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Abstract
We present a combination of three dimensional (3D) solid elements and rotation-free beam 
elements for non-linear analysis of fiber-reinforced polymer (FRP) of rebars. The matrix 
material is modelled by 3D solid elements while the fibers are modelled with rotation-free 
beam elements. The absence of rotation variables in the beam elements allows the 
straightforward coupling of 3D solid and beam elements using a formulation with 
displacement nodal degrees of freedom only. Both solid and beam elements are formulated 
in an updated Lagrangian description. The behavior of the matrix and the fiber material are 
modelled with an elastic-damage model. The efficiency and accuracy of the combined 3D-
beam element formulation are verified in examples of application to the analysis of FRP 
rebars up to fracture in axial, bending and shear tests for which experimental results are 
available.
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1. Introduction
There is an increasing interest in the use of non-metallic 
materials, such as polymers, in the building and construction 
(B&C) sector as an alternative to standard materials, such as 
steel and cement [1,2]. These new materials have many 
advantages, compared to traditional ones, in terms of strength-
weight and stiffness-weigh ratios, corrosion resistance to 
chemical agents, and fatigue performance, to name a few. All 
these advantages can extend the life-frame of structures and 
minimize the maintenance required, thus contributing to 
improve the sustainability of the sector. Current research efforts 
aim to develop resistant, sustainable and cost-effective 
materials incorporating polymers for a number of applications 
in building and construction.

Polymers and composite materials can be used in B&C in many 
forms: as external reinforcements of concrete beams and slabs 
[3,4], as short fibers embedded in concrete [5], or as pultruded 
elements which can be used as rebars for concrete 
reinforcement [6] or as beams elements to construct different 
structures such as bridges [7], or lighthouses [8] (Figures 1a and 
1b), to name some examples.

(a) (b)

Figure 1. Applications of pultruded beams in construction [7,8]

 The use of pultruded FRP as reinforcement in concrete has 
several advantages compared to steel reinforcement such as 
corrosion resistance, high longitudinal (unidirectional) strength 
(2 or 3 times higher than steel for equivalent bar diameter), high 
fatigue endurance (which depends on the type of reinforcing 
fiber and bar), magnetic transparency, lightweight (25% of steel 
weight) and low thermal and electric conductivity (for glass and 
aramid fibers) [9]. Glass fibers are the common choice due to 
their good performance and reduced cost, compared to other 
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synthetic fibers that have improved properties but are more 
expensive, such as carbon. Research efforts are currently 
carried out for developing new families of rebars with synthetic 
fibers, as reinforcement for concrete structures [10,11]. This 
type of synthetic fiber rebars could be an alternative to current 
FRP rebars using glass fibers, and even to steel rebars for 
specific applications.

Pultrusion beams are obtained by pulling the reinforcement 
fibers, which have previously impregnated with a matrix resin, 
through a heated die where the composite is cured [12]. The 
shape of the die defines the shape of the final beam produced. 
Due to the fabrication process, the final composite contains 
mainly fibers aligned with the beam axis, and the efficiency of 
the method allows having fiber participations that can reach 
80% of the total composite weight content [13].

This paper presents a new computational approach for 
assessing the non-linear behavior of pultruded composites 
beams using a combination of 3D solid finite elements with 
rotation-free beam elements. These last ones are included in 
the model to characterize the longitudinal performance of the 
composite.

The formulation presented is of special interest for pultruded 
beams, as in these elements fibers are mainly oriented in the 
longitudinal direction, which simplifies the distribution of the 
rotation-free beams in the numerical model. As it will be shown, 
the adaptability of the beam elements in the model geometry 
allows characterizing complex failure mechanisms such as 
shear failure, which depends highly on the tensile forces taken 
by the fibers once the matrix has failed. To do so, the 
geometrical non-linear effects in the solid and beam elements 
are taken into account by using an updated Lagrangian 
description, allowing for large displacements effects that can 
occur in specific loading cases, such as in shear tests and in 
post-failure situations. The fact that both the 3D solid elements 
and the rotation-free beam element are formulated in terms of 
displacement degrees of freedom (DOFs) only facilitates the 
integration of both types of elements in a unified formulation. 
An elastic-damage model is used for characterizing the behavior 
of both the matrix and the fibers.

The content of the paper is as follows. In the next section we 
present the overall finite element approach for non-linear 
analysis of FRP rebars combining solid elements and rotation-
free beam elements. Then we describe the 3D solid finite 
element formulation for modelling the behavior of the matrix 
material. This is followed by the finite element formulation for 
the fibers using rotation-free beam elements based on a cell-
vertex approach. The coupling of 3D-solid elements and 
rotation-free beam elements is detailed. The finite element 
formulation is validated in the non-linear analysis up to failure 
of FRP bar specimens formed by an epoxy matrix and carbon 
fibers tested under axial, bending and shear loads. Numerical 
results are compared with experimental results for the same 
tests. Excellent agreement is obtained in the comparison.

