 0.31 0.00 0.00

10 0.00 0.00 4.73 0.00 0.00 0.00
Avg RPD 0.09 0.19 2.14 0.21 0.00 0.23

Table 9. Comparative analysis of proposed methodology with previous studies for data set 4 – 20×20

Instance SA - 2020 SA - 2019 ACO MACO DPSO 1 Proposed GA
1 0.00 0.00 3.86 0.00 0.00 0.67
2 0.00 0.00 1.90 0.00 0.00 0.65
3 0.30 0.30 0.30 0.30 0.00 0.47
4 0.00 0.00 1.23 0.00 0.00 0.00
5 0.00 0.00 1.21 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 1.30 0.00 0.00 0.96
8 0.00 0.00 4.51 0.00 1.27 3.13
9 0.00 0.99 1.07 0.99 0.00 0.00

10 1.48 0.00 3.03 0.00 0.00 0.24
Avg RPD 0.18 0.13 1.84 0.13 0.13 0.61

Table 10. Comparative analysis of proposed methodology with previous studies for data set 4 – 50×5

Instance SA - 2020 SA - 2019 ACO MACO DPSO 1 Proposed GA
1 0.12 0.00 0.99 0.43 0.25 0.91
2 0.00 0.02 1.54 0.02 0.37 0.39
3 0.28 0.46 2.51 0.46 0.00 1.24
4 0.00 0.29 1.46 0.66 0.29 0.84
5 0.00 0.10 1.21 0.10 0.05 0.22
6 0.04 0.00 0.76 0.22 0.03 0.33
7 0.00 0.40 0.88 0.54 0.42 0.19
8 0.00 0.10 1.13 0.10 0.10 0.44
9 0.09 0.00 1.08 0.42 0.06 0.74

10 0.02 0.00 1.06 0.07 0.00 0.25
Avg RPD 0.05 0.14 1.26 0.30 0.16 0.55

Table 11. Comparative analysis of proposed methodology with previous studies for data set 4 – 50×10

Instance SA - 2020 SA - 2019 ACO MACO DPSO 1 Proposed GA
1 0.22 0.00 1.03 0.54 0.80 2.14
2 0.00 0.51 3.45 1.02 2.93 3.22
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3 0.55 0.00 1.21 1.13 0.04 3.43
4 0.13 0.00 2.53 0.61 0.83 1.98
5 0.00 0.14 0.54 0.14 0.10 1.42
6 0.66 0.86 2.79 0.86 0.00 2.29
7 0.00 0.51 1.79 0.87 0.18 1.86
8 0.00 1.30 2.37 1.30 1.72 2.02
9 0.00 0.65 2.27 1.17 0.45 2.34

10 0.02 0.22 0.86 0.86 0.00 1.23
Avg RPD 0.16 0.42 1.88 0.85 0.70 2.19

Table 12. Comparative analysis of proposed methodology with previous studies for data set 4 – 50×20

Instance SA - 2020 SA - 2019 ACO MACO DPSO 1 Proposed GA
1 0.66 0.00 1.82 0.46 0.35 3.25
2 1.24 0.00 2.33 0.00 1.17 3.82
3 0.03 0.47 0.47 0.47 0.00 3.25
4 0.00 0.63 1.57 1.12 1.15 4.57
5 0.00 0.76 5.03 3.07 0.90 2.77
6 0.00 0.45 0.80 0.65 0.80 3.43
7 0.55 0.00 2.51 1.26 0.37 2.99
8 0.91 0.00 5.60 2.43 1.75 6.12
9 0.00 0.77 2.79 1.81 2.79 4.65

10 0.29 1.30 1.61 1.61 0.00 6.82
Avg RPD 0.37 0.44 2.45 1.29 0.93 4.17

 For 50 × 10 problem instances, the proposed method did not find the same solutions for any of the instances. The 
average RPD was 2.19% for the proposed method. For 50 × 10 problem instances, the proposed method did not find 
the same solutions for any of the instances. The average RPD was 4.17% for the proposed method.

From the discussion in the preceding paragraphs, we can see that the proposed GA methodolgy found optimal 
solutions fo all single machine and unrestricted parallel machine scenarios. For n × m  flowshop problems, the solution 
quality deteriorated as the problem size increased. However, for small-to-medium-sized problems, the soultion quality 
of the proposed methodology was comparable with other heuristic techniques.

6. Conclusions
Most of the research on flowshop scheduling addresses the problem with regular performance measures like, 
makespan, flowtime etc. Very little work has been carried out with non-regular performance measures. Completion 
time variance (CTV) is one of the non-regular objective functions that penalizes both earliness and tardiness. CTV has 
direct relevance with JIT where it is desired that a job is completed exactly on time, neither early, as it will incur 
inventory holding cost, nor late, as it will result in products being delivered late thus, resulting in bad reputation for 
the company.

In this research, minimization of completion time variance (CTV) in a flowshop was addressed. A general purpose 
domain-independent GA Evolver that works as an add-in to Microsoft Excel spreadsheet was used for the optimization 
of the schedules. The shop models for flowshop were made in the spreadsheet using the built-in functions and 
formulae.

