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Abstract
Food security has become a significant issue due to the growing human population. In this 
case, a significant role is played by agriculture. The essential foods are obtained mainly from 
plants. Plant diseases can, however, decrease both food production and its quality. 
Therefore, it is substantial to comprehend the dynamics of plant diseases as they can 
provide insightful information about the dispersal of plant diseases. In order to investigate 
the dynamics of plant disease and analyze the effects of strategies of disease control, a 
mathematical model can be applied. We show that this model provides the non-negative 
solutions that population dynamics requires. The model was investigated by using the 
Atangana-Baleanu in Caputo sense (ABC) operator which is symmetrical to the Caputo-
Fabrizio (CF) operator with a different function. Whereas the ABC operator uses the 
generalized Mittag-Leffler function while the CF operator employs the exponential kernel. 
For the proposed model, we have displayed the local and global stability of a nonendemic 
and an endemic equilibrium, existence and uniqueness theorems. By applying the fractional 
Adams-Bashforth-Moulton method, we have implemented numerical solutions to illustrate 
the theoretical analysis.
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1. Introduction
Plants are an incredibly valuable component of our world. The earth, due to the presence of plants, is known as a 
green planet. They are perhaps the most important component of the life of all the earth's living beings. Some of the 
plant's essential functions are food, reducing the level of pollution, supplying fresh oxygen, medications, furniture and 
refuge. Plant disease, however, triggers a decline in food production and efficiency, which can lead to numerous 
health and social issues. Moreover, it can cause considerable economic ramifications.

Plant disease epidemiology studies the evolution of populations of plant diseases in time and space. Usually, the 
execution of the techniques is accomplished by roguing and then replanting, which offers two possible advantages. 
Initially, infected plants could be removed and could inoculum sources could be reduced, possibly slowing the 
dispersal of pathogens. Then, the infected plant may die or suffer a reduction in yield. Consequently, substituting 
diseased plants with healthful plants can indemnity crop casualties. The exposed plant can also be able to spread 
disease in some cases [1-3]. Since the exposed plant is capable of spreading disease, the propagation of plant disease 
can be more rapid. It is therefore important to realize the impact of plants uncovered on the dynamics of plant disease 
contamination. Their simulation revealed that the application of fungicides is efficient in minimizing population 
infection [4-6].

Mathematical modeling is useful in explaining how diseases dispersal and different factors involved in the dispersal of 
the disease have been specified [7-11]. The defensive and curative fungicide model was introduced in Anggriani et al. 
[12], where it has been split into three ingredients: Infectious, protected and susceptible. Their simulation revealed 
that the implementation of fungicides is active in minimizing population infection. Model plant diseases with 
replanting, roguing and preventive care have been introduced in Anggriani et al. [13] without consideration to curative 
therapy. In 2017, Anggriani et al. [14] created a plant disease mathematical model that includes five ingredients: 
Susceptible, Protected, Infectious, Exposed and Post-Infectious with protective curative therapies. They observed that 
by using curative and preventative care, the transmission of plant disease can be minimized. However, where only one 
therapy is offered, preventive therapy is favored over curative therapy.

In actuality, there are various meanings of fractional derivatives which in general do not necessarily correspond. One 
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of these definitions which is often utilized in different implementations of fractional differential equations is Caputo 
fractional derivative [15-18]. There is also a novel fractional derivative definition, named the Caputo-Fabrizio fractional 
operator, which centered on the exponential function [19-21]. And in the same context, there is a novel fractional 
derivative definition, named the Atangana-Baleanu fractional operator, which centered on the Mittag-Leffler function 
[22-27]. Many authors have successfully attempted to model actual processes utilizing this fractional derivative 
operator [28-29].

We consider a plant disease spread model within fractional calculus, where a susceptible person crosses an exposed 
stage prior to becoming an infectious person and diseases may also be passed on by exposed plants. The major 
purpose for this protraction is that the plant diseases of the classical case [12-14] do not load any acquaintance about 
the memory and learning techniques that impact the propagation of a disease [25]. Now, we regard the plant diseases 
model with fractional order as follows:

ABC D∗υ S1 ( t ) = r (M − N ) − γS1 ( t ) −
a1
M S1 ( t ) I1 ( t ) − αS1 ( t ) + βP1 ( t ) ,

ABC D∗υ P1 ( t ) = αS1 ( t ) + βP1 ( t ) − γP1 ( t ) ,

ABC D∗υ E1 ( t ) =
a1
M S1 ( t ) I1 ( t ) − (γ + a2 + b1 )E1 ( t ) ,

ABC D∗υ I1 ( t ) = a2E1 ( t ) − (γ + a3 + b2 + η ) I1 ( t ) ,
ABC D∗υ R1 ( t ) = a3I1 ( t ) − (γ + b3 )R1 ( t ) .