2. Combination of 3D solid elements and 
rotation-free elements for analysis of polymer 
fiber rebars
Figure 2 depicts the modelling strategy for analysis of FRP 
rebars with the FEM [14,15]. The procedure proposed 
dissociates the longitudinal contribution of fibers to the 
composite strength and stiffness, from their contribution in the 
transversal and shear directions. This is done by modeling a 
transverse reinforced resin, that accounts for the resin and the 
transverse and shear performance of the fibers, with standard 
3D solid elements; and by modeling the longitudinal 

contribution of fibers to the composite with a collection of 
beams embedded in the 3D solid model.

Figure 2. Finite element modelling of FRP rebar

 Both the 3D solid elements and the beam elements are 
formulated using an updated Lagrangian description in order to 
account for geometrically non-linear effects in the deformation 
of the FRP bars. Following standard finite element procedures, 
the discretized equilibrium equation for the bar structure, 
expressed in the current configuration at time t , can be written 
in the following quasi-static form [15]

t r (t a ) := t p (t a ) − t f = 0 (1)

with

t p (t a ) = ∫t V
t B t σdV (2)

In Eqs.(1) and (2), r  is the vector of residual forces, a  is the 
vector of nodal displacement, p  is the vector of internal nodal 
forces, B  is the strain matrix relating the strains with the nodal 
displacements, σ  is the Cauchy stress vector, f  is the vector of 
equivalent nodal forces, V  is the volume of the FRP bar and the 
upper left index t  denotes the time t .

The vector of internal forces t p  is computed by sum of the 
contributions from the solid elements and the beam elements, 
i.e.

t p (t a ) = t ps (t a ) + t pb (t a ) (3)

where indices s  and b  denote the contribution of the 3D solid 
elements and the beam elements to vector t p , respectively.

The equilibrium solution at time t + Δt  is found by solving Eq.(1) 
using a standard Newton-Raphson procedure briefly outlined 
below.

For each iteration of the Newton-Raphson scheme [15] we 
perform the following computations:

Computation of displacement increments

t KT Δai = − t ri (4)
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with

t ri = t p (t +Δt ai ) − t +Δt f (5)

Displacement update

t +Δt ai +1 = t +Δt ai + Δai (6)

Stress update

Δεi = t BΔai (7)

Δσi = DT Δεi (8)

t +Δt σi +1 = t +Δt σi + Δσi (9)

Residual force vector computation

t +Δt ri +1 = ∫t +Δt V
t +Δt B t +Δt σi +1dV − t +Δt f (10)

Convergence check

The iteration stop when

∥ t +Δt ri +1 ∥ < ε (11)

where ε  is a prescribed error value. In our computations we 
have taken ε = 10−3.

In Eq.(4) t KT  is the tangent stiffness matrix. We have computed 
this matrix as

t KT = t KTs + t KTb (12)

where indices s  and b  denote the contribution of the solid 
elements and the beam elements to the tangent stiffness 
matrix, respectively. These contributions are computed as

t KTr = ∫Vr
t Br

T t DTr
t Br dV , with r = s , b (13)

where t Br  and t DTr  with r = s , b  denote the deformation matrix 
and the tangent constitutive matrix for the solid elements and 
the beam elements, respectively at time t .

The computation of these matrices is detailed in the next 
sections.

3. Formulation of 3D solid elements for the 
transverse reinforced resin material

3.1 Definition of displacements, strains and 
stresses
Let us consider a FRP rebar discretized using 3D-solid elements 
of n  nodes. The displacement field within the element can be 

expressed in terms of the nodal displacements in the standard 
finite element form as [14,15]

u = [u , v , w ]T = Ne ae (14)

where u  is the displacement vector, u , v  and w  are the 
displacements along the cartesian axes x , y , z , respectively, Ne  
and ae  are the shape functions matrix and the nodal 
displacement vector for the element e  given by

Ne = [N1
e , N2

e , ⋯, Nn
e ] , ae = {a1

e

a2
e

⋮
an

e }
(15)

where

Ni
e = Ni

e [1 0 0
0 1 0
0 0 1] , ae = { ui

vi

wi
} (16)

are the nodal components of matrix Ne  and vector ae , and Ni
e  is 

the shape function matrix of node i .

