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Abstract
The value of the gas-path parameter, exhaust gas temperature margin (EGTM), is the critical 
index for predicting aeroengine performance degradation. Accurate predictions help to 
improve engine maintenance, replacement schedules, and flight safety. The outside air 
temperature (OAT), altitude of the airport, the number of flight cycles, and water washing 
information were chosen as the sample input variables for the data-driven prognostic model 
for predicting the take-off EGTM of the on-wing engine. An attention-based deep learning 
framework was proposed for the aeroengine performance prediction model. Specifically, 
the multiscale convolutional neural network (CNN) structure is designed to initially learn 
sequential features from raw input data. Subsequently, the long short-term memory (LSTM) 
structure is employed to further extract the features processed by the multiscale CNN 
structure. Furthermore, the proposed attention mechanism is adopted to learn the 
influence of features and time steps, assigning different weights according to their 
importance. The actual operation data of the aeroengine are used to conduct experiments, 
where the experimental results verify the effectiveness of our proposed method in EGTM 
prediction.
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1. Introduction
The aeroengine operates at the highest temperature, pressure, 
speed, and frequency of transitional working states during the 
take-off phase when compared to the other flight phases like 
cruise and landing [1], [2]. The slow decline of engine 
performance is inevitable during the active process. Prediction 
and evaluation of the decline degree of engine performance are 
necessary for performing preventive maintenance on the 
aeroengine. Most engine failures are caused by the gas-path 
system fault, and accurate gas-path performance prediction 
provides the possibility for aeroengine performance evaluation 
and maintenance plan optimization. This is significant for 
ensuring the flight safety of aircraft.

The gas path parameters include exhaust gas temperature 
(EGT), rotor speed, and fuel flow. The EGT margin (EGTM) is 
usually adopted to perform gas path analysis and monitor the 
engine performance degradation, which can show whether the 
aeroengines are in the normal state or not [3]. During actual 
monitoring and maintenance, the take-off EGTM [4] is usually 
chosen as the critical gas-path parameter to evaluate the 
performance state of the aeroengine. A deteriorated engine will 
consume more fuel, thus increasing the EGT and decreasing the 
EGTM [5]. The net thrust, fuel flow, low rotor speed, core rotor 
speed, pressure ratio, air temperature at engine fan inlet, take-
off EGTM, and specific fuel consumption are regarded as input 
parameters for estimating the EGT [6]. These input parameters 
were collected by the sensors during the flight [7], and they are 
unknown for the prognostic analysis. In that work, the 
relationship between EGT decline rate and the flight cycles was 
established to predict the remaining life of a PW4000-94 engine. 

The EGTM was influenced by the unknown real-time data, 
obtained by sensor data during the flight, as well as the known 
data obtained before the flight. This work aims to utilize the 
above-known data as the input parameters to predict the EGTM 
prior to flight.

Take-off EGTM, as shown in Figure 1, reflects the state of engine 
performance. When the take-off EGTM equals 0 °C, the EGT has 
reached the red line value. The EGTM in the take-off phase 
directly relates to the airport outside air temperature (OAT) and 
altitude. However, empirical data do not exist to allow a 
correlation between EGTM deterioration and the OAT or altitude 
of the airport.

Figure 1: Effect of OAT in the airport on EGTM deterioration
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The value of EGTM significantly affects engine life. Reducing 
EGTM will extend engine life on the wing, thereby reducing 
operating costs. If the engine is arranged to take off at the 
airport at a lower OAT and altitude, EGT will likely not cross the 
red line. With regard to meeting the aircraft performance 
requirements, the engine is designed to provide a given thrust 
level at a temperature below the corner point OAT. As the OAT 
in the airport increases, more fuel is required, EGT increases, 
and EGTM decreases. However, at a temperature above the 
corner point OAT, the EGTM is less than zero, and the thrust 
output must be reduced. If it does not reduce, the engine will be 
damaged [8]. Similarly, as the altitude of the airport increases, 
more fuel will be required to provide a given thrust output, so 
the EGT will increase, resulting in a decrease in the EGTM [9].