(1)

With initial conditions (S1 )0 (0) > 0, (P1 )0 (0) ≥ 0, (E1 )0 (0) ≥ 0, ( I1 )0 (0) ≥ 0 and (R1 )0 (0) ≥ 0, where N  indicate to the 
overall population of the actual plant, S1 ( t )  is representing the Susceptible population, P1 ( t )  is representing the 
Protected population, E1 ( t )  is representing the Exposed population, I1 ( t )  is representing the Infectious/Removed 
population, R1 ( t )  is representing the Recovered population, and N = S1 ( t ) + P1 ( t ) + E1 ( t ) + I1 ( t ) + R1 ( t ) , this 
suggests that the size of population is not steady. (i.e. size of the population is variable). The actual meaning of each of 
the model's parameters, all of which have positive values, is as follows:

r : rate of replanting.

a1: disease progression diversion rate for latent compartment.

a2: disease progression diversion rate for infected compartment.

a3: disease progression diversion rate for removed compartment.

M : overall maximum plant population (agronomy).

b1: influence accumulative death rate for latent compartment.

b2: influence accumulative death rate for infected compartment.

b3: influence accumulative death rate for latent removed compartment.

α : efficacy preventive therapy.

β : preventive therapy rate.

γ : rate of natural death.

η : rate of roguing.

 Some assumptions have been made to facilitate understanding this model [american14]:

There is no closure of the plant population due to replanting and natural death.

The infected plant compartment comprises of two compartments, called, latent E (t ) and infected I (t ).

The infected plant is lifted if it shows comprehensive symptoms.

The insect vector and environment factor are neglected.

The Preventive therapy (insecticide) be presented to susceptible compartments.

The Protected compartment P1(t ) contains the Susceptible plants S1(t ) that have received protective therapy.

Protected plants have defensive or prevention impact, but are not immune to disease, therefore it is permitting 
re-entry into the susceptible compartment.

 This article is structured to have some significant preliminaries in Section 2. Section 3 transacts with studying the local 
and global asymptotic equilibrium stability (the disease-free case and the endemic case) and the sensibility analysis of 



https://www.scipedia.com/public/Alqahtani_Hagag_2023a 3

Z. Alqahtani and A. Hagag, A fractional numerical study on a plant disease model with replanting and preventive 
treatment, Rev. int. métodos numér. cálc. diseño ing. (2023). Vol. 39, (3), 27

reproduction number (R0) without control of our model (Eq.(1)). Section 4 transacts with studying the existence and 
uniqueness theorems of our model (Eq.(1)). Then, computational technique (Adams-Bashforth-Moulton method) are 
graphically represented and covered in Sections 5 and 6. Finally, conclusions are drawn.

2. Preliminaries
Recently, many fractional calculus concepts and definitions have been developed [31-32].

Definition 1
The fractional derivative of the Atangana-Baleanu in Caputo sense (ABC) is denoted as

0
ABC Dϱ

υ φ (ϱ ) =
χ (υ )
1 − υ 0=φ′ (τ )Eυ [ −υ

1 − υ (ϱ−τ )υ ]dτ , (2)

where χ (υ )  is a normalized function with χ (0) = χ (1) = 1 which are symmetrical to the Caputo-Fabrizio (CF) case, 
φ (ϱ ) ∈ H1(a , b ), b > a , υ ∈ (0, 1], where H1(a , b ) is the Sobolev space (H ) of order 1 in (a , b ) and Eυ  indicate to a Mittag-
Leffler function expressed as

Eυ ( − ϱυ ) = i = 0
= ( − ϱ )iυ

Γ( iυ+1) . (3)

Definition 2
The related fractional integral to the AB Caputo operator is denoted as

0
AB Jϱ

υ φ (ϱ ) = 1 − υ
χ (υ ) φ (ϱ ) + υ

χ (υ )Γ(υ ) 0=φ (τ ) (ϱ−τ )υ −1dτ ,

= 1 − υ
χ (υ ) φ (ϱ ) + υ

χ (υ )Γ(υ ) ( Iυ φ (ϱ ) ) .
(4)

3. Analysis of plant disease model

3.1 The local asymptotic equilibrium stability

Since ABC Dυ S1 ( t ) = 0, ABC Dυ P1 ( t ) = 0, ABC Dυ E1 ( t ) = 0, ABC Dυ I1 ( t ) = 0 and ABC Dυ R1 ( t ) = 0 when t → ∞, we can use 
them to find two equilibrium points of the fractional system (Eq.(1)), by solving the above equations we get

3.1.1 Non endemic equilibrium (NEE) point

The NEE solution of the system (Eq.(1)) is

E0 = ( (S1 )eq , (P1 )eq , (E1 )eq , ( I1 )eq , (R1 )eq )