The strains within the element can be readily expressed in 
terms of the nodal displacements as

ε = Be ae (17)

where

ε = {
εx

εy

εz

γxy

γxz

γyz
} = {

∂u
∂x
∂v
∂y
∂w
∂z

∂u
∂y + ∂v

∂x
∂u
∂z + ∂w

∂x
∂v
∂z + ∂w

∂y

} , Be = [B1
e , B2

e , ⋯, Bn
e ] ,

Bi = [
∂Ni
∂x 0 0

0
∂Ni
∂y 0

0 0
∂Ni
∂z

∂Ni
∂y

∂Ni
∂x 0

∂Ni
∂z 0

∂Ni
∂x

0
∂Ni
∂z

∂Ni
∂y

]
(18)

where Be  and Bi
e  are the strain matrices for the element and the 

i th node, respectively.

The stress-strain relationship is written in incremental form 
(neglecting initial strains and initial stressed) as
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dσ = DT dε (19)

where

σ = [σx , σy , σz , τxy , τxz , τyz ]T (20)

is the Cauchy stress vector and DT  is the tangent constitutive 
matrix. In our computations we have modelled the matrix 
material with an elastoplastic model based on a Drucker-Prager 
yield functions and an elastic-plastic-damage model. The 
damage model is described in the next section.

The expressions of the strain matrix and the Cauchy stress 
vector are used for computing the nodal forces (Eq.(2)) and the 
tangent constitutive matrix.

The validation examples presented in the paper have been 
solved using three-linear 8-noded hexahedral elements [14].

3.2 Material model for solid elements
The material model defined for the solid elements has to 
reproduce the performance of what has been called transverse 
reinforced resin. This is, a resin with improved properties in its 
transversal and shear directions, due to the presence of fibers. 
The transversal directions are defined as those directions 
perpendicular to the fiber longitudinal orientation.

As stated by Rastellini et al. when defining the serial parallel 
mixing theory [17] and used by Martinez et al. in the simplified 
model presented in [16], the contribution of the fibers to the 
composite in the transversal and shear directions can be 
captured by applying the inverse mixing theory. This states that 

the constitutive matrix of the composite (D̂ ) can be obtained by 
the inverse combination of the stiffness matrix of its 
constituents (Dm  and Df ), proportionally to their volumetric 
participation (Vm  and Vf ), being m  and f  matrix and fiber, 
respectively. This is

D̂
−1

= Vm Dm
−1 + Vf Df

−1 (21)

The constitutive matrices Dm  and Df  are shown in Eq.(22)

Di = [
Hi Fi Fi 0 0 0

Hi Fi 0 0 0

Hi 0 0 0

Gi 0 0

Gi 0

Sym . Gi

] , i = m , f

(22)

with

Hi =
Ei (1 − νi )

(1 + νi )(1 − 2νi )
, Fi =

Ei νi
(1 + νi )(1 − 2νi )

, Gi =

(1 − 2νi )
2(1 − νi )

(23)

We note that the constitutive matrix D̂  accounts for the effect of 
the fiber matrix Df  where Hf  has a null value in the fiber 
direction (in practice a small value is chosen to avoid numeric 

instability). The stiffness in the fiber direction is provided by the 
RFB elements.

The distinct form of matrices Df  and Dm  is needed in order to 
accurately reproduce the shear stiffness in the resulting matrix 

D̂ . In this manner, the combination of solid elements and RFB 
elements can reproduce a parallel mixed material behavior 
along the longitudinal direction of the RFB elements 
(deformations in the fiber direction are compatible between all 
materials) and a serial mixed material behavior in the 
orthogonal direction to the fibers (stresses in the normal fiber 
direction are compatible between all materials), according to 
the inverse mixing theory [17]. An advantage of this approach 
versus the standard serial-parallel material mixing model is the 
compatibility between the stresses in the concrete and the 
fibers in the orthogonal direction to the fibers, which facilitates 
the convergence of the nonlinear iterative process.

Non-linear effects in the response of the material are modelled 
by a simple isotropic damage model [18,19]. According to this, 
Eq.(21) is modified as

D̂
−1

= Vm [Dm (1 − dm ) ]−1 + Vf [Df (1 − df ) ]−1 (24)

where D̂  is the damaged constitutive matrix for the solid 
element and the damage parameters di (i = m , f ) are an scalar 
numbers between 0 and 1 defined as

di =
2(σ0i

− σI ) (Ei Gi − hσ0i )
(2Ei Gi − hσ0i

)σI
i = m , f (25)

In Eq.(25) σ0i
 is the elastic limit, σI  is the maximum principal 

stress, Gi  is the fracture energy, Ei  is the Young's modulus and 
index i  (i = m , f ) refers to the matrix or fiber material, 
respectively. In addition, h  is the characteristic length of the 
element.

