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Abstract
For improving the energy efficiency of hopping robot, an asymmetric spring loaded inverted 
pendulum hopping model with leg mass is considered. The period orbit problem of one-
legged hopping robot is investigated. Firstly, the hybrid dynamic model is constructed. Then 
the passive hopping gaits are found using quasi-newton optimization method. Secondly, a 
PD controller is implemented to track the desired pitch trajectory of the body. Through 
applying control during stance phase, period orbits of the robot with offset body mass is 
obtained. Finally, the effect of the location of the leg mass and the body mass on hopping 
performances is investigated.
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1. Introduction
Hopping robots use isolated footholds, so it can negotiate 
uneven terrain. Due to these advantages, it has been studied by 
many researchers in recent years. Raibert and his coworkers 
had developed one-legged and two-legged hopping robots [1] 
based on a spring-loaded inverted pendulum (SLIP) model. 
These robots had a massless telescopic leg and a point foot. 
They use a three-part algorithm to control the robot. Since then, 
many jumping robots such as robots with spring leg [2-5] and 
robots with multi-joint leg [6-8] are constructed.

The SLIP model is the simplest mathematical model for hopping 
robot and it captured the basic dynamicbehaviors of the 
running of many animals [9]. The control of the SLIP model is 
very simple because it doesn’t consider the dynamic coupling 
between the body and the legs. The control strategy based on 
SLIP model is necessary to be modified in order to successful 
apply in the control of the real robots [10], so it is necessary to 
construct a more realistic model similar to the real hopping 
robots.

In the hopping control, the energy consumption is especially 
crucial because it directly affects the size of the actuator and in 
return influences the weight of the robots. So, it is necessary to 
achieve the hopping gait with minimal power consumption. In 
this field, there are some remarkable researches on passive 
hopping. It has been found that using the proper initial 
conditions, the hopping robots can excuates periodic motion 
without input torque [11-12]. Papadopoulos and Cherouvim 
proved that the passive gait is the least energy-consuming gait 
[2]. Ahmadi and Buehler used hip and leg compliance to realize 
passive motion [3-4]. Schammass et al exploited the passive 
dynamics of the system to reduce the energy consumption [13]. 
The simulation results shown that the robot including hip 

compliance reduced approximately 67% of the total energy 
compared to the robot without hip compliance. Hyon et al used 
a new gait-searching algorithm to find the passive orbit and 
proposed two kinds of controllers to realize orbital stabilization 
[14-16].

All of these hopping robots have symmetric configuration with 
the center of mass (COM) along the geometrical axis of a 
telescopic leg. In reality, the COM of most animals offsets the 
hip joint and the weight of the leg can’t be ignored. The offset 
body-mass offers greater flexibility in the design of hopping 
robot because the actuator can be placed within the body 
freely. The asymmetrical body mass configurations have been 
considered by several scholars [17-23]. Kuswadi et al. proposed 
an asymmetric model of a single-legged robot and realized a 
sustained hopping motion. The center of gravity of the model 
isn’t on the line of action of the actuator [19]. Sayyad et al 
analyzed a springy-legged offset-mass (SLOM) configuration 
and proposed an energy compensated model to explore the 
possibility of a periodic motion [20]. But all these paper doesn’t 
consider the rotation of the body. Poulakakis et al used a SLIP-
embedding control law to control an asymmetric spring loaded 
inverted pendulum (ASLIP) hopping model, but the leg is 
assumed to be massless [22-23].

In this paper, an asymmetric spring loaded inverted pendulum 
hopping model (ASLIP) is proposed, where the leg mass is 
considered and the center of mass of the body is not located in 
the hip joint. The goal is to study of the effect of the offset mass 
of the body and the mass of the leg on the robot’s hopping 
performance.

This paper is organized as follows. In Section 2, the dynamic 
model is presented along with its mechanical properties and 
motion equations. In Section 3, the Poincare mapping is used to 



https://www.scipedia.com/public/NI_MENG_2022a 2

Y. Ni and X. Meng, Passive periodic motion of an asymmetric spring loaded inverted pendulum hopping robot, Rev. 
int. métodos numér. cálc. diseño ing. (2023). Vol. 39, (1), 2

analyze the passive periodic hopping motion of the hopping 
robot and the fix point is obtained using optimization, and the 
effects of the offset mass and the leg mass on the hopping 
motion are presented in Section 4.

