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Abstract
This study investigates a retailer's ordering strategy under the framework of the economic 
order quantity (EOQ) model. A supplier offers a retailer a disposable coupon and allows it to 
place a special order at any time in a promotion period. The promotion period is not 
necessary short and shortages are allowed throughout the time horizon. In addition to the 
special order time and the special order quantity, the retailer needs to decide whether to 
place some regular orders in the promotion period before placing the special order for the 
purpose of making better use of this coupon. We show that the coupon should be used to 
the retailer's first order in the promotion period regardless of the duration of the promotion 
period. Moreover, the retailer's maximum inventory level is higher than that in the classical 
EOQ model. We find that a longer promotion period can benefit the retailer by endowing it 
with more flexibility in its decision-making. Therefore, the supplier can improve the cash 
flow and reduce the overstock by integrating a disposable coupon with a longer promotion 
period. Numerous managerial insights are obtained from sensitivity analysis and numerical 
experiments.
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1 Introduction
“Small profits and quick returns” has been widely adopted by 
functional managers in real industrial practices. To accelerate 
cash flow and reduce overstock, it is common for a supplier to 
encourage a retailer to place a larger order by temporarily 
charging a lower wholesale price. In this context, the retailer 
can improve its inventory system by placing one or more special 
orders. Despite a reduced wholesale price, the retailer's order 
decision is driven by a trade-off between the benefit from the 
special order (e.g., reduced purchasing cost and unit inventory 
holding cost) and the loss from it (e.g., increased ordering cost 
and inventory level). As such, the retailer is generally prudent to 
make its order decision, which depends on the discount rate 
and the promotion period simultaneously [1].

Given the diversity of retailers, the motivation effect of a short 
promotion period may be marginally pronounced because it 
undermines the flexibility of retailers in their decision-making. 
Nevertheless, if the length of the promotion period is long, 
retailers may repeatedly place small special orders for the 
purpose of cutting the purchasing cost and the inventory 
holding cost simultaneously, which works to the disadvantage 
of the supplier. To resolve the problem, the supplier can set a 
longer promotion period and offer the retailer a disposable 
coupon whereby the latter can order a special quantity only 
once during the promotion period [2]. We are interested in the 
following research questions:

RQ 1: Will the retailer place some regular orders in the 
promotion period before the special order?

RQ 2: How does the discount rate influence the retailer's 
optimal order decision?

RQ 3: How does the duration of the promotion period affect the 
retailer's total cost?

To address the above questions, we develop an inventory model 
in which a supplier offers a retailer a disposable coupon 
whereby the retailer can order a special quantity at a reduced 
wholesale price in a promotion period. The promotion period is 
not necessary short. Thus, in addition to the special order time 
and the special order quantity, the retailer needs to decide 
whether to place some regular orders in the promotion period 
before the special order. Shortages are allowed and all 
shortages are backordered. We derive the retailer's optimal 
order decision by first constructing its total cost function and 
then minimizing it. It is worthy mentioning that the retailer's 
total cost function is continuous with respect to the special 
order time and the special order quantity, while discrete with 
respect to the number of regular orders.

Our analytical results generate numerous managerial insights. 
Specifically, the coupon should be used to the first order in the 
promotion period regardless of the duration of the promotion 
period. Even if the supplier sets a long promotion period, the 
retailer has no incentive to deliberately postpone its special 
order, which improves the supplier's cash flow. Moreover, the 
maximum inventory level in our model is always higher than 
that in the classical economic order quantity (EOQ) model, 
indicating that the disposable coupon can reduce the supplier's 
overstock by passing on its excess stock to the downstream 
retailer. We investigate the effect of the discount rate on the 
retailer's optimal order decision. Overall speaking, a higher 
(lower) discount rate results in the retailer placing its special 
order earlier (later) and ordering less (more) special quantity 
simultaneously. In this sense, the supplier needs to make a 
trade-off between a earlier special order and a larger special 
order when setting the discount rate. Interestingly, the retailer's 
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total cost decreases with the length of the promotion period, 
which implies that the supplier can attract more retailers by 
extending the promotion period in addition to reducing the 
wholesale price. The intuition is that a longer promotion period 
can make the retailer better off by endowing it with more 
flexibility in its ordering decision-making.

The remainder of this paper is organized as follows. Section 2 
reviews the relevant literature. Section 3 describes the model. 
The retailer's optimal order decision and the corresponding 
managerial insights are presented in Section 4. In Section 5, we 
conduct numerical experiments to validate the proposed model. 
Section 6 concludes this study. All proofs are presented in 
Appendix.

2 Literature Review
The literature is reviewed from two perspectives: price 
discounts at a future time and price discounts over a short 
period.

For instantaneous price discounts, Lev and Weiss [3] 
investigated how a retailer adjusts its order quantity according 
to fluctuations of various operational costs. Tersine and Barman 
[4] developed a composite EOQ model which can be 
disaggregated into a family of hybrid models to deal with 
specific conditions. Wee and Yu [5] determined the optimal 
order quantity for deteriorating products. Cárdenas-Barrón et 
al. [6] generalized Tersine and Barman's model by allowing for 
shortages and two backorder costs. Yang et al. [7] examined an 
inventory setting in which the leading time hinges on the 
retailer's order quantity. Chang and Lin [8] generalized Lev and 
Weiss's model by incorporating perishable items. Yang et al. [9] 
formulated an inventory model with limited warehouse 
capacity. Taleizadeh [10] further extended Tersine and Barman's 
model by considering partial backordering shortages. 
Shaposhnik [11] developed an inventory model with a stochastic 
price discount. Inventory models with instantaneous price 
discounts include, among many others, 
[12,13,14,15,16,17,18,19].

