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Abstract
This work aims to evaluate a parallelizable approximate solution model for the wave 
equation. For that, we used the temporal sweep known as the Waveform Relaxation method 
to guarantee the parallelization in space. However, this technique has limitations for this 
class of problems. Therefore, we proposed the combination of the Subdomain method in a 
non-conventional way in time with the Multigrid method, intending to reduce computational 
time and improve the convergence factors. In this work, we presented the mathematical 
analysis of the stability of the discretization model, which uses the Central Finite Difference 
method with weighting at each time step. As an application of the proposed method, in 
addition to a problem with a known analytical solution, we solved a wave propagation 
problem with reflection and phase inversion.
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1. Introduction
In this work, we intended to present an efficient and parallelizable method for solving sparse and large systems of 
equations that result from the discretization of the wave equation, which is a transient Partial Differential Equation 
(PDE) that models many problems found in several areas of applications. Among these problems are the vibration of 
strings and membranes, sound waves in gases or liquids, electromagnetic waves, transverse waves in solids, surface 
ocean waves, among others.

Explicit schemes for obtaining a solution of the wave equation are common in the literature, as in [1,2,3]. In general, 
such techniques are conditionally stable, which can be a disadvantage when performing refinements in time or space, 
as some criteria must be accepted for convergence. Another possibility is to use implicit methods, which are commonly 
unconditionally stable, thus assuring the reliability of the approximate solutions obtained [4].

The wave propagation problem can be studied in two manners, with the Helmholtz equation in the stationary form 
[5,6,7], or by directly solving the wave equation in the transient form [8,9,10,11]. In this context, we discretized the 
transient wave equation with the Finite Difference Method (FDM) weighted with a parameter η  at different time steps 
[12,13], thus generating an implicit method, which results in a linear system at each time step, which can be solved by 
using a solver such as Gauss-Seidel, with lexicographical or red-black order.

One way to Speed-up the process of obtaining the system solution resulting from the discretization is to apply the 
Multigrid method, which significantly improves the convergence factors in the process of solving systems of equations 
[14,15]. According to Umetani et al. [5] and Franco et al. [16], the anisotropy related to physical and numerical factors 
generated with large values of α  (α  being associated with wave propagation velocity) may be a challenge in solving the 
wave equation.

According to Brandt and Livshits [7], there are limitations when attempting to solve the wave equation, even in its 
stationary form (Helmholtz Equation), because the solver loses efficiency when used in the standard Multigrid method. 
Therefore, the authors proposed modifications in the numerical experiments so that they would present better 
convergence rates.

Solutions with high-order compact methods for the wave equation were analyzed by Britt et al. [17], who studied the 
stability of explicit and implicit methods as well as the effectiveness of the Multigrid and Conjugate Gradients methods. 
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The authors' analysis confirms the Multigrid effectiveness in solving problems with many degrees of freedom.

With the emergence of new technologies and high-performance computing, it became of paramount importance to 
develop algorithms that can use a large number of cores for data processing, as this greatly increases the efficiency in 
solving some problems involving PDEs [18].

In that context, a new method was developed: Waveform Relaxation (WR), which is an iterative method proposed to 
solve large systems of Ordinary Differential Equations (ODEs), but which can be adapted to time-dependent PDEs. In 
WR, the spatial domain is decomposed by a set of points and for each of these points, a system of ODEs is solved in all 
time steps [19,20,21,22]. A WR method was developed to solve the poroelasticity problem [23], which is modeled by a 
system of parabolic PDEs. Other works that apply parallelization are presented in Bellen and Zennaro [24] and Chartier 
and Philippe [25] for initial value problems and in Keller [26] for boundary value problems.

To non-steady state problems, the WR algorithms differ from the standard time sweep methods (Time-Stepping) in the 
fact that their iterates are functions in time [21,27]. The Partial Differential Equations is transformed into a large set of 
Ordinary Differential Equations, and an iterative algorithm can be used to solve this system. This numerical solution 
needs a high computational effort due to the necessity of solving systems of large dimension at each step point. WR 
iterations are designed in order to decouple the original large system in smaller subsystems: in this way, the iteration 
process can be implemented in a parallel computational environment, since each subsystem can be treated by a single 
processor [28].

In Ruprecht [29], the dispersion relation that occurred in the approximate solution was analyzed by using Parallel-in-
Time, which is a time parallelization method used for solving hyperbolic equations. The author investigated 
propagation and stability characteristics and observed that instability in convergence is mainly caused by adopting 
medium and high wavenumbers.

Efficient solutions to the one-dimensional wave equation are already found in the literature, as in Baccouch and 
Temimi [30] for high-order methods and in Erbay et al. [31] for the non-linear cases. However, there are still challenges 
to be overcome when employing the Multigrid method, especially when combining with schemes that allow 
parallelization [11]. In this sense, the novelty of this work is the use of the Subdomains in Time method, combined with 
the Waveform Relaxation strategy and the Multigrid method, in order to reduce the large initial perturbations existing 
in Gander et al. [11]. Differently from Ong and Mandal [32], we work with a reduced number of subdomains in time, 
with the aim of reducing the CPU time and at the same time increase the degree of parallelization of the codes used.

The present work is organized as follows: In Section 2, we present the mathematical and numerical models adopted 
for the implicit discretization of the wave equation, as well as the stability of the numerical model and a foundation for 
the Multigrid method. In Section 3, we cover the details of the WR and Subdomain methods. In Section 4, we expose 
the results of simulations and comparisons between conventional WR and the method proposed in this paper. In 
Section 5, we present an application to the wave propagation problem with reflection, and finally, in Section 6, we 
present the conclusions.