2. Dynamical model

Figure 1 is the simplified model of the ASLIP hopping robot. The 
hopping robot consists of two parts, a body and a springy 
telescope leg. The body and the leg is connected by a torsional 
spring on the hip joint H . In the model, the hip joint doesn’t 
coincide with the center of mass of the body. The mass of the 
leg is also taken into account. A coupling between the leg swing 
motion and the body rotation is introduced, which made the 
analysis of the dynamics of the robot more complicated. 
Supposing the position of the center of mass of the leg S1 and 
the position of the center of mass of the body S2 are given by 
FS1 = αl  and HS2 = βlb , where 0 < α , β < 1. The variable l  
denotes the length of the leg, theta  represents the leg angle 
with respect to the vertical axis φ  indicates the body angle with 
respect to the horizontal axis. Other physical parameters and its 
values are listed in Table 1.

Figure 1. Model of robot

 The hopping motion of the robot is composed of two phases: 
stance phase and flight phase. The switch from the stance 
phase to the flight phase is called lift-off, triggered by l ≥ l0. The 
switch from the flight phase to the stance phase is called 
touchdown, triggered by zh ≤ l0cos(θ ). We use the event-based 
subscript to describe the motion during different phases. The 
subscript st  represents the stance phase, fl  represents the flight 
phase, td  is the moment at touchdown and l0 is the moment at 
lift off.

Table 1. Physical parameters

Notation Units Value
body mass mb kg 9

leg mass ml kg 3

body length lb m 0.22

body inertia Jb kg.m2 0.5

leg inertia JL kg.m2 0.11

leg spring stiffness kl N/m 3000

hip spring stiffness kh Nm/rad 10

natural leg length l0 m 0.5

gravity acceleration g m/s2 9.81

 During the stance phase the leg is in contact with ground at a 
toe point F  (end of the leg). Supposing that the robot does not 
bounce back nor slip relative to the ground, the leg rotates 
around the toe. Then the toe can be modeled as a pivot. We 
choose polar coordinates qst = [ l θ φ ]T , as the generalized 
coordinates. Using the Lagrange method [22], the equations of 
motion is obtained as:

Mst (qst )q̈ st + Cst (qst , q̇ st )q̇ st + Gst (qst ) + Kst (qst ) = τst (1)

where Mst  is the symmetric positive definite inertia matrix 
during the stance phase, which deponds on the generalized 
coordinates qst ; Cst  is the matrix containing centrifugal force 
and Coriolis force during the stance phase, which is a function 
of qst  and q̇ st ; Gst  is the gravity vector during the stance phase, 
which is a function of qst ; Kst  is the equivalent driving torque 
vector of torsion spring during the stance phase, which is 
related to qst ; τst = [ f 0 τst ]T ; f  is the driving force to the leg, 
while τst  denotes the hip torque during the stance phase.

During the flight phase the leg loses contact with the ground. 
The COM of the robot moves along the ballistic trajectory and 
the angular momentum of the robot about the COM is 
conserved. The length of the leg is assumed to keep constant. 
We select Cartesian coordinates qfl = [xh zh θ ϕ ]T  as the 
generalized coordinates, (xh , zh )  is the position of the hip joint. 
The dynamics is given by:

Mfl (qfl )q̈ fl + Cfl (qfl , q̇ fl )q̇ fl + Gfl (qfl ) + Kfl (qfl ) = τfl (2)

where Mfl  is the symmetric positive definite inertia matrix 
during the flight phase, which deponds on the generalized 
coordinates qfl ; Cfl  is the matrix containing centrifugal force and 
Coriolis force during the flight phase, which is a function of qfl  
and q̇ fl ; Gfl  is the gravity vector during the flight phase, which is 
a function of qfl ; Kfl  is the equivalent driving torque vector of 
torsion spring during the flight phase, which is related to qfl ; 

τfl = [0 0 0 τfl ]T ; τfl  is the hip torque during the flight 
phase.