For price discounts over a short period, Ardalan [20] suggested 
that the special order should be placed at a time when the 
inventory level reaches the minimum (i.e., the minimum 
inventory principle). Aull-Hyde [21] extended Ardalan's model by 
incorporating some supplier-restricted purchasing options. 
Ardalan [22] examined the retailer's replenishment and pricing 
strategy in a three-echelon supply chain. Aull-Hyde [23] 
investigated the retailer's ordering strategy under allowable 
shortages and restricted promotion period. Chu et al. [24] 
showed that the minimum inventory principle is still valid for 
Aull-Hyde's model. Abad [25] examined the retailer optimal 
order decision under a price-dependent demand. Sarker and 
Kindi [26] extended the time horizon from the special 
replenishment cycle to the whole year. Cárdenas-Barrón [27,28] 
generalized Sarker and Kindi's model by considering some 
practical extensions. Kindi and Sarker [29] further generalized 
Sarker and Kindi's model by allowing for shortages. Sari et al. 
[30] formulated an inventory model with time-based price 
discounts. Karimi-Nasab and Konstantaras [31] investigated the 
retailer's order strategy with stochastic replenishment cycles. 
Cárdenas-Barrón et al. [32] revised Kindi and Sarker's model 
and derived the closed-form optimal total gain costs. Wang et 
al. [33] developed an inventory model with a stochastic short-
term price discount. Gao et al. [34] generalized Wang et al.'s 
model by allowing for partial backorders.

The literature referred to above generally assumes that the 
promotion period is too short to tolerate more than one order, 
which undermines the practicality of the price discount. 

Although Kindi and Sarker [26,29] examined the retailer's 
ordering strategy under a long promotion period, the start time 
of the promotion period is required to be exactly coincident 
with a regular replenishment point of the classical EOQ model. 
In this sense, the supplier's promotion policy is actually 
exclusive to a particular retailer and, thus, is hardly appropriate 
to various retailers. This paper complements the above 
literature by relaxing the assumption on the start time of the 
promotion period. To our best knowledge, this study is the first 
to allow the retailer to place some regular orders in the 
promotion period to better prepare for the subsequent special 
order, which endows the retailer with more flexibility in its 
decision-making and, thus, is suitable for a variety of retailers.

Our study is also related to Arcelus et al. [35], who investigated 
the retailer's special order time and special order quantity 
under a promotion period of unknown length. This study also 
examines the retailer's ordering strategy with a promotion 
period of arbitrary length, but differs from their model in two 
aspects. First, they allow the retailer to repeatedly place special 
orders throughout the promotion period, which enables the 
retailer to fully take advantage of the price discount. In contrast, 
we restrict the number of special orders to hurry the retailer 
into placing a larger special order for the purpose of improving 
the supplier's cash flow. Second, shortages are prohibited in 
their study, but they are allowed in this study, which endow the 
retailer with more flexibility in its decision-making.

3 Model Setup

Consider a supply chain setting in which a supplier sells a 
product to a retailer and charges a wholesale price w  for each 
unit of its product. To promote sales, the supplier offers the 
retailer a disposable coupon whereby the latter can place a 
special order in a promotion period [ts , te ] at a reduced 
wholesale price γw , 0 < γ < 1. The promotion period may 
include one or more regular replenishment points. If that is the 
case, the retailer needs to decide whether to continue placing 
some regular orders after the coupon is available (at time ts ) to 
prepare for the special order. Shortages are allowed and fully 
backordered throughout the time horizon. The length of the 
time horizon is exogenously given and long enough to include 
the special order period. In addition to the special order time tr , 
the special order quantity qr , the retailer needs to determine 
the number of regular orders n  placed in [ts , tr ]. For 
convenience, we denote simply by a triple (qr , tr , n ) the retailer's 
ordering strategy with a disposable coupon. To highlight the 
retailer's inventory mechanism, we adopt a constant demand 
rate under the framework of the classical EOQ model. To better 
illustrate our analytical model, we consider a two-echelon 
supply chain in which Coca-Cola and Costo act as the supplier 
and the retailer, respectively. The product is cola, which is 
produced by Coca-Cola and sold to Costco. It is worthy noting 
that the local demand for cola has tended to be steady [36]. A 
summary of the model notation is listed in the following table.

Table. 1 Model notation.

Notation Description

D Annual market demand
w Wholesale price
γ Discount rate, 0 < γ < 1

A Fixed ordering cost

h Unit inventory holding cost
cf Fixed backorder cost
cl Unit backorder cost
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Q∗ Regular economic order quantity (EOQ) order 
quantity

S∗ Regular economic order quantity (EOQ) backorder 
level

k The length of the time horizon

ts The start time of the promotion period

te The end time of the promotion period

m The number of regular orders placed in [0, ts )

n The number of regular orders placed in [ts , tr ]
qr Special order quantity

tr Special order time

3.1 Inventory Level

In this subsection, we characterize the retailer's inventory level 
with respect to its ordering strategy. To this end, we first 
examine the fixed number of regular EOQ orders placed before 
the promotion period. Let m = ⌈ts D /Q∗⌉, where ⌈x⌉ denotes the 
smallest integer greater than or equal to x . Thus, m  denotes 
the number of regular orders placed in [0, ts ), which satisfies 
(m − 1)Q∗/D < ts ⩽ mQ∗/D .

We then investigate the number of regular orders placed in [ts ,
tr ], wherein [ts , tr ] denotes the period from the coupon being 
available (at time ts ) to the special order being placed (at time tr
). Note that in the classic EOQ model, the i -th, i ⩾ 1, regular 
order is placed at time (i − 1)Q∗/D . If the retailer decides to place 
n , n ⩾ 0, regular orders in [ts , tr ], it will place a total of m + n  
regular orders in [0, tr ]. In particular, the (m + n )-th regular 
order is to be placed at time (m + n − 1)Q∗/D . To measure the 
retailer's inventory level at the special order time tr , let us 
define fn (t ) = (m + n )Q∗ − S∗ − tD  for n ⩾ 0 and t ∈ [0, + ∞). In this 
light, fn (tr ) is exactly the inventory level at the special order time 
tr .

Figure 1: Retailer's Ordering Strategy with n =0.

Given that all items purchased through the last regular order 
before the promotion period will be sold out at time ((m +
n )Q∗ − S∗)/D , we refer to [0, ((m + n )Q∗ − S∗)/D ] as the regular 
order interval. Since all items purchased through the special 
order will be sold out at time ((m + n )Q∗ − S∗ + qr )/D , we refer to 
(((m + n )Q∗ − S∗)/D , ((m + n )Q∗ − S∗ + qr )/D ] as the the special 
order interval. The retailer's inventory level is illustrated in 
Figure 1, where “RI”, “SI”, and “RH” denote the regular order 
interval, the special order interval, and the remaining time 
horizon, respectively.