The above constitutive model can accurately reproduce axial 
and pure bending stress states in which the RFB elements are 
mainly subjected to tensile forces. The model has proved to 
work well in shear-dominated regions in which two different 
stress situations appear in the shear zone and in the region 
where the loads are applied. In the shear zone the matrix 

material is soon fully damaged (i.e. D̂ → 0) and the stiffness is 
mainly contributed by the fibers as they rotate and change their 
orientation. In zones where the loads are applied in a direction 
orthogonal to the fibers, the fibers are agglomerated in 
packages that allow the transmission of compression stresses to 
the resin material, inducing damage. The contribution of matrix 

D̂  is important in these zones. This distinct phenomenon has 
been modelled by limiting the maximum value of the damage 
parameters in Eq.(25) in these regions as

0 ≤ di ≤ 0.5 i = m , f (26)

4. Formulation of rotation-free beam elements 
for the fibers
The elimination of the rotations as nodal degrees of freedom in 
bending-type elements (such as beams, plates and shells) leads 
to the so-called rotation-free elements [20,21,22]. Rotations can 
be simply eliminated by expressing the curvature field in a 
node, or a point within an element, in terms of the 
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displacements of nodes contained in an appropriate patch of 
elements surrounding the node or the point. This procedure 
emanates from the efforts of finite difference practitioners for 
analysis of thin plates based on Kirchhoff plate theory using 
displacement variables only [20]. The idea evolved in the last 
decades of the 20th century and lead to the formulation of 
different families of rotation-free elements for analysis of plates 
and shells. Oñate and Zárate [20] developed a unified 
formulation for this type of rotation-free plate and shell 
elements combining ideas from the finite volume method with 
the FEM. Some of the rotation-free shell elements have enjoyed 
much popularity for non-linear analysis of shells structures 
under dynamic and impact loads and sheet stamping processes 
using explicit and implicit dynamic formulations [23].

The use of rotation-free beam elements has been less popular 
in practice. The derivation of this type of elements based on 
Euler-Bernoulli beam theory can be found in [14,22,24]. 
Extensions of these elements to account for shear deformation 
effect was reported by Zarate and Oñate [21].

A distinct feature of all rotation-free elements is that the 
discretized equilibrium equations can be expressed in terms of 
displacement degrees of freedom only. This makes these 
elements advantageous for their coupling with solid elements, 
that are also formulated in terms of nodal displacement DOFs, 
in a straightforward manner. In this work we will model the 
mechanical behavior of the fibers with rotation-free Euler-
Bernoulli beam elements formulated using an updated 
Lagrangian description and a cell-vertex approach [14,20]. We 
present below details of the element formulation.

4.1 Straight cell-vertex rotation-free beam 
elements
A particular class of rotation-free beam element can be derived 
by computing the curvature at each node using a finite 
difference scheme. The resulting element is termed CVB (for 
Cell-Vertex Beam element) [14,20].

For the sake of simplicity we will show the derivation of the 
stiffness equation of a rotation-free straight beam element that 
bends in the x − z  plane (Figure 3). A similar process can be 
followed for deriving the stiffness equations for bending in the 
x − y  plane. Due to the particular one-dimensional (1D) features 
of the rebars considered in this work, we will neglect torsional 
effects in the fibers.

Figure 3. Modelling strategy for analysis of FRP with the FEM

 Let us formulate the deformation of a straight beam element 
for a current configuration at time t . The bending behavior of 

the beam is modelled by considering the control domain 
formed by half of the lengths of the elements adjacent to a 
node. The curvature at node i  is computed as

κi = 1
li

[ ( ∂w
∂x )Ri

− ( ∂w
∂x )Li ] (27)

where li = 1
2 (le + le −1) and subscripts Ri  and Li  denote the 

midpoints of the elements located at the right and left of node i  
(Fig. 4). The curvature κi  is assumed to be constant in the 
control domain li  assigned to node i  (Figure 4).

Figure 4. CVB element. Control domains around two nodes i  and i +1

 The rotations ( ∂w
∂x )Ri

 and ( ∂w
∂x )Li

 are expressed in terms of the 
nodal deflections as

( ∂w
∂x )R

=
wi +1 − wi

le , ( ∂w
∂x )L

=
wi − wi −1

le −1 (28)

Substituting Eqs.(28) into (27) gives

κi = 2
le le −1(le + le −1)

[le , − (le + le −1), le −1, 0]{
wi −1

wi

wi +1

wi +2
} = Bi w̄

(e )

(29)

where

Bi = 2
le le −1(le + le −1)

[le , − (le + le −1), le −1, 0]  ,   w̄ (e ) =

{
wi −1

wi

wi +1

wi +2
}

(30)