At touchdown, the leg touches down the ground and inelastic 
impulse occurs. The generalized displacements keep constant, 
but the generalized velocities change instantaneously

q̇ td + = g ( q̇ td − ) (3)

where the subscript td −  and td +  represent the moment 
before and after touchdown respectively.

At lift-off, there are no discontinuous changes of states except 
for:

l̇ lo = 0 (4)

It can be seen that during the landing phase, the leg 
compresses and releases the spring to realize the energy 
conversion from the above equations. Since the loss caused by 
friction is not considered, the mechanical energy is conserved. 
In the flight phase, the mechanical energy of the system is also 
conserved. At touchdown, the robot legs collide with the 
ground, which will lead to energy loss. In order to simplify the 
analysis, the energy loss at touchdown is not considered in this 
paper. The robot is a complex switching system with multi 

https://www.scipedia.com/public/File:Review_801861383672-image2.png
https://www.scipedia.com/public/File:Review_801861383672-image2.png


https://www.scipedia.com/public/NI_MENG_2022a 3

Y. Ni and X. Meng, Passive periodic motion of an asymmetric spring loaded inverted pendulum hopping robot, Rev. 
int. métodos numér. cálc. diseño ing. (2023). Vol. 39, (1), 2

variables, strong coupling and nonlinearity, so it is impossible to 
obtain the analytical solution of the trajectory of the system, 
and can only be solved by numerical calculation.

3. Passive hopping motion

To improve the energy efficiency, firstly we consider the 
completely passive hopping which means that there is no 
driving force applied on the robot. A very useful and common 
method to study the existence and stability of periodic motions 
is the Poincare map. According to the trajectory of the state 
variables in the Poincare section, we can find the periodic 
motion. Through Poincare map, we can transform the existence 
of the periodic orbits of the hopping robot to the fixed point in 
the Poincare section.

The robot has 4 DOF during flight and 3 DOF during stance. For 
reducing the number of the independent variables, we choose 
the moment just after touchdown as the Poincare section and 
state vector is defined as x = [ ltd θtd φtd l̇ td θ̇ td φ̇ td ]T . 
For ltd = l0 at touchdown, the number of the independent 
variables reduces to 5. In the process of iteration, let the state 
vector in the jth  step is xj , we can get the state vector xj +1 in the 
(j + 1)th  step after one mapping. This process can be described 
as a Poincare map xj +1 = P (xj ) .

For a certain state vector x, the point is called a fixed point if it 
maps itself through one map,

x = P (x ) (5)

Then we build the Poincare map of the hopping robot. The 
dynamic Eqs. (1) and (2) are rewritten into a standard state-
space form.

Pst : ẋ st = fst (xst , ust ) (6)

Pfl : ẋ fl = ffl (xfl , ufl ) (7)

where xst = [qst
T , q̇ st

T ]T is the state vector during the stance 
phase and xfl = [qfl

T , q̇ fl
T ]T during the flight phase. Because the 

number of the state variables between the stance phase and 
the flight phase is different, we need to construct two mapping 
between the transitions of these two phases. The mapping is 
represented by the following equations

Plo : {
xh ,lo = − llo sin(θlo )
zh ,lo = llo cos(θlo )

ẋ h ,lo = − l̇ lo sin(θlo ) − llo θ̇ lo cos(θlo )

ż h ,lo = l̇ lo cos(θlo ) − llo θ̇ lo sin(θlo )

(8)

Ptd : { ltd = l0          

l̇ td = − ẋ h ,td sin(θlo ) + ż h ,td cos(θlo )
(9)

Combining these four sub-maps, then the whole Poincare 
mapping is P = Pst ∘ Plo ∘ Pfl ∘ Ptd .

Since the Poincare map of the hopping robot have been 
constructed, now we consider the method of finding the fixed 
point. The Newton-Raphson’s method [15] is commonly used to 
find the fixed point

xj +1 = xj +1 + [ I − DP (xj ) ]−1[P (xj ) − xj ] (10)

where, I is the identity matrix, DP (x ) = ∂P (x ) /∂x  is the 
jacobian matrix of the Poincare map at xj .

Because the Newton-Raphson’s method demands the initial 
value of the state vector to be very close to the accurate value of 
the fixed point, it’s difficult to give the initial value. If the initial 
value is selected improperly, the algorithm will diverge soon.