3.2 Total Cost
In this subsection, we examine the retailer's total cost with 

respect to the ordering strategy (qr , tr , n ) by adding up its total 
costs in the regular order interval, the special order interval, 
and the remaining time horizon.

We first consider the retailer's total cost in the regular order 
interval. According to [37], the average cost caused by the 
regular order is Car

∗ = wD + h (Q∗ − S∗), where Q∗ = 2AD /h  and 

S∗ = 0 if cf ⩾ 2Ah /D ; otherwise, Q∗ = (2AD (h + cl ) −

cf
2D2)

1
2 /(hcl )

1
2  and S∗ = (hQ∗ − cf D )/(h + cl ). Thus, the total cost in 

the regular order interval is (m + n )Q∗Car
∗ /D − (cl S

∗ + 2cf D )S∗/2D , 
where (cl S

∗ + 2cf D )S∗/2D  is the backorder cost caused by the last 
regular order before the promotion period, which actually 
occurs in the subsequent special order interval.

Next, we investigate the retailer's total cost in the special order 
interval. It is worthy noting that when the wholesale price is 
reduced from w  to γw , the unit inventory holding cost falls 
from h  to γh , while two backorder costs cf  and cl  remain 
unchanged [29,6].

Lemma 1: When qr + fn (tr ) < 0, the retailer can never achieve the 
minimum total cost.

Lemma 1 indicates that the inventory level should be non-negative 
after the retailer places a special order (i.e., qr +
fn (tr ) ⩾ 0). Thus, we additionally assume that qr + fn (tr ) ⩾ 0 to 
simplify our discussion, which occurs if and only if tr ⩽ ((m +
n )Q∗ − S∗ + qr )/D . If fn (tr ) ⩾ 0, the retailer will bear the ordering 
cost, the purchasing cost, and the inventory holding cost 
simultaneously, in which case, the total cost in the special order 
interval is given by

C1(qr , tr , n ) = A + γwqr + γh ((qr + fn (tr ))2 − fn
2 (tr ))

2D ;

if fn (tr ) < 0, the retailer will additionally pay the fixed backorder 
cost and the linear backorder cost for its special order, in which 
case, the corresponding cost is

C2(qr , tr , n ) = A + γwqr + γh (qr + fn (tr ))2

2D − cf fn (tr ) +
cl fn

2 (tr )
2D .

Then, we examine the retailer's total cost in the remaining time 
horizon (((m + n )Q∗ − S∗ + qr )/D , k ]. Given that our inventory 
model converts to the classical EOQ model after time ((m +
n )Q∗ − S∗ + qr )/D , we adopt the average cost Car

∗  of the regular 
EOQ ordering strategy in the remaining time horizon, where k  
is large enough to contain the special order interval.1

Combining the above analysis, we can derive the retailer's total 
cost

f (qr , tr , n ) = (m + n )Q∗Car
∗

D −
(cl S

∗ + 2cf D )S∗

2D + Ci (qr , tr , n )

+ (k − (m + n )Q∗ − S∗ + qr
D )Car

∗ ,

where i = 1 if fn (tr ) ⩾ 0 and i = 2 otherwise. One can check that 
f (qr , tr , n ) is continuous with respect to qr  and tr  while discrete 
with respect to n . The retailer can determine the optimal order 
decision by minimizing f (qr , tr , n ) subject to the constraints: 
qr ⩾ 0, ts ⩽ tr ⩽ min {te , ((m + n )Q∗ − S∗ + qr )/D}, and n ⩾ 0.

 (1) The retailer's optimal order decision is actually independent of the length of the time 

horizon k ; see Proposition 1.

https://www.scipedia.com/public/File:Draft_Yue_357804329-Figure1.png
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4 Analysis

Thus far, we have established the retailer's total cost function 
f (qr , tr , n ). In this subsection, we further examine the retailer's 
optimal order decision by minimizing f (qr , tr , n ). To this end, we 
first derive the minimizer, denoted by (qn , tn ), of f (qr , tr , n ) for a 
fixed n  and then determine the optimal number n∗. For ease of 
exposition, let us define f1(qr , tr , n ) = f (qr , tr , n )|fn (tr )⩾0 and f2(qr ,
tr , n ) = f (qr , tr , n )|fn (tr )⩽0; then f (qr , tr , n ) can be seen as a 
piecewise-defined function consisting of two sub-functions 
f1(qr , tr , n ) and f2(qr , tr , n ).

Lemma 2: For a given n , (i) f1(qr , tr , n ) is strictly decreasing in tr  
and convex in qr ; (ii) f2(qr , tr , n ) is strictly convex in tr  and qr .

Lemma 2 reveals the structural property of the sub-function 
fi (qr , tr , n ) for i = 1, 2. Solving ∂f2/∂tr = 0 yields tr = t̄ n , where 
t̄ n = ((m + n )Q∗ − S∗)/D + (Car

∗ − cf D − γwD )/cl D . It is evident that 
f2(qr , tr , n ) strictly decreases in tr  when tr ⩽ t̄ n  and increases in 
tr  when tr ⩾ t̄ n . Next, we derive the minimizer, denoted by (qi ,n ,
ti ,n ), of fi (qr , tr , n ) for a given n .

Lemma 3: For a given n , (i) the minimum of the sub-function 
f1(qr , tr , n ) occurs at (q1,n , t1,n ), where q1,n = (Car

∗ − γwD )/γh −
fn (t1,n ) and t1,n = min {te , ((m + n )Q∗ − S∗)/D}; (ii) the minimum of 
the sub-function f2(qr , tr , n ) occurs at (q2,n , t2,n ), where q2,n =
(Car

∗ − γwD )/γh − fn (t2,n ) and t2,n  such that if cf ⩾ 2Ah /D + (1 −

γ )w /D , then t2,n = (m + n )Q∗/D , otherwise,

t2,n = { ts ,  ifts > t̄ n ,
t̄ n ,  ifts ⩽ t̄ n < te ,
te ,  ifte ⩽ t̄ n .