2. Mathematical and numerical models

2.1 One-dimensional wave equation

Given a positive scalar α , such that α2 = 1
V2 , where V  is related to the linear density and the stress in a string (wave 

propagation velocity), we present the one-dimensional wave equation [33], as

∂2u
∂t2 = α2 ∂2u

∂x2 , (1)

u (x , 0) = f (x ), 0 ≤ x ≤ l , (2)

ut (x , 0) = g (x ), 0 ≤ x ≤ l , (3)

u (0, t ) = u (l , t ) = 0, t > 0, (4)
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where u (x , t ) is the displacement at position x  and time t , f (x ) is the initial configuration, g (x ) is the initial velocity, l  is 
the string length, and finally, u (0, t ) and u (l , t ) are the boundary conditions. This set of equations models a problem of 
vibration of a string fixed at the ends, in which the general solution is built with the fundamental frequencies of 
vibration, which are given by

u (x , t ) = ∑
n =1

∞

(cn wn (x , t ) + dn zn (x , t )), (5)

where,

wn (x , t ) = cos( nπαt
l )sin( nπx

l ) , (6)

zn (x , t ) = sin( nπαt
l )sin( nπx

l ) , (7)

cn = 2
l ∫

0

l
f (x )sin( nπx

l )dx , (8)

dn = 2
nπα ∫

0

l
g (x )sin( nπx

l )dx . (9)

2.2 Discretization
Spatial and temporal discretizations are performed by using the Finite Difference Method (FDM), where the 
approximation process starts with the representation of the continuous domain Ω by a discrete domain, which consists 
of an ordered set of points that form the grid [4]. In this way, it is possible to use a Taylor series expansion to 
represent an analytic function Φ(x ) in the neighborhood of xi  and thus obtain an approximation for the second 
derivative of Φ(xi ) given by

d2Φ(xi −1)
dx2 ≈

Φ(xi −1) − 2Φ(xi ) + Φ(xi +1)
h2 , (10)

with a truncation error

ε (
d2Φ(xi )

dx2 ) = − h2

12
d4Φ(xi )

dx4 − h4

360
d6Φ(xi )

dx6 − h6

20160
d8Φ(xi )

dx8 − . . . (11)

Assuming the problem defined by Eqs. (1) to (4), we define the size of the spatial interval h = l
Nx − 1  and the increment 

in time τ =
tf

Nt − 1 , with the number of spatial points Nx > 0 and temporal points Nt > 0, for the final time tf > 0. 

Assuming vi
k  as an approximation for the solution u  at coordinate point xi  and time step k , we can write Eq. (1) in the 

discretized form, applying weighting in the spaces [12], given by

vi
k −1 − 2vi

k + vi
k +1

τ2 − τ2

12
∂4vi

∂t4 − τ4

360
∂6vi

∂t6 − τ6

20160
∂8vi

∂t8 − . . . =

α2η (
vi −1

k +1 − 2vi
k +1 + vi +1

k +1

h2 − h2

12
∂4vi

k +1

∂x4 − h4

360
∂6vi

k +1

∂x6 − h6

20160
∂8vi

k +1

∂x8 − . . . )

+ α2(1 − 2η ) (
vi −1

k − 2vi
k + vi +1

k

h2 − h2

12
∂4vi

k

∂x4 − h4

360
∂6vi

k

∂x6 − h6

20160
∂8vi

k

∂x8 − . . . )

+ α2η (
vi −1

k −1 − 2vi
k −1 + vi +1

k −1

h2 − h2

12
∂4vi

k −1

∂x4 − h4

360
∂6vi

k −1

∂x6 − h6

20160
∂8vi

k −1

∂x8 − . . . ) ,

(12)
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where η  is a weighting parameter. The Figure 1 illustrates the points used to calculate vi
k , with spatial coordinate i , at 

a certain time step k .

Figure 1. Space-time discretization scheme for the 1D grid

By reordering the terms of Eq. (12), we obtain

vi
k −1 − 2vi

k + vi
k +1 = α2τ2

h2 [η (vi −1
k +1 − 2vi

k +1 + vi +1
k +1) + (1 − 2η )(vi −1

k − 2vi
k + vi +1

k ) +

η (vi −1
k −1 − 2vi

k −1 + vi +1
k −1) ]

(13)

with a truncation error of the order O (h2τ2, τ4), given by

ε1D = τ4

12
∂4vi

∂t4 + . . .  −
α2τ2h2η

12
∂4vi

k +1

∂x4 − . . . − α2τ2h2

12 (1 − 2η )
∂4vi

k

∂x4 − . . . −
α2τ2h2η

12
∂4vi

k −1

∂x4 − . . . (14)

Assuming that λ = α2τ2

h2  (herein called anisotropy factor), we have the following system of equations

ap vi
k +1 = aw vi −1

k +1 + ae vi +1
k +1 + bp , (15)

where,

ap = 1 + 2ηλ , (16)

aw = ae = ηλ , (17)

bp = ( − 1 − 2ηλ )vi
k −1 + (2 + ( − 2 + 4η )λ )vi

k + (1 − 2η )λ (vi −1
k + vi +1

k ) + ηλ (vi −1
k −1 + vi +1

k −1) . (18)

To perform the first iteration, it is necessary to know the solution in two previous time steps vi
0 and vi