In this paper we used the optimization algorithm to solve the 
nonlinear equations. Firstly we transformed the problem into a 
minimum value problem. Eq. (5) can be rewritten as

f (x ) = ∥ P (xj ) − x ∥ (11)

 Then the problem becomes an unconstrained optimization 
problem. We can use the quasi-Newton method to find the 
minimum value of Eq.(11). If the minimum value of f (x ) is zero, 
the point x is considered as the fixed point. In reality, due to 
calculation error, the point is considered as the fixed point if 
f (x ) < 10−6.

In this paper, quasi Newton method is used to solve the 
minimum problem

xk +1 = xk -Hk
-1 ⋅ gk (12)

where sk = xk +1-xk , Hk = Bk
−1, yk = ∇f (xk +1 ) -∇f (xk ) , Hk +1 = Hk −

Hk yk yk
T Hk

yk
T Hk yk

+
sk sk

T

yk
T sk

.

4. The effect of the center of mass of the leg and 
the body

Using the proposed algorithm, passive hopping gaits are found. 
According to the Hyon [14], all passive running gaits of the ARL 
monopod robot were unstable except for a vertical hopping. 
The obtained gaits of our hopping robot are also quasi-period 
ones, not stable limit cycle. The distance between the COM of 
the leg and the toe is αl , and the distance between the COM of 
the body and the hip joint is βlb . The location of the COM of the 
leg and the body is depend on α  and β , respectively, we 
examine the influence of α  and β  on the jumping performance 
of the robot.

4.1 The effect of the center of mass of the leg

Firstly the effect of α is examined when the COM of the body is 
coincide with hip joint (β  is zero). The base parameters given in 
Table 1. The results are shown in Figure 2. The location of the 
COM of the leg is displaced along the leg from the toe to the hip 
joint, which means that the value of α  is between 0 and 1. When 
α = 0, the center of the leg is located in the toe and the model is 
similar to a two-mass model; when α = 1, the center lies in the 
hip joint and the model is the ARL monopod. In Figure 2 it can 
be seen that when α increases, the apex height of the COM of 
the robot and the compression of the leg spring decreases, 
while the step length increases. The step length reached at the 
maximum value when α = 0.7. The following conclusions can be 
drawn. If the robot is wanted to have a long jump, the COM of 
the leg should be close to the hip joint. If the robot is wanted to 
have a high jump, it should be far away from the hip joint and at 
the same time the robot should provide greater power by 
increasing the compression of the spring.

 In Figure 3 with the increase of α, the angle of the center of 
mass at the take-off time (take-off angle) decreases, the 
horizontal velocity of the center of mass increases, and the 
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Figure 2. The step length , the apex height and the minimum value of the leg length 
during stance phase

vertical velocity decreases. With α = 0.9 these velocities are 
approximately equal. The decrease of vertical velocity means 
the decrease of flight time, but the step size of the robot 
increases with the increase of horizontal velocity. Due to the 
dual influence of flight time and horizontal velocity, the robot 
α = 0.7. The maximum step size is reached at 0.7.

Figure 3. The horizontal and vertial velocity of the COM at takeoff

 During the change of leg centroid, the stance time changed very 
little and remained around 0.2s (Figure 4). However, as the COM 
of the leg gets closer to the toe, the total jump time increases 
and the duty cycle decreases, which means that the time spent 
by the robot in the take-off phase increases and the gait 
frequency decreases. Before the next jump, the swing of the leg 
is controlled more easily.

Figure 4. Bounce period, stance time v.s. α

 In Figures 5 and 6, it can be seen that with the increase of α, the 
center of mass of the leg is closer to the hip joint, and the body 
angle amplitude decreases, but the leg angle amplitude 
increases. The closer the center of mass of the leg is to the hip 
joint, the closer the leg swing curve is to the sine curve. When 
the center of mass of the body is located at the hip joint, the leg 
swing curve is a sine curve.