Building upon the minimizers of the sub-functions f1(qr , tr , n ) 
and f2(qr , tr , n ) for a given n , we then examine the minimum of 
the piecewise function f (qr , tr , n ).

Lemma 4: For a given n , the minimum of f (qr , tr , n ) occurs at 
(qn , tn ), where (qn , tn ) = (q1,n , t1,n ) if te < ((m + n )Q∗ − S∗)/D ; 
otherwise (qn , tn ) = (q2,n , t2,n ).

Although the retailer can determine the optimal special order 
time tn  and the optimal special order quantity qn  given the 
number of regular orders n , it is not clear whether the retailer 
should place some regular orders in the promotion period to 
prepare for the special order. In the following, we derive the 
retailer's optimal order decision, (qn∗, tn∗, n∗), by substituting 
qr = qn  and tr = tn  into f (qr , tr , n ) and solving the optimization 
problem minn {f (qn , tn , n )} for n ⩾ 0.

Proposition 1: With a disposable coupon, the retailer's optimal 
order decision is (q0, t0, 0).

Proposition 1 indicates that the coupon should be applied to the 
retailer's first order in the promotion period (i.e., n∗ = 0). Even if 
the promotion period lasts for a long time, the retailer will 
quickly place a special order after the coupon is available, which 
improves the supplier's cash flow and mitigates its overstock 
simultaneously. In particular, when te ⩽ (mQ∗ − S∗)/D , the 
retailer always places the special order at the end time of the 
promotion period (i.e., t0 = te ). The following proposition 
demonstrates how the discount rate γ  affects the maximum 
inventory level of the retailer.

Proposition 2: The maximum inventory level is always higher 
than that in the classical EOQ model and is strictly decreasing in 
the discount rate γ .

From Proposition 2, it would be better for the retailer to check 
on the capacity of its own warehouse before placing a special 
order, especially when the forecasted discount rate is highly 
seductive.

Proposition 3: When 2Ah /D ⩽ cf < 2Ah /D + (1 − γ )w /D  and 

te > m 2A /hD , shortages cannot benefit the retailer unless the 
promotion period sets in.

Proposition 3 shows that if the fixed backorder cost is in an 
intermediate range and the promotion period ends late, the 
retailer should take shortages into account in the promotion 
period, even if shortages are futile in the previous regular 
orders (see Figure 4 for a visual illustration). This result 
emphasizes the importance of flexibly utilizing shortages.

Proposition 4: When the supplier raises (reduces) the discount 
rate, (i) the retailer will bring forward (postpone) its special 
order if the inventory level is negative at the original special 
order time; otherwise, the retailer will keep the special order 
time unchanged; (ii) the retailer will reduce (increase) its special 
order quantity regardless of the current inventory level.

Proposition 4 demonstrates how the retailer adjusts its order 
decision with respect to the discount rare. In particular, when 
the inventory level is non-negative throughout the promotion 
period (i.e., te ⩽ (mQ∗ − S∗)D ), the retailer always places the 
special order at a time when the inventory level reaches the 
minimum (i.e., t0 = te ), regardless of the discount rate; see 
Proposition 1. This result coincides with the minimum inventory 
principle in [20]. Differently, our result complements the 
minimum inventory principle by allowing for shortages and 
extending the duration of the promotion period.

Proposition 5: The longer the promotion period is, the more 
attractive the coupon will be to the retailer.

While a lower discount rate can help the supplier sell its 
products to more retailers, it may hurt the supplier by cutting its 
sales revenue. Proposition 5 indicates that the supplier can 
attract more retailers by properly extending the promotion 
period in addition to reducing the wholesale price. The intuition 
is that a longer promotion period endows the retailer more 
flexibility in ordering decision-making, which benefits the 
retailer and, thus, renders the supplier better off. This result 
enlightens the supplier on the promotion strategy.

5 Numerical Experiments

In this section, some numerical experiments are performed to 
illustrate the validity of the model.

Figure 2: Comparison of Retailer's Ordering Strategies with n =0 and n =1 (D =1000, A =0.1, 
h =0.07, cl =0.1, w =5, ts =0.25, k =7).

When the promotion period contains a regular replenishment 
point, the retailer needs to decide whether to place a regular 
order at this point. If the retailer does so (i.e., n = 1), it incurs a 
total cost f (q1, t1, 1); otherwise (i.e., n = 0), the corresponding 
total cost is f (q0, t0, 0). Given that the retailer must make a trade-

https://www.scipedia.com/public/File:Draft_Yue_357804329-Figure2.png
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off between ``n = 0 and ``n = 1, the loss caused by the retailer 
adopting the ordering strategy with n = 1 can be measured by 
f (q1, t1, 1) − f (q0, t0, 0), whose graphical illustration is shown in 
Figure 2. We observe that the ordering strategy with n = 1 
always incurs a higher total cost than that with n = 0. Therefore, 
the retailer should promptly place the special order after the 
coupon is available, which is consistent with Proposition 1.

As depicted in Figure 2(a), the higher the discount rate is (or the 
later the promotion period ends), the lower the retailer's loss 
will be. In particular, when the discount rate is relatively high 
(e.g., γ = 0.9), the retailer may postpone placing its special order 
because there is no difference between the ordering strategies 
with n = 0 and n = 1. As such, it would be better for the supplier 
to reduce the wholesale price and shorten the promotion period 
simultaneously to facilitate the retailer to place the special order 
earlier. Figure 2(b) shows that the loss of the retailer increases 
as the fixed backorder cost cf  decreases. In particular, when cf  is 
reduced to below a certain threshold (i.e., cf < 0.00374), there is 
a rapid jump in the loss of retailer due to the change of the 
regular order quantity Q∗ and backorder level S∗. This 
emphasizes the importance of utilizing the coupon in time for a 
retailer who confronts a low fixed backorder cost.

Figure 3: Maximum Inventory Level for γ  and w  (D =1000, A =1, h =0.1, cf =0.2, cl =0.1, ts =

0.25, te =1, k =7).