1. To start the 
process, vi

0 is given by the initial setup while vi
1 is given in Burden and Faires [4], by

vi
1 = (1 − λ )f (xi ) + λ

2 f (xi +1) + λ
2 f (xi −1) + τg (xi ) + O (h2τ2) . (19)

2.3 Stability

Next, we will use the Von Neumann criterion [34] to determine the stability of the discretization method described in 
section 2.2. For that, let us assume that the global error is given by a Fourier series of local errors, also called 
harmonics. So, the error in the first time step can be expressed as:

https://www.scipedia.com/public/File:Draft_Malacarne_871275788-Discretizacao_1D.png
https://www.scipedia.com/public/File:Draft_Malacarne_871275788-Discretizacao_1D.png
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Ei = ∑
n =0

Nx

an e
(ι nπ

l
ih )

,

(20)

with ι = − 1. Note that we have a system with Nx + 1 equations and Nx + 1 unknowns, where the coefficient matrix is 
non-singular [12]. Now let us assume that a generic harmonic can be written in the form

Ui
k = eγk eιβi , (21)

where β ∈ ℜ and γ ∈ ℂ , both being arbitrary. Consequently, to analyze the stability of the discretization method, it is 
enough to verify the propagation of this harmonic as k  increases. By substituting Eq. (21) into Eq. (13), with η = 1/2 
[12,13], we have

eγ (k +1)eιβi − 2eγk eιβi + eγ (k −1)eιβi = λ
2 [eγ (k +1)eιβ (i +1) − 2eγ (k +1)eιβi + eγ (k +1)eιβ (i −1) + eγ (k −1)eιβ (i +1)

− 2eγ (k −1)eιβi + eγ (k −1)eιβ (i −1)],

(22)

or yet,

eγ eγk eιβi − 2eγk eιβi + e−γ eγk eιβi = λ
2 [eγ eγk eιβi eιβ − 2eγ eγk eιβi + eγ eγk eιβi e−Iβ + e−γ eγk eιβi eιβ  − 2e−γ eγk eιβi +

e−γ eγk eιβi e−ιβ ] .

(23)

 By dividing both sides of Eq. (23) by eγk eιβi  and rearranging the terms, we have

eγ − 2 + e−γ = λ
2 [eγ (eιβ − 2 + e−ιβ ) + e−γ (eιβ − 2 + e−ιβ )] . (24)

Using Euler's formula, eιβ = cos(β ) + ιsin(β ), we can rewrite Eq. (24) as

eγ − 2 + e−γ = λ
2 [(eγ + e−γ )(2cos(β ) − 2)], (25)

or yet,

(eγ + e−γ )(1 + λ (1 − cos(β ))) = 2. (26)

Using the trigonometric identities (1 − cos(β )) = 2sin2 (
β
2 )  and cosh(γ ) = eγ + e−γ

2 , Eq. (26) can be rewritten as

cosh(γ ) = 1

1 + 2λsin2 (
β
2 )

, (27)

or yet,

γ = arccosh ( 1

1 + 2λsin2 (
β
2 )

) . (28)

From Eq. (21) we have that Ui
k +1 = eγ Ui

k , that is, eγ  is the amplification factor. Let us look at what happens to the generic 
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harmonic Ui
k +1 as k  increases. From Eq. (28) we know that β ∈ ℜ, λ ≥ 0 and 0 ≤  sin2 (

β
2 )  ≤ 1, so it is enough to analyze 

the following cases:

 1) sin2 (
β
2 ) → 1−, which implies that γ →  arccosh ( 1

1 + 2 λ ) . In this case, the anisotropy factor λ  must be analyzed in 
the following situations:

1.1) λ → + ∞, which implies γ → πι
2 . Note that in this case the harmonic tends to stay the same as k  increases, but it 

will not be amplified.

1.2) λ → 0+, which implies γ → 0+. Note that in this case eγ  has a decreasing amplitude.

2) sin2 (
β
2 ) → 0+, regardless of the value of λ , we will have γ → 0+, which also produces a decreasing amplitude for eγ .

 Given the above, the harmonics will not be amplified, since 0 < eγ < 1. Therefore, the discretization method used in Eq. 
(13) with η = 1/2 is unconditionally stable.

2.4 Multigrid method

In some cases, when discretizing PDEs that model physical problems, we can obtain sparse and large linear systems, 
as described by Eq. (15), which can be rewritten as

Au = b . (29)

These systems can be solved by using direct or iterative methods (herein called solvers). Due to the characteristics of 
these systems, the direct methods become unfeasible due to the high computational cost [4]. In this case, we opt for 
iterative methods. However, these methods generally have good smoothing properties only at the beginning of the 
iterative process.

After a few iterations, the approximation error becomes smooth, but not necessarily small. This problem is due to the 
characteristic of classical iterative methods in quickly smoothing out high-frequency errors (oscillatory modes), leaving 
only low-frequency errors (smooth modes) [35].

In this context, the Multigrid method [36] can be applied. It is used for accelerating the convergence in obtaining the 
solution of this type of system, since when using a set of grids, it is possible to smooth both the oscillatory and smooth 
modes, as the smooth modes in fine grids become more oscillatory in coarser grids [14,37]. This approach allows the 
iterative process of the Multigrid method to act on all error components [38,39,40,41].

The way it runs through the different grid levels is called a cycle [42]. In this work, we used the V-cycle, shown below in 
Figure 2, where there is an example of a V-cycle for 5 levels of coarsening; from fine grid Ωh  to the desired or coarsest 
grid Ω16h . Note that we use the coarsening ratio q = 2, with h  being the spacing in the fine grid and 2h  the spacing in 
the immediately coarser grid.