Similarly, the curvature at node i + 1 is found as

κi +1 = 2
(le + le +1) [ wi +2 − wi +1

le +1 −
wi +1 − wi

le ] = Bi +1w̄ (e ) (31)

with
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Bi +1 = 1
le le +1(le + le +1)

[0, le +1, − (le + le +1), le ] (32)

The internal virtual work over the element e  is obtained by 
adding up the contributions from the two control domains li  
and li +1 as

δU(e ) = ∫li
2

δκi (Ef I )κi dx + ∫li +1
2

δκi +1(Ef I )κi +1dx (33)

Substituting Eqs.(27) and (31) into (33) and following the 
standard assembly process of the FEM yields the element 
stiffness matrix as

K(e ) = Ki
(e ) + Ki +1

(e ) (34.a)

where

Ki
e = ∫li

2
Bi

T (Ef I )Bi dx = li
2 Bi

T (Ef I )(e )Bi

Ki +1
e = ∫li +1

2
Bi +1

T (Ef I )Bi +1dx = li +1
2 Bi +1

T (Ef I )(e )Bi +1

(34.b)

In Eqs.(33) and (34) Ef  and I  are the Young modulus of the fiber 
material and the moment of inertia of the fiber section with 
respect the bending axis, respectively. In the computation of the 
above integrals, we have assumed that Ef  and I  are constant 
over the control domains.

Note that, as it is usual in rotation-free beam, plate and shell 
elements, the stiffness matrix of an element involves the nodal 
deflections of the adjacent elements.

The global equivalent nodal force fi  is computed

fi = Pzi
+ fzi

(le + le +1)
2

(35.a)

with

fzi = 1
2 [ fz

(e ) + fz
(e +1)] (35.b)

where Pzi
 is the external nodal force acting at node i  and and 

fz
(e ) and fz

(e +1) are uniformly distributed loads acting in the 
vertical direction over elements e  and e + 1, respectively.

4.2 Boundary conditions

The prescribed values for the deflection are imposed when 
solving the global system of equations, as usual. We briefly 
explain next how to compute the curvature at a free end and at 
simply supported and clamped nodes. For details see [14].

The curvature at a free end node and at a simply supported node 
is zero. This condition is implemented by neglecting the 
contribution of the boundary node to the element stiffness 
matrix. For a boundary element with a free or simply supported 
node the stiffness matrix is (Figure 5a) 

K(e ) = Ki +1
(e ) if κi = 0 (36.a)

K(e ) = Ki
(e ) if κi +1 = 0 (36.b)

Figure 5. CVB element. (a) Boundary condition of 
zero curvature at a free or simply supported node 
B . (b) Control domain for a clamped or symmetry 
node

 The curvature at a clamped or symmetry left-end node i  is 
computed as (Figure 5b)

κi = 2
le

(wi +1 − wi )
le = 2

(le )2 [1, − 1, 1, 0]{
wi −1

wi

wi +1

wi +2
} = Bi w̄

(e )

(37)

where wi −1 is an auxiliary fictitious deflection.

Similarly, for a right-end clamped or symmetry node (Figure 5b)

κi +1 = 2
le

(wi +1 − wi )
le = 2

(le )2 [0, − 1, 1, 1]{
wi −1

wi

wi +1

wi +2
} = Bi +1w̄ i

(38)

where wi +2 is an auxiliary fictitious deflection.

The element stiffness matrix is computed in both cases by Eq.
(36) with Bi  or Bi +1 equal to zero, as appropriate. The fictitious 
nodal deflections wi −1 or wi +2 (and indeed wi ) are prescribed to 
a zero value when solving the global system of equations.

The above rotation-free formulation can be extended to account 
for the bending behavior of the beam in the y − z  plane in a 
straightforward manner. The nodal degrees of freedom are the 
vertical displacement along the y  and z  axes [14].

The extension of the bending formulation of rotation-free beam 
element to account for transverse shear deformation effect is 
possible. The details can be found in [21].

4.3 Material model for the rotation-free beam 
element
The material behavior of the rotation-free CVB element is simply 
characterized by the Young modulus. Accounting for non-linear 
effects in the fiber material under axial stresses has been 
modelled with a standard one-dimensional elastic-damage 
constitutive law, i.e.

Ê f = Ef (1 − df
b )

where Ê f  and Ef  are the Young modulus of the fiber in the 
undamaged and damaged states, respectively.

The evolution of the damage parameter df
b  for the beam 

element is governed the maximum deformation of the fiber at 
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failure, i.e.

df
b = 1 +

σ0f
(ε − 2ε0f

+ εuf
)

εEf (ε0f
+ εuf

)

where ε  is the axial deformation of the fiber, ε0f
 is the 

deformation at the elastic limit, σ0f
, and εuf

 is the deformation 

at the ultimate (fracture) strength value.