The graphical illustration of Proposition 2 is depicted in Figure 3. 
It implies that the maximum inventory level caused by the 
special order is always higher than that caused by the regular 
order. Moreover, the curves gradually decrease and ultimately 
intersect at γ = 1. This displays how the maximum inventory 
level varies with the discount rate γ . In particular, when γ = 1, 
the maximum inventory level is an invariant constant regardless 
of the wholesale price and whether the retailer makes use of 
the coupon, because the benefit of the coupon vanishes. 
Another feature of Figure 3 is that the curve corresponding to a 
higher wholesale price (e.g., w = 1.4) is higher than that 
corresponding to a lower wholesale price (e.g., w = 1), 
indicating that a retailer who is charged a higher wholesale 
price should, if necessary, prepare a larger warehouse for the 
forthcoming promotion season.
 See Figure 4 for a graphical illustration of Proposition 3. Note 
that shortages are currently not attractive to the retailer in the 
regular EOQ ordering strategy [37]. There are two noteworthy 
observations. First, the curve corresponding to “Shortages” is 
lower than that corresponding to “No shortages”, indicating 
that although shortages cannot render the retailer better off in 
its regular orders, they benefits the retailer in the promotion 
season. Second, the gap between the two curves becomes 
wider as the discount rate decreases. This implies that making 

use of shortages in due time can help the retailer cut back on 
more spending from a lower discount rate. 

Figure 4: Comparison of Retailer's Total Costs under Allowable and Prohibitive Shortages (
D =1000, A =0.1, h =0.2, cf =0.1, cl =0.06, w =3, ts =0.25, te =0.7, k =7).

Figure 5: Retailer's Order Decision for γ  and w  (D =1000, A =0.1, h =0.07, cf =0.2, cl =1, ts =

0.25, te =1, k =7).

Figure 5 illustrates the effect of the discount rate elaborated in 
Proposition 4. As shown in plot (a), the lower the discount rate 
is, the later the retailer will be to place a special order. Namely, 
a lower discount rate postpones the retailer's special order. 
From plot (b), a lower discount rate always facilitates the retailer 
to place a larger special order. An interesting observation is that 
the curves are smoother with a lower wholesale price (e.g., w =
2), but steeper as w  increases. This implies that a retailer who 
suffers from a higher wholesale price is more sensitive to the 
discount rate.

Figure 6: Retailer's Total Cost for γ  and te  (D =1000, A =0.1, h =0.07, cf =0.2, cl =0.1, w =3, 

ts =0.25, k =7).

We illustrate Proposition 5 in Figure 6. It is evident that for any 
fixed end time te  (e.g., te = 0.4), the retailer's total cost strictly 
increases with the discount rate γ ; see plot (a). This result is 
intuitive because a higher discount rate increases the retailer's 
purchasing cost. In contrast, given the discount rate γ  (e.g., γ =
0.7), the retailer's total cost slightly decreases with the end time 
te ; see plot (b). This indicates that the later the coupon expires, 
the better off the retailer will be. Thus, the supplier can promote 
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sales by extending the promotion period in addition to setting a 
lower wholesale price.

6 Conclusions
Many suppliers charge lower wholesale prices at times with an 
intent to attract more retailers and, thus, promote sales. To 
accelerate cash flow, the suppliers usually encourage their 
retailers to place one large order in the promotion period 
instead of many small orders. This paper focuses on an 
inventory system with allowable shortages under the 
framework of the EOQ model. The supplier offers the retailer a 
coupon, which can be utilized only once in the promotion 
season. The distinguishing feature of the model is that the 
duration of the promotion period is not necessary temporary, 
which makes the model more practical. In this sense, the 
retailer needs to decide the number of regular orders placed in 
the promotion period before making use of the coupon, in 
addition to the special order time and the special order 
quantity.

We derive the retailer's optimal order decision on the 
disposable coupon. With it, numerous managerial insights are 
obtained. First, the coupon should be applied to the first order 
in the promotion period regardless of the length of the 
promotion period. Second, we show that the maximum 
inventory level in our model is always higher than that in the 
classic EOQ model, which highlights the importance of the 
retailer checking its storage capacity before placing a special 
order. Third, we find that if the fixed backorder cost is in an 
intermediate range and the promotion period ends later, 
shortages can make the retailer better off even if they are not 
attractive to the retailer before the promotion period. Fourth, 
when the discount rate becomes lower, the retailer should place 
a larger special order while postponing the special order to a 
certain extent. Finally, in addition to reducing the discount rate, 
the supplier can promote sales by extending the promotion 
period, which benefits the retailer by endowing it with more 
flexibility in decision-making.

This paper has some limitations. First, the analysis in our model 
is constructed on the assumption that the market demand is 
common knowledge between the retailer and the supplier. The 
model could be generalized by considering a robust model with 
uncertain parameters (e.g., unpredictable demands and 
changeable lead times) [38,39]. Second, for analytical 
tractability, we assume that the demand rate is constant while 
normalize the leading time to zero. It could be interesting to 
consider (s , S ) inventory systems with random leading times 
and multi-period resupply [40,41]. Third, in this paper, the 
supplier sells the product only through the retailer. In addition 
to the resell channel, the supplier can directly sell to end 
consumers by establishing a direct selling channel. Future 
research would be conducted to incorporate supplier 
encroachment [42,43].
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Appendix

Proof of Lemma 1: We denote by π  the retailer's ordering 
strategy (qr , tr , n ) satisfying qr + fn (tr ) < 0 and define π′ = (qr , t′r ,
n ), where t′r = tr +r + fn (n (tr ))/D . Note that although π  and π′ 
involve the same special order quantity qr , the special order 
time t′r  in π′ is earlier than the special order time tr  in π  (i.e., 
t′r < tr ). We then prove that the total cost of π  is higher than 
that of π′.

Since qr + fn (tr ) < 0, qr + fn (t′r ) = 0, and t′r < tr , the two ordering 
strategies (i.e., π  and π′) lead to the same inventory level in the 
time horizon [0, k ] except for the interval [t′r , tr ]. Thus, we need 
only to compare the total costs of π  and π′ in [t′r , tr ]. Given that 
the inventory level of π′ is always non-positive and higher than 
that of π  in [t′r , tr ], π  and π′ lead to the same fixed backorder 
cost and π′ incurs a lower linear backorder cost than π . 
Therefore, the ordering strategy (qr , tr , n ) with qr + fn (tr ) < 0 
cannot help the retailer reach the minimum total cost

Proof of Lemma 2: Taking the partial derivatives of f1 and f2 
with respect to qr  and tr  yields ∂f1/∂tr = − γhqr , ∂f2/∂tr = −
(γh + cl )fn (tr ) − γhqr + cf D , ∂f1/∂qr = ∂f2/∂qr = γw + (γhfn (tr ) +
γhqr − Car

∗ )/D . The corresponding second partial derivatives are 
∂2f1/∂tr

2 = 0, ∂2f1/∂qr
2 = γh /D , ∂2f2/∂tr

2 = (γh + cl )D , ∂2f2/∂tr ∂qr = −
γh , and ∂2f2/∂qr

2 = γh /D .