In this cycle, the system of equations is smoothed ν1 times (pre-smoothing) in the fine grid, and then we restrict its 
residue to the immediately coarser grid with the restriction operators (Ih

2h ). In this work, we used the full weighting 
operator, given by

r2h (xi ) = Ih
2h rh (xi ) = 1

4 , (30)

where rh  and r2h  are, respectively, the residue in the fine and coarse grid. This process is repeated until the coarsest 
grid is reached and only then the problem is solved

Next, the prolongation of corrections is performed by using the linear interpolation operator (I2h
h ), given by
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Figure 2. Multigrid V-cycle

vh (xi ) = I2h
h vh (xi ) = { 1

2 [v2h (xi −1) + v2h (xi +1)], for ≠ i ,

v2h (xi ), for = i .
(31)

where the first equation is for even i  and the other is for odd i , in the Ωh . The solution is then corrected and the 
system of equations is smoothed ν2 times (post-smoothing), and the process is repeated until the finer grid Ωh  is 
reached, where the solution is smoothed ν2 times [39]. The V-cycle is repeated until the stopping criterion is met. This 
approach allows the iterative process of the Multigrid method to smooth all the components [43].

3. Waveform relaxation and the subdomain methods
Waveform Relaxation (WR) is an iterative method that was initially proposed to solve large systems of Ordinary 
Differential Equations (ODEs) [19], but it can also be applied in time-dependent PDEs, where the spatial domain is 
decomposed by a set of points, and for each of them a system of ODEs is solved in all time steps [22,23,44,45]. This 
method allows the parallelization of algorithms for transient PDEs to be performed. According to [46], the feature of 
the WR method that transforms PDEs into an ODE system presents the form

d2vi

dt2 = Gi (vi , t ), (32)

where Gi  are vectors or functions that contain temporal information for each spatial coordinate i , and which is 
calculated with the values of vi = (v1, v2, v3, . . . vd ). Thus, for each node xi  of the spatial discretization, a temporal ODE 
is solved to the final time independently. Each component of the system given in Eq. (32) can be written as an ODE, as 
follows

{
d2v1

dt2 = G1(v1, v2, v3, . . . , vd , t ), with v1(0) = v1
0 and

dv1
dt = g1

0,

d2v2

dt2 = G2(v1, v2, v3, . . . , vd , t ), with v2(0) = v2
0 and

dv2
dt = g2

0,
⋮

d2vd

dt2 = Gd (v1, v2, v3, . . . , vd , t ), with vd (0) = vd
0 and

dvd
dt = gd

0 .

(33)

where d  is the dimension of the system and the notations vi (0) = vi
0 and 

dvi
dt = gi

0 with 1 ≤ i ≤ d ,  indicate respectively, 
the initial configurations and velocities, for each point of the spatial discretization. Each line of the system of Eqs. (33) 
can be solved separately using a core for each line, as illustrated in Figure 3 for Nx = 12.

https://www.scipedia.com/public/File:Draft_Malacarne_871275788-ciclo_V_a.png
https://www.scipedia.com/public/File:Draft_Malacarne_871275788-ciclo_V_a.png
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Figure 3. Waveform Relaxation method

 Each temporal ODE can be solved in all spatial nodes separately, where the update of unknowns can be performed at 
the end of a WR cycle. Thus, we have an iterative method of repeating the procedure until a stopping criterion is 
reached [47]. We can obtain a fully parallelizable method in space by using a colored ordering scheme in the solver, 
such as Gauss-Seidel Red-Black (GSRB) [45].

It is possible to combine Waveform Relaxation and the Multigrid method when performing coarsening only in the 
spatial direction because WR is continuous in time. This way, the number of temporal discretization points is kept 
constant [45]. For example, for a fine grid Ωh  with Nx × Nt = 33 × 33 points, the coarser grids, with a coarsening ratio 
q = 2, are Ω2h , Ω4h , Ω8h  and Ω16h , which respectively have 17 × 33, 9 × 33, 5 × 33 and 3 × 33 points. Then, a Multigrid 
cycle is performed at all spatial points for all time steps. In Algorithm 1, the structure of the Waveform Relaxation and 
Multigrid is presented for the solution of system Ah (t )vh (t ) = fh (t ), adapted from [23].}

Algorithm 1. Waveform Relaxation with Multigrid (WRMG): vh
k (t ) → vh

k +1(t )

if we are on the coarsest grid-level (with spatial grid-size given by h0) then

Ah0
(t )vh0

k +1(t ) = fh0
(t ) Solve with a direct or fast solver.

else

v̄ h
k (t ) = Sh

ν1(uh
k (t )) Pre-smoothing: ν1 steps of the GSRB Waveform Relaxation.

r̄ h
k (t ) = fh (t ) − Ah (t )v̄ h

k (t ) Compute the defect.

r̄ 2h
k (t ) = Ih

2h r̄ h
k (t ) Restrict the defect.

A2h (t ) ê 2h
k (t ) = r̄ 2h

k (t ), ê 2h
k (0) = 0 Solve the defect equation G2h  by performingone V-cycle of WRMG.