4.4 Extension to curved rotation-free CVB 
elements
A curved rebar will be modelled by a collection of straight 
rotation-free CVB elements. Figure 6 shows a curved rebars 
under bending loads in a plane x − z , discretized with three CVB 
elements.

Figure 6. Cell-vertex rotation-free 
beam element. Control domains for 
computing the average curvature. A, B 
and C are element mid-points

 The stiffness matrix is obtained as the sum of the axial stiffness 
matrix (KA ) and the bending stiffness matrix (KB ).

4.4.1 Axial stiffness matrix
The axial strain matrix Ba  is obtained as

εa = ∂u′
∂x′

= λs = ∂u′
∂x′

= 1
le [ − 1, 1]{ u′i

e

u′i +1
e } =

1
le [0, − te , te , 0]

⏟
Ba

ae = Ba ae

(39)

with te = [cosϕe , sinϕe ] and ()′ denotes variables in the local 
coordinates system.

The axial stiffness matrix is computed as

KA
e = (Ef I )(e )Ba

T Ba le (40)

4.4.2 Bending stiffness matrix

The procedure for computing the bending stiffness matrix is an 
extension of that followed for straight CVB elements in Section 
4.2. 

The curvature at node i  is computed in terms of the gradients of 
the normal deflection at points A  and B  (Figure 6)

κi = 2
le + le −1 [ ( ∂w′

∂x′ )B
− ( ∂w′

∂x′ )A ] =

2
le + le −1 [ w′i +1

e −wi′
e

le −
w′i

e −1 − wi −1′
e −1

le −1 ] =

= 1
le le −1(le + le −1)

[le , − le , − le −1, le −1]
⏟

B̄ ′bi
{w′i −1

e −1

w′i
e −1

w′i +1
e

w′i +1
e } = B′bi

w′ =

Bbi
ae

(41.a)

In Eqs.(41.a) w′j  are the nodal deflections in the local axes of the 
element defined in Figure 7 and

Bbi
= B′bi

T with  T = [ne −1 0 0 0
0 ne −1 0 0
0 0 ne 0
0 0 0 ne ]

(41.b)

and

ae = {
ai −1

ai

ai +1

ai +2
} with ai = { ui

wi }
(41.c)

Figure 7. Local coordinate system of curved rotation-free CVB element bending in 
the xz  plane

 Similarly, for node i + 1
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κi +1 = 2
le + le +1 [ ( ∂w′

∂x′ )C
− ( ∂w′

∂x′ )B ] =

2
le + le +1 [ w′i +2

e +1−w′i +1
e

le +1 −
w′i +1

e − wi′
e

le ] =

= 2
le le +1(le + le +1)

[le +1, − le +1, − le , le ]
⏟

B̄ bi +1
{

w′i
e

w′i +1
e

w′i +1
e +1

w′i +2
e +1} =

B′bi +1
w′ = Bbi +1

ae

(42.a)

with

Bbi +1
= B′bi +1

T (42.b)

and

T = [ne −1 0 0 0
0 ne −1 0 0
0 0 ne +1 0
0 0 0 ne +1] , ne = [ − sinϕe ,

cosϕe ] , 0 = [0, 0]

(42.c)

The bending stiffness matrix for the CVB element is expressed 
as the sum of the stiffness contributions from the two control 
subdomains 1 and 2 that form the element (Figure 6), i.e.

KB
e = le [Bi

T (Ef I )Bi + Bi +1
T (Ef I )Bi +1 ] (43)

The total stiffness matrix for the element is finally obtained by

Ke = KA
e + KB

e (44)

where KA  is given by Eq.(40).

We note that the size of K(e ) for the CVB element bending in the 
x − z  plane is 8 × 8, as it involves the two DOFs of nodes i − 1, i ,
i + 1 and i + 2. A similar procedure will be followed for the case 
of bending in the plane y − z  [14].

The assembly process follows the general rule of the FEM [14].

5. Coupling of 3D solid elements and rotation-
free beam elements
Figure 8 shows a conceptual representation of a FRP bar of 
rectangular section containing of a number of fibers embedded 
in the (bulk) matrix material. The bar geometry is discretized 
into 3D solid elements (8-noded hexahedral are shown). The 
fibers contained within each solid element are assumed to be 
concentrated in one-dimensional (1D) packs of fibers distributed 
within the 3D solid elements. Figure 8 shows the concentration 
of fibers in four 1D packs placed at the 2 × 2 Gauss points 
locations in each cross section [14]. Each fiber pack is modelled 

as a rotation-free beam element with a cross-section area 
equivalent to the amount of fibers considered in the pack.