Since ∂f1/∂tr < 0 and ∂2f1/∂qr
2 > 0, f1 is decreasing tr  and convex 

in qr . Constructing the Hessian matrix H  of f2 and calculating 
the determinant of it yields |H| = γhcl > 0. Hence, f2 is convex 
with respect to qr  and tr .

Proof of Lemma 3: (i) For a given n , because fn (tr ) ⩾ 0 if and 
only if tr ⩽ ((m + n )Q∗ − S∗)/D , we need only to minimize f1(qr , tr ,
n ) subject to the constrains: qr ⩾ 0 and ts ⩽ tr ⩽ min {te , ((m +
n )Q∗ − S∗)/D}. The result directly follows from Lemma 2(i) and 
the first-order optimality condition (i.e., ∂f1/∂qr = 0).

(ii) By the same token, we minimize f2(qr , tr , n ) for a fixed n  
subject to qr ⩾ 0 and max {ts , ((m + n )Q∗ − S∗)/D} ⩽ tr ⩽ min {te ,
((m + n )Q∗ − S∗ + qr )/D}. The stable point, (q̄ n , t̄ n ), of f2(qr , tr , n ) 
for a fixed n  satisfies q̄ n = ((1 − γ )wD + h (Q∗ − S∗))/γh − fn ( t̄ n ) 
and t̄ n = ((m + n )Q∗ − S∗)/D + (Car

∗ − cf D − γwD )/cl D . We then 
discuss whether the stable point (q̄ n , t̄ n ) locates in the feasible 
domain of f2 mentioned above. It is worthy noting that q̄ n ⩾ 0 
always holds under the condition of fn ( t̄ n ) ⩽ 0, which occurs if 
and only if t̄ n ⩽ ((m + n )Q∗ − S∗)/D . Following q̄ n + fn ( t̄ n ) = ((1 −
γ )wD + h (Q∗ − S∗))/γh ⩾ 0, we have t̄ n ⩽ ((m + n )Q∗ − S∗ + q̄ n )/D . 
Given that t̄ n ⩾ ((m + n )Q∗ − S∗)/D  if and only if Car

∗ − cf D −
γwD ⩾ 0, the discussion is divided into the following two cases 
based on the values of Q∗ and S∗ [37].

Case 1 cf < 2Ah /D . Following Car
∗ − cf D − γwD = (1 − γ )wD +

cl S
∗ ⩾ 0, we have t̄ n ⩾ ((m + n )Q∗ − S∗)/D  (or equivalently, 

fn ( t̄ n ) ⩽ 0) and thus q̄ n ⩾ 0. In this case, (q̄ n , t̄ n ) locates in the 
feasible domain of f2 if and only if ts ⩽ t̄ n ⩽ te . Thus, t2,n = ts  if 
t̄ n < ts ; t2,n = te  if t̄ n > te ; and t2,n = t̄ n  if ts ⩽ t̄ n ⩽ te . And q2,n  
follows from the first-order optimality condition.

Case 2 cf ⩾ 2Ah /D . In this case, we have Car
∗ − cf D − γwD =

(1 − γ )wD + 2ADh − cf D . Since S∗ = 0 and ts ⩽ mQ∗/D , the 
feasible domain of f2 is reduced to qr ⩾ 0 and (m +
n )Q∗/D ⩽ tr ⩽ min {te , ((m + n )Q∗ + qr )/D}. If cf ⩽ (1 − γ )w +

2Ah /D , then t̄ n ⩾ (m + n )Q∗/D  and q̄ n ⩾ 0. In this context, (q̄ n ,
t̄ n ) locates in the feasible domain of f2 if and only if ts ⩽ t̄ n ⩽ te . 
Alternatively, if cf > 2Ah /D + (1 − γ )w /D , then t̄ n < (m +
n )Q∗/D . In this context, (q̄ n , t̄ n ) does not locate in the feasible 

domain of f2. Thus, t2,n = (m + n )Q∗/D  and q2,n = ((1 − γ )wD +
h (Q∗ − S∗))/γh ⩾ 0.

Proof of Lemma 4: The discussion is divided into the following 
two cases.

Case 1 te < ((m + n )Q∗ − S∗)/D . Given that tr < ((m + n )Q∗ − S∗)/D  
for any tr ∈ [ts , te ], we always have fn (tr ) > 0. In this context, the 
feasible domain of f2(qr , tr , n ) is empty; thus, the minimizer of 
f (qr , tr , n ) is coincident with that of f1(qr , tr , n ).

Case 2 te ⩾ ((m + n )Q∗ − S∗)/D . If ts ⩽ ((m + n )Q∗ − S∗)/D , then 
f1(qr , tr , n ) reaches the minimum at (q1,n , t1,n ), where q1,n =
(Car

∗ − γwD )/γh  and t1,n = ((m + n )Q∗ − S∗)/D ; see Lemma 3. Since 
fn (t1,n ) = 0, the minimizer of f1 also locates in the feasible 
domain of f2. Hence, the minimizer of f  can be regarded as that 
of f2. Alternatively, if ts > ((m + n )Q∗ − S∗)/D , then fn (tr ) < 0 
always holds for any tr ∈ [ts , te ]. In this context, the domain of 
f1(qr , tr , n ) is empty. Thus, the minimizer of f (qr , tr , n ) is exactly 
that of f2(qr , tr , n ).