ê h
k (t ) = I2h

h ê 2h
k (t ) Interpolate the correction.

v̄ h
k +1(t ) = v̄ h

k (t ) + ê h
k (t ) Compute a new approximation.

v̄ h
k (t ) = Sh

ν2(uh
k +1(t )) Post-smoothing: ν2 steps of the GSRB Waveform Relaxation.

end if

 In Gander et al. [11] there is a variation of the Waveform Relaxation method, which can be applied to PDEs, where the 
domain Ω is divided into K  spatial subdomains. Remember that each point is solved independently and continuously 
until the final time, which generates a parallelizable strategy. See Figure 4 for K = 3.

 We can notice that in the case where the subdomains are the smallest possible, the subdomains Ω1, Ω2, . . . , ΩK  are 
respectively equal to the points x1, x2, . . . , xNx . That is, we will have the standard Waveform Relaxation method. Note 
that parallelization can be performed by using a processing core for each spatial subdomain.

In Gander et al. [11] and Gong et al. [48] a study is carried out to assess the stability of using this approach for heat 
and Helmholtz equations, as well as the ways of exchanging information between the subdomains. The authors also 
mention that at the beginning of the iterative process, the convergence is negatively affected, and perturbations may 

https://www.scipedia.com/public/File:Draft_Malacarne_871275788-WR_nos.png
https://www.scipedia.com/public/File:Draft_Malacarne_871275788-WR_nos.png
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Figure 4. Division of the domain Ω into K =3 spatial subdomains

occur in the approximate solution, but as the iterative process advances, the solution converges to the desired values. 
See Figure 5, taken from Gander et al. [11].

Figure 5. Error for the heat equation with Waveform Relaxation by spatial subdomains [11]

 In this case, Gander et al. [11] shows the convergence for the one-dimensional heat transfer problem with the method 
called Dirichlet-Neumann Waveform Relaxation. In the left figure, the author presents the theoretical error (error) and 
the numerical error (bound) obtained with five fixed spatial subdomains and different final times (T , as used in the 
figure). In the right figure, the number of subdomains varies, and the final time is fixed at T = 2s. We can notice that 
the initial oscillations are higher when the final time is higher and/or there are more subdomains in space. Here we 
have a great challenge: the higher the number of subdomains, the higher the degree of parallelization; however, the 
oscillations at the beginning of the iterative process will be also higher.

Another approach is proposed in Ong and Mandal [32], where, besides the division in K  spatial subdomains, there is 
also a division in J  temporal subdomains, thus generating an approach that is highly parallelizable (see Figure 6 for 
K = 3 and J = 2).
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Figure 6. Waveform Relaxation method by K =3 spatial and J =2 temporal subdomains

 Notice that the approach proposed in Gander et al. [11] is a specific case of the approach presented in Ong and 
Mandal [32], which adopts J = 1. In this work, we propose a thorough analysis of the second methodology, which 
adopts the minimum number of spatial subdomains (K = 1) and a reduced number of temporal subdomains, to solve 
the wave equation with the WR method, aiming to reduce the oscillations at the beginning of the iterative process. For 
this, we analyze the effect of parameters such as time and space interval, physical properties of the wave, number of 
temporal subdomains, among others. This method is applied using recursively the Algorithm 1 according to Figure 7.

Efficient solutions to the one-dimensional wave equation are already found in the literature, such as in Baccouch and 
Temimi [30] for high-order methods and in [31] for nonlinear cases. However, there are still challenges to solve when 
using the Multigrid method, especially when combined with schemes that allow parallelization, as in Gander et al. [11]. 
In this sense, one of the novelties of this work focuses on the use of the Subdomains in Time method, combined with 
the Waveform Relaxation strategy and the Multigrid method, in order to reduce the existing large initial oscillations. 
Unlike the Ong and Mandal [32], here we work with a reduced number of subdomains in time, in order to reduce CPU 
time while increasing the degree of parallelization of the codes used.

4 Results
In this section, we present the main results of this work, where we solve a one-dimensional problem with Dirichlet 
boundary conditions, Eqs. (1) to (4), which serves to validate the proposed methodology. We approach techniques of 
code verification based on the errors of the numerical simulations and on a posteriori analyses of the results found 
with the Multigrid (with V-cicle(2,2)) and Singlegrid formulations. In our analyses, we use the Gauss-Seidel solver with 
Red-Black ordering. Then, we discuss the characteristics of the application of the standard Waveform Relaxation 
method in the one-dimensional wave equation and some problems regarding the use of this formulation. To deal with 
these problems, we apply the Subdomain Method proposed by Ong and Mandal [32]. We innovate by assuming a fixed 
parameter K = 1 with variation only in J . Finally, we analyze the convergence factors, complexity order (with a non-
linear adjustment), CPU time, and Speed-ups.

The one-dimensional wave propagation problem modeled by Eqs. (1) to (4) is solved by admitting α = 2, with initial 
condition f (x ) = sin(πx ) and initial velocity g (x ) = 0. We adopt the same number of points in the spatial and time 
discretization Nx = Nt  (denoted by N ), weighting parameter η = 0.5, final time tf = 1.0s  and x ∈ (0, 1). Tests were 
performed in a computer with Intel Corei3 1.5 GHz processor, 4 GB RAM, and 64-bits Windows 10 operational system 
with double precision.