The number of flight cycles significantly affects the take-off 
EGTM of aeroengines. For an available gas turbine engine, the 
levels of degradation drop by increasing the flight cycles, and all 
engine health parameters deviate slowly from their nominal 
values [10]. The degradation data of the booster were used to 
illustrate the clean compressor map and degraded compressor 
maps at 3000 and 6000 flight cycles for the JT9D turbofan 
engine [11]. The degraded maps were utilized to predict the 
overall degradation effects on the engine performance. In the 
take-off phase, the engine accelerates from idle to maximum 
power resulting in maximum rotor speed and EGT, which 
causes the turbine blade to elongate and creep [12]. In addition, 
abrasion between the elongated turbine blade and the 
stationary parts occurs. The turbine clearance increases during 
the thermal cycles, such as the start and stop cycles, namely 
flight cycles. The engine wear and higher clearance lead to a 
deterioration of the engine efficiency, which decreases the 
turbine efficiency[13]. In this case, more fuel is consumed to 
maintain a given thrust level, so the EGTM will decrease, and the 
engine performance will degrade.

Meanwhile, low cycle fatigue (LCF) [14] is associated with 
engines that have been in service for long periods. LCF occurs 
due to machine cyclic loading, like start/stop cycles, which is 
closely related to the flight cycles. The LCF life of a component is 
determined by the number and the intensity of cycles the 
component material must endure [15]. In contrast, the creep life 
of a component depends on the time it spends operating within 
the material's creep temperature range. The number of flight 
cycles can influence the communicative time effect on the wear, 
creep, and fatigue life of hot section components.

Periodical on-wing water washing is an efficient and economical 
method to improve engine performance and restore the take-
off EGTM [16]. Engines in the take-off phase and the 
approaching landing phase of each flight cycle are more 
affected by the airborne pollutant due to the lower altitude they 
operate, making them more susceptible to compressor fouling 
degradation. The changing value of the mass flow rate and the 
compressor's efficiency due to compressor fouling can be 
expressed as a linear relationship concerning the flight cycle 
[17]. Besides the effect of online washing with different water-
to-air ratios and engine loads on performance recovery [18], the 
effect of inlet pressure and droplet diameter of washing liquid 
on compressor fouling removal [19], and the recovery efficiency 
of power loss with washing [20] have been studied.

To predict the take-off EGTM of the on-wing engine in advance, 
we choose the OAT and altitude of the airport, the number of 
flight cycles, and water washing information as the sample 
input variables for a prediction algorithm. All these parameters 
can be obtained before the flight, making the prognostic of the 
engine's performance degradation known in advance. The 
aeroengine performance degradation prediction is a time series 
forecasting task. Deep architectures such as convolutional 

neural networks (CNN) and long short-term memory (LSTM) can 
extract and effectively capture the feature information of raw 
input data. However, the ability of normal CNN is affected by 
the size of convolution kernels, which should be accurately 
determined. Another key issue is that once the sequence is too 
long, the traditional LSTM cannot effectively use the location 
information of time series data and capture the long-term 
interdependence. As such, an attention mechanism was added 
for assigning different weights to features of different 
importance.

The main contributions of this paper are summarized as follows:

1) A multiscale CNN-LSTM structure is developed to handle raw 
aeroengine data to learn temporal sequence features and 
extract useful degradation information.

2) We propose a deep learning framework based on an 
attention mechanism. The attention mechanism can learn the 
importance of sequential features and time steps, assigning 
different weights according to their preference.

3) We conduct experiments on real datasets to evaluate the 
effectiveness of our proposed method. The experimental results 
show that the proposed method shows a considerable 
improvement in aeroengine performance estimation.

The rest of this paper is organized as follows. Section 2 reviews 
the related works. Section 3 describes the suggested method 
based on deep learning, and section 4 includes the 
computational experiments and an analysis of the results. 
Finally, section 5 concludes this work and gives future studies.