Proof of Proposition 1: We first show that the optimal number 
n∗ ∈ {0, 1}. To this end, we need to find some n′ ∈ {0, 1} for any 
ordering strategy (qr , tr , n ) with n ⩾ 2 such that f (qn′, tn′,
n′) ⩽ f (qr , tr , n ), where (qn′, tn′) is the minimizer of f (qr , tr , n′). 
Specifically, when tr < ts + nQ∗/D , let tr′ = tr − (n − 1)Q∗/D ; then 
t′r ∈ [ts , te ] and f1(t′r ) = fn (tr ). Following f1(t′r ) = fn (tr ), we have 
f (qr , tr , n ) = f (qr , t′r , 1) ⩾ f (q1, t1, 1), where (q1, t1) is the minimizer 
of f (qr , tr , 1). Similarly, when tr ⩾ ts + nQ∗/D , let tr′ = tr − nQ /D ; 
then f (qr , tr , n ) = f (qr , t′r , 0) ⩾ f (q0, t0, 0). Therefore, it is not 
necessary for the retailer to place more than one regular orders 
in [ts , tr ]; that is, 0 ⩽ n∗ ⩽ 1.

Next, we examine when the retailer places a regular order in 
[ts , tr ]. For ease of exposition, we denote by tf  the first regular 
replenishment point after time ts , i.e., tf = mQ∗/D . Specifically, if 
te < tf , there is no regular replenishment point in the promotion 
period [ts , te ]; thus, the retailer never places regular orders in 
[ts , tr ] (i.e., n∗ = 0). If te ⩾ tf , the discussion is divided into two 
cases based on the relationship between te  and ((m + 1)Q∗ −
S∗)/D . Note that all items will be sold out at time ((m + 1)Q∗ −
S∗)/D  if the retailer places a regular order at time tf .

Case 1 tf ⩽ te < ((m + 1)Q∗ − S∗)/D . Given that tf  is the unique 
regular replenishment point in the promotion period [ts , te ], the 
retailer needs to decide whether to place a regular order at time 
tf . If he does so (i.e., n = 1), by te < ((m + 1)Q∗ − S∗)/D , Lemmas 
3(i), and Lemma 4, f (qr , tr , 1) reaches the minimum at (q1,1, t1,1); 
that is f (qr , tr , 1) ⩾ f (q1,1, t1,1, 1) = f1(q1,1, t1,1, 1) for any qr ⩾ 0 and 
tr ∈ [ts , te ]. If he does not so (i.e., n = 0), given that te ⩾ (mQ∗ −
S∗)/D , the minimum of f (qr , tr , 0) occurs at (q2,0, t2,0); that is, f (qr ,
tr , 1) ⩾ f (q2,0, t2,0, 0) = f2(q2,0, t2,0, 0) for any qr ⩾ 0 and tr ∈ [ts , te ]. 
In this sense, the retailer places a regular order at time ts  (i.e., 
n∗ = 1) if and only if f1(q1,1, t1,1, 1) < f2(q2,0, t2,0, 0). Let t′r = (mQ∗ −
S∗)/D , the discussion is further divided into the following two 
subcases based on the relationship between ts  and t′r .

Case 1.1 t′r ⩾ ts . From Lemma 3 (ii), we have f2(q1,1, t′r ,
0) ⩾ f2(q2,0, t2,0, 0), where (q2,0, t2,0) is the minimizer of f2(qr , tr , 0). 
We then prove f1(q1,1, t1,1, 1) > f2(q1,1, t′r , 0) by mildly extending 
the promotion period from [ts , te ] to [ts , t′e ], where t′e = ((m +
1)Q∗ − S∗)/D . It is straightforward that Lemmas 1-3 hold for the 
alternative promotion period [ts , t′e ]. Following Lemma 2(i) and 
f0(t′r ) = f1(te′ ) = 0, we have f1(q1,1, t1,1, 1) > f1(q1,1, t′e , 1=f2(q1,1, t′r , 0). 
Combining the above analysis, we have f1(q1,1, t1,1, 1) > f2(q2,0,
t2,0, 0). Thus, n∗ = 0.

Case 1.2 t′r < ts . Suppose that cf ⩾ 2Ah /D , following S∗ = 0 and 
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ts ⩽ Q∗/D , we have ts ⩽ t′r , which contradicts with t′r < ts . Thus, 
cf < 2Ah /D . It is evident that when cf < 2Ah /D , t̄ 0 > mQ∗/D  if 
and only if (1 − γ )wD > 0, which always holds because 0 < γ < 1. 
Following t̄ 0 > mQ∗/D  and mQ∗/D ⩾ ts , we have t̄ 0 > ts . We then 
prove the result by extending the promotion period from [ts , te ] 
to [t′te′ ]e ], where t′s = tr′  and t′e = ((m + 1)Q∗ − S∗)/D . Note that 
Lemmas 1-3 still hold for the alternative promotion period 
[t′te′ ]e ]. Following Lemma 2(i) and f0(t′r ) = f1(te′ ) = 0, we have 
f1(q1,1, t1,1, 1) > f1(q1,1, t′e , 1=f2(q1,1, t′r , 0). Because t̄ 0 > t′r , f2(q1,1, tr ,
0) is strictly decreasing in tr  when tr ∈ [t′r , t″r ], where t″r =
min { t̄ 0, te } satisfying t″r ∈ [ts , te ]; see Lemma 2. Thus, f2(q1,1, t′r ,

0>f2(q1,1, t″r , 0). Given that t″r ∈ [ts , te ] and that (q2,0, t2,0) is the 
minimizer of f2(qr , tr , 0) under the condition of the promotion 
period being [ts , te ], we have f2(q1,1, t″r , 0) ⩾ f2(q2,0, t2,0, 0). Based 
on the above, we conclude that f1(q1,1, t1,1, 1) > f2(q2,0, t2,0, 0); that 
is, n∗ = 0.