The displacements of the rotation-free beam element nodes are 
related to the nodal displacement of the 3D solid element by a 
simple interpolation.

Figure 8. Patch of 3D solid and rotation-free beam elements

 The discretized equilibrium equations for the coupled solid-
beam system can be written as explained in Section 2. The 
numerical response of the FRP bars for different incremental 
load up to failure is computed using the standard Newton-
Raphson iterative procedure described in Eqs.(4)-(13).

6. Examples of application

6.1 Composite material properties

The three examples shown hereafter demonstrate the good 
behavior of the formulation described for analysis of FRP 
rebars. The examples include the analysis of a FRP rebar in 
three standard laboratory tests: an axial test, a three-point 
bending test and a shear test. The numerical results are 
compared with results from laboratory tests carried out at the 
experimental lab for structural materials of the Centro de 
Investigación en Materiales Estructurales (CIME) of the 
Technical University of Madrid (UPM), using rebars made of 
ECR-Glass and a matrix of DERAKANE_8084_Epoxy_Vinyl_ester.

The rebar nominal diameter is 10mm, including helicoidal ribs. 
As these ribs are manufactured by machining the originally 
pultruded rebars, the effective diameter of the bars is reduced 
to 9.58 mm, on average. This diameter is the one adopted for 
creating the model of the bar geometries.

The mechanical parameters of the fibers are: Young modulus: 
74.61 GPa, Poisson ratio: 0.22, Elastic limit (tension): 1,653 MPa, 
Elastic limit (compression): 1,322 MPa, Fracture energy: 126,778 
J/m2, Deformation at failure: 0.0277, Volume fraction: 70%

The mechanical parameters of the matrix material are: Young 
modulus: 3.17 GPa, Poisson coefficient: 0.38, Elastic limit: 72 
MPa, Fracture energy: 45,657 J/m2, Deformation at failure: 0.11, 
Volume fraction 30%

6.2 Axial tension test
Figure 9 shows the bar modelled with 960 8-noded hexahedral 
elements and 1197 nodes. The fibers have been modelled using 
1140 RFB elements. The length of the sample is 100 mm long 

https://www.scipedia.com/public/File:Draft_Onate_870101189-Figure4.png
https://www.scipedia.com/public/File:Draft_Onate_870101189-Figure4.png


https://www.scipedia.com/public/Zarate_et_al_2023b 9

F. Zarate, T. Villette, X. Martinez, F. Rastellini Canela, D. Cendón, C. Andrade and E. Oñate, Combination of 3D solid 
finite elements with rotation-free beam elements for non-linear analysis of fiber reinforced polymer rebars, Rev. int. 
métodos numér. cálc. diseño ing. (2023). Vol. 39, (2), 12

with 9.58 mm diameter. Symmetry conditions have been 
considered by prescribing a zero axial displacement in the 
normal direction to the surface at a bar end, while the other end 
has a prescribed axial displacement condition to induce tensile 
stresses in the bar. The bar axis has the displacements in the 
normal plane yz constrained to zero.

Figure 9. Tensile test geometry: 3D solid and RFB elements mesh

Figure 10 shows a typical bar tested at UPM after failure.

Figure 10. Tensile test of the PFR performed at UPM

 The numerical results obtained are shown in Figures 11 and 12. 
The displacement field obtained presents a linear distribution, 
until the rebar reaches brittle failure.

Figure 11. Displacement field [m] in deformed geometry

Figure 12. Axial tension tests stress-strain curves. Numerical and experimental 
values

 The numerical load-displacement curve obtained is converted 
into a stress-strain curve to be compared with the experimental 
results. A good correlation can be seen between the numerical 
and experimental values (Figure 12).

Table 1 shows the good correlation between the numerical and 
experimental stiffness and strength magnitudes.

Table 1. Tensile test. Comparison of numerical and experimental results

Property Lab tests Numerical
Tensile strength (MPa) 1150 ± 34 (MPa) 1173.33 (MPa)
Strain to max strength 2.3 ± 0.1 (%) 2.22 (%)
Young Modulus (GPa) 55 ± 4 (GPa) 53.03 (GPa)

6.3 Bending test

The experiment performed for measuring the bending 
properties, corresponds to the standard three-point bending 
test showed in Figure 14. The tests were carried out on bars of 
full circular section, instead of using cut specimens as indicated 
in the ASTMD-4476 norm. Figure 13 shows the bar modelled 
with 5400 8-noded hexahedral elements (6327 nodes) and 6156 
rotation-free beam elements. The length of the bar sample is 
100 mm long with 9.58 mm diameter. Symmetry and boundary 
conditions have been considered, as shown in Figure 13. To 
avoid problems with the stress concentration at the loading 
points, a small part of the beam (the blue zone in Figure 13) has 
been defined with an unbreakable material. The elastic 
properties of this material are the same as for the rest of the 
bar.