2 Related Works
Multiple methods are utilized in engineering applications to 
analyze the gas-path system for aeroengine performance 
prediction. In general, these prediction methods can be divided 
into two categories: model-based methods [21]–[23] and data-
driven methods [24]. The nonlinear simulation model of a twin-
spool turbofan engine was constructed as a component level 
model by Adibhatla et al. [21]. A bank of parallel Kalman filters 
and a hierarchical structure were used for the multiple model 
adaptive estimation methods of in-flight failures test by 
Maybeck et al. [22]. The nonlinear dynamics of the jet engine 
are linearized and a set of linear models corresponding to 
various operating modes of the engine at each operating point 
is obtained by Lu et al [23]. However, the component structures 
and accessory systems of aeroengines are becoming 
increasingly complex and integrated. Accurate modeling 
remains difficult with model-based methods due to the 
challenge of mastering various nonlinear mathematical 
relationships between components and systems [25].

When compared with these model-based methods, data-driven 
methods do not require an understanding of the complex 
operation mechanisms of the mechanical system. Therefore, 
data-driven methods have been widely used in aeroengine 
performance prediction. The previously collected data of gas 
path systems were time-series data of multiple state 
parameters. A CNN is designed to extract the features from this 
input data. The CNN prediction technology was combined with a 
delta fuel flow degradation baseline to estimate the 
performance recovery by the water washing [26]. A CNN-based 
multitask learning framework was proposed to accurately 
estimate the remaining useful life (RUL) by simultaneous 
learning. The estimations occurred during a health state 
identification, where inter-dependencies of both tasks were 
considered using general features extracted from the shared 
network [27]. A CNN and extreme gradient boosting (CNN-XGB) 
were combined through model averaging. A CNN-XGB with an 
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extended time window was utilized for a RUL estimation [28].

A hybrid method of convolutional and recurrent neural network 
(CNN-RNN) was proposed for the RUL estimation, where it can 
extract the local features and capture the degradation process 
[29]. A RNN has the advantage of a data-driven model with short 
time dependencies. Nevertheless, a RNN has poor performance 
in dealing with long-time dependencies data. LSTM neural 
networks have been proposed to address these dependencies 
for predicting the RUL of any system. The LSTM model has the 
advantage of retaining time domain information for a long 
duration of time. The accuracy of an online LSTM method was 
improved by comparing it to the proposed methods in [30] for 
RUL estimation of a turbofan engine. The LSTM, as well as the 
statistical process analysis, were performed to predict the fault 
of aeroengine components with multi-stage performance 
degradation [31]. The linear regression model and LSTM were 
utilized to construct the data-driven model of degradation trend 
prediction and RUL estimation [32]. RUL estimation for 
predictive maintenance was achieved by using the support 
vector regression (SVR) model and an LSTM network [33].

A novel performance degradation prediction method based on 
the attention model and SVR is proposed for RUL prediction. The 
attention mechanism can focus on the important features in the 
time-sequential data, while the SVR model identifies the 
mapping relationship between multiple state parameters and 
performance degradation [34]. Many hidden layers were 
constructed for the machine learning model and a large 
number of training data to learn more useful features and 
improve the accuracy of classification and prediction. The 
designed system [35] is based on reinforcement learning and a 
deep learning framework, which consists of an input, modeling, 
and a decision layer. Li et al. [36] proposed a new data-driven 
approach for prognostics by using deep CNN. In that work, a 
time window approach employed for sample preparation 
achieves better feature extraction by deep CNN leading to high 
prognostic accuracy with regards to the RUL estimation.

An intelligent deep learning method was proposed for 
forecasting the health evolution trend of aeroengine by Jiang et 
al. [37]. This method systematically blends the dispersion 
entropy-based multi-scale series aggregation scheme with a 
long LSTM neural network. Remadna et al. [38] introduced a 
new hybrid RUL prediction approach by combining two deep 
learning methods sequentially. The hybrid model uses a CNN 
with bidirectional LSTM networks where the CNN extracts 
spatial features while bidirectional LSTM extracts temporal 
features. Chu et al. [39] proposed an integrated deep learning 
approach with CNN and LSTM networks to learn the latent 
features and estimate RUL value with a deep survival model 
based on the discrete Weibull distribution. In their work, the 
turbofan engine degradation simulation datasets provided by 
NASA were utilized to validate the proposed approach.