Figure 5. Trajectory of the leg

4.2 The effect of the center of mass of the body

Then we investigate the effect of the COM of the body on the 
hopping performance, it can be expressed by β . The periodic 
gait of the hopping robot without active control is in Figure 7 
when the COM of the body doesn’t locate in the hip joint. It 
shows that there was little change in the angle of the leg and 
the body, the motion of the robot is a vertical hopping and the 
robot doesn’t leave the ground, so it is necessary to control the 
robot in order to get a forward hopping. The control scheme is 
using the hip actuator to control the pitch angle to track the 
desired trajectory during the stance phase. A PD (Proportional-
Derivative) controller is used to track the desired pitch trajectory 
[24-26].
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Figure 6. Trajectory of the body

Figure 7. Periodic passive hopping gait without active control

 Using the pitch angle of passive hopping of ARL robot as the 
desired trajectory and computing the limit cycle with the 
optimization method, the passive gait of the asymmetrical 
hopping robot is obtained. Figures 8 and 9 are the posture and 
the limit cycle during one hoping cycle. It is can be seen that 
with active control, a satisfactory periodic motion is obtained 
when the robot has an asymmetric body mass. It can be seen 
that the toes of the robot collided with the ground in the flight 
phase. In order to prevent the toes of the robot from contacting 
the ground in the flight stage, the jumping height of the robot 
should be increased.

Figure 8. Active periodic gait of the hopping robot when α =0.7, β =0.13

 Although in theory β  can be taken in [0,1], β  is less than 1 for 
the following two reasons. The first reason is that it is unable to 
find fixed point. The second reason is that the minimum length 
of the leg length at the landing stage is 0, which means that the 
compression of the spring reaches 100%. In fact, due to the 
structure of the spring itself, the compression cannot be 
pressed to the bottom. The above two cases can be increased by 
improving the control method and increasing the spring 
stiffness to increase the range of β . As can be seen from Figure 
10, with the increase of α , the maximum allowed value of β  is 

Figure 9. Limit cycle of the hopping robot

small. It shows that the closer the robot leg is to the hip joint, 
the smaller the allowable eccentricity of the body.

Figure 10. The maximum allowable value of β  v.s. α

Figure 11 shows that with the increase of β , the angle of the 
center of mass at the take-off decreases, the vertical velocity 
remains almost unchanged, while the horizontal velocity 
increases rapidly, and the step size of the robot becomes larger. 
The farther the body centroid is from the hip joint, the better. 
Because the change of bounce cycle time is very small, most of 
the energy provided by the leg spring is transformed into 
forward movement. However, due to the low centroid height of 
the robot at the take-off, the maximum height in the flight 
phase is also low, and the robot toe is easy to collide with the 
ground. So β  cannot be too large.

 As can be seen from Figure 12, with the increase of β , the 
minimum length of the leg in the landing stage decreases 
rapidly, and the compression amount of the spring changes 
from 38% to 69%, indicating that the farther the center of mass 
of the body is from the hip joint, the greater the force required 
to be provided by the leg spring. It should be considered to 
increase the stiffness of the spring.
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Figure 11. The horizontal and vertical velocity of the center of mass at take-off

Figure 12. Minimum length of legs in landing phase with different of β

Figure 13 shows that with the increase of β , the center of mass 
of the body deviates more and more from the hip joint, and the 
rotation amplitude of the body and legs increases. The closer 
the body centroid is to the hip joint, the closer the leg swing 
curve is to the sinusoidal curve. The angle of the body and leg 
increases at the take-off, correspondingly the take-off angle of 
the body centroid decreases. Body eccentricity provides a larger 
take-off range for robot motion.

(a) (b)

Figure 13. Leg angle and the body angle vs. time

Figure 14 shows that the greater the body eccentricity, the 
greater the driving torque required by the robot to drive the 
body pitching motion in the landing phase, because the swing 

range of the body in the landing phase also becomes larger.

Figure 14. Influence of body eccentricity ratio on driving torque

5. Conclusion
The period orbit problem of an asymmetric spring loaded 
inverted pendulum is addressed. The dynamic equations of the 
two link robot are established. Then the Poincare mapping 
method is used to turn the solution of the periodic motion of 
the hopping robot into the solution of the fixed point, and then 
the optimization method is used to obtain the fixed point of the 
hip robot. With a PD controller, a period orbit can be obtained. 
Through investigating the effect of the location of the leg mass 
and the body mass on the hopping performance, if the robot is 
wanted to jump longer, the center of mass of the leg and the 
body should be far away from the hip joint.
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