Case 2 te ⩾ ((m + 1)Q∗ − S∗)/D . By Lemmas 3 and 4, the retailer's 
minimum total cost is f2(q2,1, t2,1, 1) if the retailer places a regular 
order at time tf ; otherwise, its minimum total cost is f2(q2,0, t2,0,
0). If cf ⩾ 2Ah /D + (1 − γ )wD , then t2,1 = (m + 1)Q∗/D ; see 
Lemma 3(ii). Otherwise, following t̄ 1 > (m + 1)Q∗/D > ts , 
te ⩾ ((m + 1)Q∗ − S∗)/D , and Lemma 3(ii), we have t2,1 ⩾ ((m +
1)Q∗ − S∗)/D . Let t′2,1 = t2,1 − Q∗/D , then t′2,1 ∈ [(mQ∗ − S∗)/D , te ]. 
Using f0(t′2,1) = f1(t2,1), we have f2(q2,1, t2,1, 1) = f2(q2,1, t′2,1, 0). In 
this sense, the retailer places a regular order at time tf  (i.e., n∗ =
1) if and only if f2(q2,1, t′2,1, 0) ⩽ f2(q2,0, t2,0, 0) . Specifically, if 
t′2,1 ⩾ ts , using t′21 ∈ [ts , te ], we have f2(q2,0, t2,0, 0) ⩽ f2(q2,1, t′2,1, 0), 
where (q2,0, t2,0) is the minimizer of f2(qr , tr , 0). Thus, n∗ = 0. 
Alternatively, if t′2,1 < ts , the discussion is further divided into the 
following two subcases based on the relationship between t̄ 0 
and te . Note that t′2,1 < ts ⩽ t2,0.

Case 2.1 t̄ 0 < te . Suppose that cf ⩾ 2Ah /D , then S∗ = 0. Using 
S∗ = 0, ts ⩽ mQ∗/D , and t′2,1 ⩾ (mQ∗ − S∗)/D , we have ts ⩽ t′2,1, 
which contradicts with t′2,1 < ts . Hence, cf < 2Ah /D . Following 

cf < 2Ah /D  and 0 < γ < 1, we have t̄ 0 ⩾ mQ∗/D  and thus t̄ 0 ⩾ ts

. The result will be proven by replacing [ts , te ] with [t′2,1, t2,0]. 
Lemmas 1-3 still hold for the promotion period [t′2,1, t2,0]. By 
cf < 2Ah /D , ts ⩽ t̄ 0 < te , and Lemma 3 (ii), we have t2,0 = t̄ 0. 
Thus, f2(qr , tr , 0) is strictly decreasing in tr  when tr ∈ [t′2,0, t2,0]; 
see Lemma 2. In this sense, we have that f2(q2,1, t′2,1, 0) > f2(q2,1,
t2,0, 0) ⩾ f2(q2,0, t2,0, 0), where (q2,0, t2,0) is the minimizer of f2(qr , tr ,
0) under the condition of the promotion period being [ts , te ]. 
Thus, n∗ = 0.

Case 2.2 t̄ 0 ⩾ te . By Lemma 3 (ii), we have t2,0 = te . We prove by 
replacing [ts , te ] with [t′2,1, t2,0]. Lemmas 1-3 hold for [t′2,1, t2,0]. 
Following t̄ 0 ⩾ te  and te = t2,0, we have that f2(qr , tr , 0) is strictly 
decreasing in tr  when tr ∈ [t′2,1, t2,0]. Thus, f2(q2,1, t′2,1, 0) > f2(q2,1,
t2,0, 0) ⩾ f2(q2,0, t2,0, 0) (i.e., n∗ = 0), where (q2,0, t2,0) is the minimizer 
of f2(qr , tr , 0) under the condition of the promotion period being 
[ts , te ].

Proof of Proposition 2: Let g (γ ) = q0 + f0(t0) − (Q∗ − S∗), the result 
directly follows from g (γ ) = ((1 − γ )wD + h (Q∗ − S∗))/γh > 0 and 
dg (γ )/dγ = − (wD + h (Q∗ − S∗))/γ2h < 0.

Proof of Proposition 3: Following cf ⩾ 2Ah /D , we have Q∗ =

2AD /h  and S∗ = 0, indicating that shortages cannot make the 
retailer better off through regular EOQ orders. We then prove 
by showing that the minimum inventory level in the promotion 
period is negative (i.e., f0(t0) < 0). Using te > mQ∗/D  and Lemma 
4, we have t0 = t2,0. From cf < 2Ah /D + (1 − γ )w /D , we have 

t̄ 0 > mQ∗/D  and thus t̄ 0 > ts . According to cf < 2Ah /D + (1 −

γ )w /D  and t̄ 0 > ts , we have t2,0 = min {te , t̄ 0}; see Lemma 3(ii). 
Given that te > mQ∗/D  and t̄ 0 > mQ∗/D , t2,0 > mQ∗/D . Thus, 
f0(t0) = f0(t2,0) < 0.

Proof of Proposition 4: (i) If f0(t0) < 0, then t0 > (mQ∗ − S∗)/D . 
Suppose that t0 = t1,0, we have f0(t0) ⩾ 0, which yields a 
contradiction. Thus, t0 = t2,0. Suppose that cf ⩾ 2Ah /D + (1 −

γ )w /D , then t2,0 = (mQ∗ − S∗)/D , wherein S∗ = 0. This contradicts 

with t2,0 > (mQ∗ − S∗)/D . Following t0 = t2,0, cf < 2Ah /D + (1 −

γ )w /D , and Lemma 3(ii), we have dt0/dγ = dt2,0/dγ = d t̄ 0/dγ =
− w /cl < 0 if t̄ 0 ∈ [ts , te ]; otherwise dt0/dγ = dt2,0/dγ = 0. 
Alternatively, if f0(t0) ⩾ 0, then t0 ⩽ (mQ∗ − S∗)/D . Recall that 
t̄ 0 > mQ∗/D  holds for all cf < 2Ah /D + (1 − γ )w /D . Suppose 

that t0 = t2,0 and cf < 2Ah /D + (1 − γ )w /D  hold simultaneously, 
using t̄ 0 > mQ∗/D , we have t0 = t2,0 > mQ∗/D ; see Lemma 3(ii). 
This contradicts with t0 ⩽ (mQ∗ − S∗)/D . Thus, we can conclude 
that either t0 = t1,0 or t0 = mQ∗/D  holds, which leads to dt0/dγ =
0.

(ii) The result directly follows from dq0/dγ = − Car
∗ /γ2h < 0.

Proof of Proposition 5: If the supplier extends the promotion 
period, the retailer will always have an option to place the same 
special order as before. As a consequence, a longer promotion 
can only benefit the retailer instead of making it worse off.