Figure 14 shows a snapshot of the laboratory test for the FRP 
rebar in a three-point bending configuration. Note the rollers 
used as a pin-supports of the beam.
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Figure 13. Three point bending test 
for PFR rebar. Dimensions, FEM mesh 
and boundary conditions

Figure 14. Three-point bending test of FRP rebars performed at UPM

Figure 15 shows the strain distribution over the deformed bar (
Figure 15a) and the mesh of hexahedra (Figure 15b) in a load 
state close to the onset of damage. The damage distribution for 
each element is displayed in Figure 16.

Figure 15. Three-point bending tests. 
Numerical results. Deformed bar. (a) 
Strain distribution for RFB elements. 
(b) Strain distribution in 3D solid 
elements

Figure 16. Contour field of damage 
variable in longitudinal and transverse 
sections on the deformed geometry 
(1x)

 In Figure 17, the numerical load-deflection curve is shown 

together with that obtained in the laboratory for comparison 
purposes. The maximum loading force and the flexural stiffness 
captured by the numerical simulation are in good agreement 
with the experimental results.

Figure 17. Three-point bending tests. Force-
deflection curves for shearing testing. 
Numerical results compared with laboratory 
tests

 At the laboratory, samples of 240mm of total length were cut for 
the 10mm diameter full cylinder tests. The span of the tests was 
set to 200mm. Tests were carried out under displacements 
control, with a crosshead displacement velocity of 3mm/min. 
Figure 18 shows the test set-up and one specimen after failure.

Figure 18. Three-point bending tests. Failed specimen of PFR rebar

6.4 Shear test
The experiment carried out for evaluating the shear properties, 
corresponds to the ASTM-7617 standard test showed in Figure 
19 [25]. For the numerical analysis, the symmetry of the 
geometry and the imposed displacement have been taken into 
account as shown in Figure 20a in order to speed up the 
calculations. Figure 20b displays the bar modelled with 5225 8-
noded hexahedral elements (4608 nodes) and 5016 rotation-
free beam elements. The length of the sample is 100 mm long 
with 9.58 mm diameter.
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Figure 19. Shear test. Double shear fixture according to ASTM D-7617 standard [25]

(a)

(b)

Figure 20. Shear test geometry. (a) Boundary conditions. (b) Mesh and dimensions

 In Figure 20 a gap of 0.001 m can be observed between the 
loaded and supported zones of the specimen. This zone is 
necessary to capture accurately the shear forces and to avoid 
stress concentration in the numerical model.

Figure 21 shows a representative configuration of the numerical 
results. Figure 21a displays the deformed bar and the localized 
damage in the resin material at the shear zone. Figure 21b is a 
close-up of the shear zone were the RFB are presented. The 
curvature of these elements due to the shear deformation is 
depicted.

Figure 22 shows the numerical load-deflection curve 
superimposed to a set of curves obtained in the laboratory tests 
for comparison purposes. In the curves the non-linear load 
phenomena of the fiber reorientation can be clearly observed. 
For an applied load slightly larger than 5kN there is an initial 
plateau in the experimental tests, also reproduced by the 
numerical model, that corresponds to the cracking of the 
matrix. At this point there is a fiber reorientation that provides 
the stiffness increase and the final composite failure, due to 
fiber failure, for a load close to 35kN. The good agreement 
obtained between the numerical and the experimental results, 
especially in this case, highly non-linear, proves the validity of 
the proposed procedure to simulate pultruded fiber reinforced 
polymer rebars.
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Figure 21. Shear test. Contour field of damage variable in the matrix. Deformed 
geometry (1x)

Figure 22. Shear test. Force-deflection curves. Numerical results compared with 
laboratory tests

7. Concluding remarks

The combination of 3D solid finite elements with rotation-free 
beam elements has shown to be adequate for modelling axial, 
bending and shear deformation states in fiber reinforced 
polymer rebars. The fact that both types of elements are 
formulated in terms of displacement DOFs only simplifies the 
combination of the best features of both elements for modelling 
the 3D behavior of the matrix material and the 1D behavior of 
the fibers, as well as the coupling interactions during complex 
deformation modes.

The good agreement of the numerical results for several 
benchmark laboratory tests with experimental data for the 
same tests have, validated the accuracy of the combined 3D-1D 
model presented. The combined model can be therefore be 
used confidently in practical applications of the fiber polymer 
rebars as reinforcement of concrete structures.

The approach presented in this work for combining 3D solid 
elements with rotation-free beam elements can be 
implemented in more sophisticated formulations for modelling 
fiber reinforced materials, such as that proposed in [26].
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