3 Methodology

This section describes the aeroengine EGTM prediction 
problem. Next, the proposed attention-based multiscale CNN-
LSTM method is introduced in detail. This includes the 
theoretical background of the components and the method’s 
overall framework.

3.1 Problem Description

From the perspective of health management, aeroengine EGTM 
prediction can be regarded as a time series problem. The EGTM 
prediction problem can be defined as follows. The input is Xt

k , 
where k∈Rn, t= (1,2, …,T). In addition, Xt

k represents the collected 
input data during aeroengine operation, n represents the 

number of features, and T represents the length of the time 
step. The corresponding output is the EGTM prediction result Yt  
for each time step. EGTM is predicted in real-time by 
establishing the mapping relationship between the output and 
input data. The mapping relationship is expressed as follows:

Yt = f (Xt
k ) (1)

 When building the performance prediction model, the above 
input data are directly imported from the raw data file to predict 
EGTM. As such, a large amount of mixed noise exists in the data. 
To fully extract the time-series features of the data, we design a 
multiscale CNN-LSTM deep learning framework based on an 
attention mechanism to construct mapping relationships, as 
introduced in detail in the following subsections.

3.2 Multiscale CNN
A traditional CNN can directly process the input raw data and 
extract the hidden features. However, the amount of raw data is 
relatively large. Thus, using a single convolution kernel may 
cause the model to omit locally important features in the 
process of adaptively extracting features. By adjusting the scale 
of the convolution kernel and using several different 
convolution kernels, designing a network capable of extracting 
the raw data features may be possible. This results in the 
performance of the model prediction improving.

Figure 2: Structure of multiscale CNN

This work proposes an improved CNN with a multiscale 
convolution operation to compensate for the limitation of a 
traditional CNN. Specifically, each convolution layer consists of 
64 convolution kernels, and we set the convolution kernel size 
to 1, 3, and 5. The multiscale convolution operation is embodied 
as a structure to extract the hidden features by performing a 
multiscale convolution operation on the raw data. Initially, this 
establishes a shallow mapping relationship between the raw 
data and EGTM. The specific network structure is shown in 
Figure 2.

3.3 Long Short-Term Memory Network

The data in the proposed prediction model, discussed 
previously, are time series, the nodes of the RNN are connected 
along the sequence, and the RNN is designed to learn the 
correlation of the time series. However, the standard RNN often 
encounters the problem of gradient disappearance and 
gradient explosion during the training process. As a result, both 
the model’s ability to capture the previous information and its 
performance in modeling long-term dependencies decreases.
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Figure 3: Structure of LSTM

To solve this problem, Hochreiter proposed a new architecture 
named long and short-term memory network (LSTM) [42]. LSTM 
is a special RNN, which has been widely used in various time 
sequence modeling tasks such as stock market price prediction 
and energy consumption prediction. The advantage of LSTM 
involves its ability to overcome shortcomings of traditional RNN, 
such as the influence of gradient disappearance and gradient 
explosion. The basic architecture of a typical LSTM is shown in 
Figure 3.

One notable feature includes how it delicately designs the 
structure of the recurrent unit. The sigmoid activation function, 
tanh activation function, and element-wise product work 
together to form three gate structures: forget gate, input gate, 
and output gate. Two gates are used to control the state of the 
memory cell c. The first gate is the forget gate, while the other is 
the input gate. When the forget gate is turned on, some 
information from the previous memory cell state ct-1 could be 
ignored, and others will be kept. When the input gate is 
activating, the information from the current input xt can be 
added to the memory cell c. LSTM uses the output gate to 
control how much information of the memory cell state ctwill be 
added to the current output ht. For the given inputs xt, ht-1, and 
ct-1, the update process of LSTM for time step t is shown as 
equation (2).