4.1 Discretization error
The discretization error is related to the truncation in the Taylor series [4] and consequently, to the size of the grid 
elements. For the sake of assessing the behavior of this type of error, we disregard iteration and round-off errors. For 
this, each problem was solved until the round-off error was reached. Next, we present in Figure 8 the infinity norm of 
the error in the solution approximated with the Waveform Relaxation (WR), combined with the Multigrid (MG) and 
Singlegrid (SG) for values of N .
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Figure 7. Waveform relaxation with subdomain method

Figure 8. Infinity norm of the discretization error for different grid sizes with the Waveform Relaxation method

 We noticed that the discretization error decreases as the grid is refined. The errors presented in Figure 8 are the same 
found in Malacarne et al. [13] using the Time-Stepping method, which generates a 4th-order method, which can be 
easily verified using the methodology present in da Silva et al. [49]. This test serves to verify the code used here, which 
utilizes time sweeping given by WR.
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4.2 Oscillations in the approximate solution

Next, we show the oscillatory behavior of the solution during the iteration process, when using the Waveform 
Relaxation method. For such, we solve a one-dimensional problem modeled by Eqs. (1) to (4), using Singlegrid (SG) and 
Gauss-Seidel with Red-Black ordering as the solver, in a grid with N = 129 points. Figure 9 presents the solutions for 2 
and 50 iterations, and Figure 10 shows the solutions for 200 and 1000 iteration, both using final time tf = 1.0s .

Figure 9. Solution with 2 (left) and 50 iterations (right)

Figure 10. Solution with 200 (left) and 1000 iterations (right)

 We verified significant initial oscillations when applying the standard WR method, even when using coarser grids (with 
fewer points). Despite the strong oscillation at the beginning of the process, the numerical solution converges to the 
desired values as a large number of iterations are performed.

In Figure 11 it is possible to observe the behavior of the infinity norm of the residue as the iterations are performed, 
for Singlegrid and Multigrid.

 Even though MG performs fewer cycles than SG, the order of perturbation of the residue of both is the same. This 
initial perturbation is not a desirable characteristic in the approximation process and despite being well-known in the 
literature, its causes remain an unknown [11] and negatively interfere in the convergence factors and in the CPU time.

In Figure 12, we present the infinity norms of the residues for different numbers of points, with final time fixed at tf =
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Figure 11. Residue versus iterations for singlegrid and multigrid

1.0s  (left), and then varying the final time tf , with N = 27 + 1 (right), using SG and standard WR.

Figure 12. Residue versus iterations varying N , with tf =1.0s  (left), and varying tf , with N =27+1 (right)

 Notice that with the increase in the final time, the maximum residue increases considerably, at the order of 1025, 
similarly to what happens when the number of points in the grid increases. This implies a loss of efficiency when 
solving problems with WR and Singlegrid with many degrees of freedom and/or a final time relatively large. Very 
similar residues are found when applying the Multigrid method for these cases, as seen in Figure 11.

4.3 Average convergence factor - Standard waveform relaxation

Here we apply the standard Waveform Relaxation method for the problem described in the previous section, but with 
varying final time. For this, let the convergence factor be ρ = ||rit ||∞/||rit −1||∞, with rit  being the residue generated 
in the iteration it . We know that ρ ≈ 0 results in more efficient methods, while ρ ≈ 1 means the opposite [50]. We also 
define the average convergence factor ρm  [39], by
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ρm =
it ||rit ||∞

||r0||∞
(34)

According to Thole and Trottenberg [51] and Horton and Vandewalle [52] λ = α2τ2/h2 can be considered as a measure 
of the anisotropy level in the discretized operator in a given grid, and such anisotropy can affect the performance of 
the solver. As λ  depends on the temporal and spatial increments adopted in the discretization and on the velocity of 
the propagation of the wave, λ  thus represents a measure of physical and geometrical anisotropy of the wave 
equation.

We can write the final time depending directly on λ  and α , with the expression tf = λ /α . Then, we present the test 
results, where we vary the value of the parameter λ  and calculate ρm  for a wide range of problems, which covers the 
vast majority of real cases of wave propagation. In order to verify the behavior of the standard Waveform Relaxation 
method, using the Singlegrid and Multigrid Methods (Figure 13).

Figure 13. ρm  versus λ  with standard Waveform Relaxation using Multigrid and Singlegrid

 We can observe in Figure 13, that as λ  increases, the average convergence factors of the Multigrid and Singlegrid 
Methods also increase, becoming ρm ≈ 1.0, which is not good. With this, we can conclude that the solution model is 
neither efficient nor robust for intermediate or large λ  values (in this cases we have many unkwows and longer final 
times). This result supports the hypothesis that it is inefficient to apply the standard Waveform Relaxation method to 
solve the wave equation, whether with the Multigrid or Singlegrid methods.

The hyperbolic transient wave computational simulation problem can be solved in different ways, but most of them 
have limitations, especially for relatively large end times. For these cases, explicit schemes exhibit instabilities that 
compromise the reliability of the approximate solution [53]. As we have seen, even implicit methods present difficulties 
to solve these cases, because at the beginning of the iterative process, the approximate solutions present strong 
oscillations, which are smoothed out as the number of iterations increases (Figures 9 and 10), but this seriously 
compromises the efficiency of such methods. Therefore, we seek to improve the applicability of parallelizable methods, 
such as the Waveform Relaxation Method. For this, we combine the methodology developed so far with the 
Subdomains in Time method.

4.4 Applying the subdomain method

From this section on, we present the results of the Waveform Relaxation Method combined with the Subdomain in 
Time method. For this, we will always adopt K = 1 for the number of spatial subdomains. For the number J  of 
subdomains in time, we will always adopt the smallest possible value, but one that is able to provide good average 
convergence factors (ρm ). Next in Table 1 are the values used for J , which may vary depending on the values of N2 =
Nx Nt  and λ . The choice of J  was based on empirical analysis of this data so that ρm ≈ 0.4, ie, so that the implicit 
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numerical model can be considered acceptable [39].