The proposed approach offers an easy-to-handle framework for the practitioners who are used to tools like 
spreadsheets. The proposed methodology allows practitioners to implement a heuristic-based optimization tool 
without the need for advanced progamming skills. Furthermore, due to the arrangement of data in linked cells via the 
spreadsheet, it is very convenient to carry out what-if analysis thus, looking at the effect of change due to various 
parameters. Additionally, the proposed approach can be used to optimize any objective function without the need to 
change the spreadsheet model of the basic GA routine. The proposed methodology can also be enhanced with the use 
of Viusal Basic for Application (VBA) language available within the Excel spreadsheet.

Even though the performance of the proposed methodology was not very promising for large-sized problems, 
computational experiments demonstrated that the proposed methodology can find optimal solutions for small-to-
medium-sized problems.
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Appendix A
 Table A1. Problem set 1 data

Problem Instance
Job Processing Times

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Pl 70 33 17 6 12 22 40 52 61 88
P2 98 37 22 12 14 26 50 78 79 99
P3 82 68 37 11 34 48 72 73 79 94
P4 76 46 39 10 34 41 48 52 70 96
P5 77 52 44 10 42 48 62 65 75 98
P6 90 39 29 25 20 11 62 14 24 26 32 47 80 83 98
P7 91 63 45 35 24 16 62 20 27 41 59 64 72 77 97
P8 91 58 55 43 26 13 62 18 40 50 57 62 63 77 97
P9 97 82 73 64 42 15 62 30 61 68 79 83 92 95 98

P10 85 67 52 42 32 16 62 26 40 51 59 77 82 84 96
P11 97 75 71 59 57 46 32 17 8 9 26 44 49 58 61 73 77 86 88 99
P12 92 84 77 74 56 43 30 13 2 9 21 36 47 70 75 83 87 88 90 97
P13 94 74 69 53 46 38 28 20 7 9 27 29 40 48 63 71 77 79 89 97
P14 77 69 63 56 47 44 25 14 2 4 22 35 46 55 60 66 72 73 74 82
P15 92 70 63 47 40 36 27 14 6 10 24 31 37 41 48 65 78 83 89 94

Table A2. Problem set 2 data

Prob # of Mch
Processing Times

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
P1 15 83 77 76 73 65 65 63 62 59 55 46 40 19 18 5
P2 15 86 86 65 63 61 56 51 44 38 29 17 16 14 12 7
P3 15 93 92 69 65 61 52 51 49 47 38 37 36 29 11 8
P4 15 99 96 92 87 83 67 53 48 41 40 33 21 21 20 7
P5 20 97 91 91 91 86 85 79 70 61 56 51 45 43 40 38 36 22 13 9 1
P6 20 97 96 95 93 81 80 71 65 60 55 52 45 40 38 19 13 12 12 8 1
P7 25 95 92 91 88 88 86 86 79 78 74 69 64 57 53 47 44 38 37 33 32 29 21 11 10 5
P8 25 94 86 86 85 74 65 63 61 58 56 56 51 50 44 44 38 29 22 17 17 16 16 14 12 7
P9 25 100 98 85 81 81 80 74 70 68 68 62 61 53 52 49 49 40 33 32 30 21 10 9 9 1

Table A3. Problem set 3 data – Processing times from Uniform (1, 59)

Prob Instance No of Jobs
Processing times

1 2 3 4 5 6 7 8 9
1 9 51 37 26 48 57 45 7 6 47
2 9 45 22 21 44 58 26 7 4 34
3 9 22 48 17 11 25 49 20 4 1
4 9 56 15 10 47 58 30 9 6 31
5 9 44 29 10 35 51 30 4 2 31

Table A4. Problem set 3 data – Processing times from Normal (30; 102)

Prob Instance No of Jobs
Processing times

1 2 3 4 5 6 7 8 9
1 9 51 28 12 15 27 57 30 22 33
2 9 40 36 22 25 32 45 38 29 39



https://www.scipedia.com/public/Chaudhry_et_al_2022a 13

I. Chaudhry, I. Elbadawi, A. Rafique, A. Boudjemline, M. Boujelbene, M. Usman and M. Aichouni, Minimization of 
completion time variance in flowshops using genetic algorithms, Rev. int. métodos numér. cálc. diseño ing. (2022). 
Vol. 38, (2), 22

3 9 41 28 11 18 21 34 29 20 30
4 9 39 34 30 36 43 39 10 13 30
5 9 38 33 21 22 32 39 34 30 36

Table A5. Problem set 3 data – Processing times from Exponential (30)

Prob Instance No of Jobs
Processing times

1 2 3 4 5 6 7 8 9
1 9 29 28 3 8 10 55 21 7 23
2 9 132 24 17 6 43 58 29 20 47
3 9 133 39 9 4 42 68 25 13 52
4 9 123 85 4 5 20 23 96 86 29
5 9 33 20 6 3 25 110 22 9 21

Table A6. Problem set 3 data – Processing times from Pareto (1.0345,1)

Prob Instance No of Jobs
Processing times

1 2 3 4 5 6 7 8 9
1 9 449 8 4 3 2 5 6 153 51
2 9 18 9 3 2 10 12 11 5 6
3 9 25 7 3 2 11 53 5 4 16
4 9 40 17 3 4 5 28 15 2 18
5 9 10 7 2 3 5 108 8 4 6
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