{
&it = σ (Wi [ht −1, xt ] + bi )

&ft = σ (Wf [ht −1, xt ] + bf )

&ot = σ (Wo [ht −1, xt ] + bo )

&c~ t = tanh (Wc [ht −1, xt ] + bc )

&ct = ft ⊙ ct −1 + it ⊙ c~ t

&ht = ot ⊙ tanh (ct )

(2)

 In the above equation, Wi,Wf,Wo, and Wc are the weight 
matrices for connections, bi,bf ,bo and bC are the bias 
vectors，and σ ( ⋅ ) and tanh are the sigmoid and tanh functions, 
respectively. As mentioned above, LSTM has played an essential 
role in various tasks required to model time series data, which 
demonstrates the effectiveness of LSTM in addressing time 
series prediction problems. However, the regression of the 
standard LSTM is often based on the features learned in the last 
time step. It cannot accurately control the sequence impact of 
each time on the output, leading to a decrease in the final 
prediction accuracy. Hence, we added an attention mechanism 
to the proposed framework for learning the importance of each 
time step. So the neural network can learn and extract helpful 
feature information more thoroughly.

3.4 Attention Mechanism
In recent years, an attention mechanism has been widely used 
in various tasks of deep learning, such as image caption 
generation [40], speech recognition [41], and visual question 
answering [42]. An attention mechanism, inspired by the ability 

of humans to focus on specific information while ignoring 
others selectively, can make deep learning more targeted when 
extracting the features for improving the accuracy of related 
prediction tasks. In addition, this operation does not increase 
the cost of model calculation or storage.

Figure 4: Structure of the attention mechanism

Applying the attention mechanism shown in Figure 4 to the 
EGTM prediction is achieved by assigning different weights to 
different features for focusing on the regions of different 
importance. Adding the weights into the neural network is 
useful for distinguishing various features. The first step of the 
specific process defines the input of the attention layer as the 
learned feature state H = (h1, h2,.....,hT). This is activated by the 
LSTM layer, where the calculation formula of the score St of the t
-th feature is expressed by the following equation.

St = tanh (Wh ht + b ) (3)

 In equation (3), Wh and b represent the weight matrix and the 
bias vector, respectively, while tanh serves as an activation 
function. After the score Stis obtained, it is normalized by the 
softmax function.

at = exp (St )

∑
t =1

T
exp (St )

(4)

 The final output feature c of the attention mechanism can be 
expressed as:

c = ∑
t =1

T

at ht (5)

3.5 Overall Framework
Figure 5 shows the overall framework of our proposed method 
for EGTM prediction. It is a multiscale CNN-LSTM model based 
on a multiscale convolution kernel and an attention mechanism. 
The general framework comprises three substructures: a CNN 
layer (including multiscale convolution layer, pooling layer, and 
feature fusion layer), a LSTM layer, and an attention layer.
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Figure 5: Structure of the overall framework

The operation process of the proposed model starts with 
feature extraction performed on the raw collected data of 
aeroengines. The process utilizes a multiscale CNN structure to 
perform convolution operations for extracting representative 
features. The CNN consists of three multiple convolution layers 
of different scales, the maxpool layer, and the fusion layer. Next, 
the method employs the LSTM structure for further feature 
learning to find trends within the data. Then, the features 
processed by LSTM are transferred to the attention layer. Using 
the attention mechanism to learn the entire sequence 
simultaneously, the position information of the features can be 
considered with weights generated to inform the neural 
network with regards to extracting useful detailed information 
for improving the performance of the aeroengine EGTM 
prediction. Subsequently, the features learned by LSTM are 
merged with the importance weights generated by the 
attention mechanism. Finally, the regression layer is used to 
output the results of EGTM prediction. The inputs of the key 
modules (the multiscale CNN layer, the LSTM layer, the 
attention layer, and the merged layer) are summarized in Table 
1.