Table 1. Number J  of subdomain in time according to the ranging of N  and λ

N2 - λ 10−2 10−1 100 10+1 10+2 10+3 10+4 10+5 10+6 10+7

92 1 1 1 1 1 1 1 1 1 1

172 1 1 1 1 2 2 2 2 2 2

332 1 1 1 2 2 2 2 2 2 2

652 1 1 2 4 4 4 4 4 4 4

1292 1 1 2 4 8 8 8 8 8 8

2572 1 2 8 16 16 16 16 16 16 16

 We should also note that, for large J , the number of spatial meshes within each temporal subdomain will be small, 
which may reduce the level of parallelization of the method. Thus, it is always interesting to have the smallest possible 
value for J , but in the case of J = 1, we have the standard Waveform Relaxation method, which we already know is not 
efficient. We point out that all the following tests were performed using the number of subdomains in time that are 
present in the Table 1.

It is also possible to notice that for domains with small N , the largest number of subdomains in time is J = 2, 
regardless of the value of λ . But for problems with large N , depending on the value of λ , we cannot work with a very 
small number for J , because the instabilities of the standard Waveform Relaxation will negatively affect the values of 
ρm .

To solve the problem of higher residues during the initial iterations, we analyzed the method parameters as proposed 
by Ong and Mandal [32], with the goal to improve the average convergence factors. We kept the number of spatial 
subdomains fixed at K = 1 and analyzed the number of temporal subdomains J . This way, we obtained a highly 
parallelizable strategy when using the Waveform Relaxation method. Figure 14 shows the behavior of the residue, 
using SG and WR for N = 28 + 1 that is, a total of 66049 points, with tf = 1.0s .

Figure 14. Residues versus iterations for tf =1.0s , N =28+1 and K =1, with J =1 (left) and J =4 (right)

 By solving the wave equation with SG and WR using only one temporal subdomain (J = 1), we have the tCPU  =  14.15s , 
with a maximum residue of the order of 1053. However, by using four temporal subdomains (J = 4), where the 
subdomain values vary from 0.0s  to 0.25s , from 0.25s  to 0.50s , from 0.50s  to 0.75s , and from 0.75s  to 1.0s , we have 
the maximum residue of the order of 1012 and the processing time is reduced to tCPU = 4.01s .

In Figure 15 we can observe the behavior of the order of the maximum residue concerning the number of temporal 
subdomains J , as well as the values of N , considering K = 1.
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Figure 15. Residue versus J , for tf =1.0s  and K =1, varying N , with SG and WR

 We verified that the largest reductions in the residue are found in the first subdivisions of the domain. For instance, for 
N = 28 + 1 and J = 1, the maximum residue has an order of 1053 and tCPU = 14.15s , however, when using Subdomain 
Method, this residue decreases to an order of 105 and tCPU = 2.35s . We further highlight the considerable improvement 
in the order of residue and computational time.

4.5 Average convergence factor - Waveform relaxation with subdomain in time

Next, Figure 16 presents the average convergence factors ρm  for the Multigrid and Singlegrid methods with different 
values of λ  for different values of N , combined with the Waveform Relaxation method, where the choice of the 
appropriate number of subdomains was made based on Table 1.

Figure 16. ρm  for the Multigrid and Singlegrid methods, combined with Waveform Relaxation Relaxation,
 K =1 and suitable J
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 In this case, we used the same number of subdomains for the MG and SG. We found out that both methods present 
ρm ≈ 0, for values of log2(λ ) < 0, which implies high efficiency. But, as log2(λ ) increases, the SG shows values of ρm ≈ 1 
with the refinement of the grid, that is, the method is inefficient in this region. In the same region, the MG shows 
values of ρm ≈ 0.45 with the refinement of the grid. In the worst case, in the region near λ = 102, the MG presents 
ρm ≈ 0.6, though it still shows lower convergence factors than those presented by the SG method.

Therefore, the MG method proposed for the wave equation is much more efficient for these values of λ . Besides, we 
notice that the values of ρm  tend to not depend on the value of λ  for finer grids, which evidences the robustness of the 
method. In this work, high values of λ  can mean higher final times or wavenumbers α , or even, highly refined spatial 
grids.

An example can be given for the case λ = 104 , with N = 28 + 1, 16 temporal subdomains and 1 spatial subdomain. For 
the SG method, we have tCPU = 1320.62s , with ρm ≈ 0.9999 and a total of 120000 iterations. For the MG method, we 
have tCPU = 4.67s , ρm ≈ 0.4301, and a total of 23 V-cycles(2, 2), which confirms the advantage of employing the MG 
combined with the Subdomain technique for the WR proposed in this work, that is, temporal subdomains J  and spatial 
subdomain K = 1. A possible explanation for this advantage can be found in the reduction of the average convergence 
factor of the MG method with the increase in the number of temporal subdomains (J ), as seen in Figure 17.

Figure 17. ρm  for the MG and SG methods with Waveform Relaxation and different numbers of temporal subdomains

 J  and N , with λ =105

4.6 Order of complexity

We made a geometrical adjustment [4] to verify the complexity of the algorithm that uses WR combined with 
subdomains and compared the results for Single and Multigrid. For this, we used the following expression

tCPU = c . Np , (35)

where c  is the coefficient of the method, p  represents the order of complexity of the solver related to the slope of the 
adjustment curve and N is the total number of variables of the problem, which in our case will be  N =  (Nx  −  2) .  (Nt  
− 2 ) . Theoretically, p  must be near 1 for the Multigrid method [14]. Table 2 shows the results for these parameters, 
with different values of λ . To find the values of λ , we kept N fixed and varied the final time.