Table 1: Inputs of each key layer

Layer Input

Multiscale CNN (MCNN) Raw aeroengine data

LSTM Features learned by MCNN

Attention mechanism Features learned by LSTM

Merge layer
Features learned by LSTM 

Weights generated by the 
attention mechanism

4 Experiments

4.1 Experimental Datasets

To verify the performance of the proposed method, the EGTM 

data are collected from a civil aviation turbofan engine. The 
altitude data from the airport and flight cycles are obtained 
from historical flight records and a future flight plan. The OAT 
data in the airport are inferred from historical flight records and 
a future flight plan [43]. The historical atmosphere information 
of the airports and the water washing information can be 
collected from engine maintenance records.

4.2 Data Preprocessing

4.2.1 Normalization
Data from different sources have various units and scales, 
which could affect the accuracy of EGTM prediction. Therefore, 
the raw input is normalized to speed up training convergence 
and improve the generalization ability. This paper adopts the 
min-max normalization method to preprocess data. In general, 
the raw input data is mapped to the interval 0~1. Specifically, for 
the input data Xt

k , we normalize it as follows:

Xt
k~ = Xt

k − min {Xk }
max {Xk } − min {Xk }

(6)

 where Xt
k~  represents the normalized data, max {Xk }  and 

min {Xk }  represent the maximum and

minimum values in the sequence, respectively.

4.2.2 Sliding time-window processing

In problems based on multivariate time series, time series data 
sampled at a longer temporal sequence usually have more 
information than a data point with a single time step. A sliding 
window is used for data segmentation to use the multivariate 
temporal information and generate the network inputs. An 
example of data segmentation through sliding time window 
processing is shown in Figure 6. The window size is denoted as 
s , and the sliding step is set to be expressed as l. The short 
sliding step can increase the number of experimental samples 
to reduce the risk of overfitting and ensure the stability of the 
training process. As such, the sliding step is set to a value of 1.0. 
We will discuss the impact of time window size on the model 
prediction performance in Section 4.5.1.

Figure 6: Sliding time window processing

4.3 Evaluation Criteria
To evaluate the performance of the RUL prediction, we use two 
commonly adopted evaluation criteria, root mean square error 
(RMSE) and mean absolute error (MAE). RMSE and MAE are 
defined as follows by equations (7) and (8), respectively:

RMSE = 1
N ∑

i =1

N

(Ri − Pi )
2 (7)
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MAE = 1
N ∑

i =1

N

|Ri − Pi | (8)

 In equations (7) and (8), N represents the number of testing 
samples, and Ri and Pi represent the actual EGTM and predicted 
EGTM of the i-th sample, respectively.

4.4 Structural Parameters
The number of the hidden units and the size of the 
convolutional kernel in each layer are set to the same value to 
simplify the parameter selection. The mini-batch gradient 
descent method is used to train the network, and the batch size 
is set to 8. The Adam algorithm has the advantages of the back-
propagation algorithm and possesses an excellent ability with 
handling non-stationary data, so the Adam algorithm is adopted 
to train the neural networks.

The structural parameters of attention-based multiscale CNN-
LSTM are determined by contrast experiments. The parameters 
include the output dimension of CNN, the number of stacked 
layers of LSTM, and the dimension of hidden layers. They are 
determined this way obtain a better prediction performance. 
When deciding the output dimensions of CNN by contrast 
experiments, the output dimensions are used as variables, while 
other structural parameters are used as definite values, 
simultaneously. Similarly, the number of stacked layers and 
hidden layer dimensions of LSTM are also determined through 
comparative experiments. Table 2 lists the final parameters of 
each part of the structure.

Table 2: Structural Parameters of our method

Layers Parameters

CNN

Hidden units: 64
Pool: 

Maxpooling1D

Activation: Relu

LSTM

Hidden units: 128
Num_layer: 4

Dropout: 0.2

Attention
Dense:128

Activation: Relu
Dense: 1

4.5 Experimental Results and Analysis

To verify the effectiveness of the proposed method, we first 
analyze the influence of window size on the prediction 
performance of EGTM. Then, ablation experiments are 
conducted to establish the role of the proposed multiscale CNN 
architecture and attention mechanism in improving the model's 
accuracy.

Figure 7: Effect of the time window size on the prognostic 
performance

During the data processing, mentioned above, the selection of 
the time window size determines the input data of the network. 
Different time series data contain various information, so a 
reasonable time window size must be chosen. To evaluate the 
impact of the time window size, we conducted experiments to 
analyze the influence of window size on the prediction 
performance of EGTM. The results with different window sizes 
(i.e., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12) are plotted in Figure 7. 
The figure shows fluctuations in the model's performance, but 
the overall trend indicates the performance improves when the 
window size is first increased. This may be due to the EGTM 
prediction containing more sequence information. When the 
window size is set to 4, the RMSE value and MAE reach a 
minimum. Increasing the window size leads to decreased model 
performance. Therefore, as the optimal size, the length of time 
window size is set to 4.

Furthermore, ablation experiments are conducted for the 
proposed method to evaluate the effectiveness of the proposed 
multiscale CNN structure and attention mechanism in 
improving the prediction accuracy of EGTM. Specifically, we 
conducted experiments on a traditional CNN-LSTM, a traditional 
CNN-LSTM with an attention mechanism, a multiscale CNN-
LSTM, and our proposed method.

For training, we set the epoch to 300 and the mean square error 
(MSE) as the loss function. The parameters used in each model 
are identical. As shown in Figure 8, the red line indicates that 
the proposed method produces the smallest degree of error 
throughout the epochs.

Figure 8: Training loss of the proposed method and other 
models in ablation experiments

As shown in Figure 9, the performance of a multiscale CNN-
LSTM and a traditional CNN-LSTM integrated with an attention 
mechanism performs better than a traditional CNN-LSTM. In 
addition, the proposed method in this paper has the highest 
accuracy in EGTM prediction when compared with other 
methods. This verifies the effectiveness of our proposed 
method in enhancing the performance of extracting data 
features from the input data.

Figure 9: Performance comparison of the proposed method 
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and other models in ablation experiments

To analyze the predicted accuracy of our model with regard to 
EGTM, we compare the predicted EGTM with the actual EGTM of 
the aeroengine and plot the results in Figure 10. The trajectory 
of the predicted EGTM is similar to the real EGTM of the 
aeroengine when compared with other methods. This supports 
effectiveness of our proposed model in learning aeroengine 
degradation information. When compared with other stages, 
the error tends to be larger as EGTM is between 70 and 75, 
which may be a result of how the aeroengine begins to 
degenerate rapidly in this state.

(a) proposed method (b) CNN-LSTM

(c) multiscale CNN-LSTM (d) traditional CNN-LSTM with 
attention

Figure 10: Analysis of EGTM prediction results of different 
models

5 Conclusion and Future Work
This paper proposes an attention-based multiscale CNN-LSTM 
framework for aeroengine performance prediction. First, a 
multiscale CNN is developed to extend the feature information 
of the raw input data to a longer time scale. Then, LSTM is used 
to learn the time-series features. An attention mechanism is 
adopted to obtain the importance of the time series data and 
assign different importance weights to the features for 
improving the prediction accuracy. Experiments on real data 
sets verify the effectiveness of the designed method in 
aeroengine performance prediction.

In prognostics and health management (PHM), accurate 
prediction performance is significant for ensuring the reliability 
of aeroengines and making maintenance plans and flight 
schedules. The price of data collection for the whole life of an 
aeroengine is relatively high, as it may take a long period of 
several years to track the degradation process. However, there 
are individual differences among aeroengines due to different 
manufacturing, assembly, and even model types. As such, they 
likely work under various scenarios. Hence, data-driven 
methods perform worse than expected. To address this 
problem and meet the actual needs of airline management and 
maintenance, the knowledge of transfer learning can be used to 
enhance the generalization ability of a data-driven prognostic 
model [44], so the trained model can be applied to the 
performance prediction of other aeroengines.
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