Table 2. Geometrical adjustment parameters for the 1D wave equation
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λ cSG pSG cMG pMG

100 3.00E-04 0.6997 2.00E-04 0.7101

101 2.00E-04 0.8943 4.00E-04 0.7822

102 9.00E-05 1.2051 1.00E-04 1.0319

103 6.00E-05 1.6515 8.00E-05 1.0833

104 2.00E-06 1.8277 3.00E-04 0.8955

105 2.00E-06 1.8188 1.00E-04 0.9898

 As the values of λ  increase, the pMG  tends to values near 1 and the pSG  near 2. This trend confirms the linear behavior 
of the Multigrid method and highlights the disadvantage of using the Singlegrid method for large values of λ , which 
corroborates the results depicted in Figures 16 and 17.

4.7 Speed-up

In this section, we analyze the Speed-up, which is given by the ratio between the computational time of the SG and the 
MG. Figure 18 shows the Speed-up results for increasing number of points of the problem (N2), for different values of 
λ , considering K = 1 and J = 8.

Figure 18. Speed-up versus N2 for different values of λ , K =1 and J =8

 Notice that the Speed-up increases along with the increase in the number of points (desirable property) and also for 
higher values of λ . For example, when λ = 105, with N = 28 + 1 and temporal subdomain J = 8, the MG method has a 
tcpu = 8.13s  and the SG a tcpu = 1477.82s . That is, the MG method solves the problem roughly 182 times faster than the 
SG method.

5. Application: Wave propagation problem with reflection

Here we approach a more realistic problem that is solved by approximation. We admit Ω = [0, 1], α = 2, tf = 1.0s , initial 
configuration and velocity f (x ) = g (x ) = 0, u (0, 0) = u (1, t ) = 0, that is, we have a straight string in rest position in the 
initial time, fixed at both ends. Time can be divided in the intervals t1, t2, t3, . . . , tp −1, tp , tp +1, . . . , 2tp , . . . , tf , where the 
tp  is the time in which the oscillation reaches the maximum displacement. Then, we apply a pulse in the extremity x =
0, between the interval (t3; 2tp ). This pulse can be inserted into the problem, given by the following boundary 
conditions
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u (0, t ) = {
0, for t ∈ [t1, t2],

sin(πt ), for t ∈ [t3, tp ],

sin(π (2tp − t )), for t ∈ (tp , 2tp ],

0, for t > 2tp .

(36)

In this work, we adopt tp = 0.109s , 2tp = 0.218s , tf = 1.000s , λ = 100 and N = 26 + 1. One can verify the propagation of 
the pulse as time varies on Figure 19.
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Figure 19. Propagation of pulse on a string as time advances

 By observing Figure 19, from left to right and from top to bottom, we can verify the phenomenon of wave propagation 
on a string, where there is an inversion of the phase in which the pulse was applied. We solve this problem by applying 
the WR method with J = 1 (standard) and WR with temporal subdomains J = 4 , combined with the SG and MG for both 
cases. Table 3 shows some of the parameters assessed.

Table 3. Parameters of the solution with standard WR (J =1) and with WR with temporal subdomains J =4,
 for wave propagation with reflection and phase inversion

W RSG W RMG W RSG −SUB W RMG −SUB
tCPU 2.94E-01 1.67E-01 1.23E-01 6.59E-02
ρm 9.51E-01 7.38E-01 8.72E-01 2.35E-02

||r ||∞ 1.03E+12 1.03E+12 5.67E+01 5.67E+01

 By using J = 4, the analyzed parameters improve significantly, especially the average convergence factor ρm  combined 
with MG, thus proving the efficiency of this applied method for the wave equation.

6. Comments
The methodology presented here, can be extended also to more realistic problems, by considering the external forces 
operating on the problem, by inserting F (x , t ) in the right hand side of Eq. (1), because according to Trottenberg et al. 
[14] causes changes only source term of the system of equations, not changing the performance of the method. 
Another possibility is to check the applicability of the Waveform Relaxation method with Subdomains in Time to two-
dimensional and three-dimensional problems. As well as the application of the Multigrid method, which as seen in this 
article, can signifcantly decrease the average convergence factors, making it possible to obtain powerful parallelizable 
methods.

7. Conclusions
In this work, we presented a scheme of parallelizable solutions for the one-dimensional wave propagation problem 
that uses discretization combined with the Finite Difference Method, weighted by a parameter η  in different stages of 
time. The innovation can be seen in the application of the Waveform Relaxation method with temporal subdomains J  
and only one spatial subdomain, in which we were able to significantly reduce the order of the maximum residue. We 
also innovated when applying the Multigrid method for this class of problems and we showed a considerable 
improvement in the processing time and convergence factors, in codes that allow parallelization, mainly when working 
with large values of λ . Moreover, we applied this technique to analyze the solution of a problem of pulse propagation 
on a string, thus proving the efficiency of the proposed method.

We also point out that the main challenge of using the Waveform Relaxation method for the wave equation is in the 
initial increase of the residual, since this negatively alters all the parameters analyzed, and that it was already known in 
the literature [11]. We emphasize that this problem was solved satisfactorily with the methodology presented in this 
work.
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