= ( γA3Mr
(γ + r )(αβ + A3(α+γ )) , −

αγMr
(γ + r )(αβ + A3(α+γ )) , 0, 0, 0) ,

(5)

with NE1q = rM
γ + r  where A1 = a2 + b1 + γ , A2 = γ + a3 + b2 + η , A3 = β−γ . The basic reproduction number R0 that is 

calculated utilizing the generation operator method [28,29] can be found in [14] as follows:

R0 =
ra1a2(β+γ )

A1A2(γ + r ) (α+β + γ ) . (6)

It is known as the number of secondary contagions induced by a single primary contagion in a completely susceptible 
population [35] and is generally expressed using model (Eq.(1)). The rate of the basic reproduction number counts on 
the replanting rate value. This is the justification that we should replant the plant if we want to control plant disease.
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3.1.2 Endemic equilibrium (EE) point

The endemic equilibrium solution of the system (Eq.(1)) is

E∗ = (S1
∗ , P1

∗ , E1
∗ , I1

∗ , R1
∗ ) ,

where

{
S1

∗ =
A1A2M

a1a2
,

P1
∗ = −

αA1A2M
a1a2A3

,

E1
∗ =

A2M (b3 + γ ) (A1A2(γ + r )(αβ + A3(α+γ )) − a1a2γA3r )
a1a2A3 (a2r (b3 (a3 + b2 + η ) + γ (b2 + η ) ) − A2 (b3 + γ ) (A1(γ + r ) − b1r ) ) ,

I1
∗ = −

M (b3 + γ ) (A1A2(γ + r )(αβ + A3(α+γ )) − a1a2γA3r )
a1A3 (A2 (b3 + γ ) (A1(γ + r ) − b1r ) − a2r (b3 (a3 + b2 + η ) + γ (b2 + η ) ) ) ,

R1
∗ = −

a3M (A1A2(γ + r )(αβ + A3(α+γ )) − a1a2γA3r )
a1A3 (A2 (b3 + γ ) (A1(γ + r ) − b1r ) − a2r (b3 (a3 + b2 + η ) + γ (b2 + η ) ) ) .

(7)

with N∗ =
rM − b1E1

∗ − (b2 + η ) I1
∗ − b3R1

∗

γ + r . Conclusion of the outcomes of the system's equilibrium points (Eq.(1)) with 
prepared to research analytically the stability of the equilibrium points.

Theorem 3.1.2.1. The NEE point E0 of model (Eq.(1)) is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. The system's Jacobian matrix (Eq.(1)) at E0 is

JE0
= ( − (α+γ ) β 0

ra1 (β+γ )
(γ + r ) (α+β + γ ) 0

α − (β+γ ) 0 0 0

0 0 − A1
ra1 (β+γ )

(γ + r ) (α+β + γ ) 0
0 0 a2 − A2 0
0 0 0 a3 − (γ + b3 )

) .

(8)

The eigenvalues of JE0
are given as λ1 = − γ < 0, λ2 = − α−β − γ < 0, λ3 = − b3 − γ < 0 and the following quadratic 

equation gives λ4 and λ5 as

ψ2 + (A1 + A2 )ψ + A1A2 (1 − R0 ) = 0. (9)

From Eq.(9), we can notice that if R0 ≤ 1, then E0 is locally asymptotically stable. This suggests that all polynomial 
coefficients (9) have the same signal, then the eigenvalues (roots) have negative real part. But if R0 > 1, the NEE is 
unstable and this would lead to a stable endemic equilibrium being present of E∗. Now by proving the theorem of local 
stability of E∗ , we conclude this section.

Theorem 3.1.2.2. If R0 > 1, the endemic equilibrium E∗ of model (Eq.(1)) is locally asymptotically stable.

Proof. The system's Jacobian matrix (Eq.(1)) at E∗ is

JE∗ = ( − (β+γ ) −
γ (R0 − 1) (α+β + γ )

(β+γ ) β 0
ra1 (β+γ )

R0 (γ + r ) (α+β + γ ) 0
α − (β+γ ) 0 0 0

γ (R0 − 1) (α+β + γ )
(β+γ ) 0 − A1

ra1 (β+γ )
R0 (γ + r ) (α+β + γ ) 0

0 0 a2 − A2 0
0 0 0 a3 − (γ + b3 )

),

(10)
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and its polynomial characteristic written as

CJE∗ =
φ+γ + b3

R0 (γ + r ) (α+β + γ ) (β+γ ) (c0φ4 + c1φ3 + c2φ2 + c3φ + c4 ) . (11)

The eigenvalues of CJE∗ are − (γ + b3 )  and the roots of the polynomial c0φ4 + c1φ3 + c2φ2 + c3φ + c4. By applying the 
Routh-Hortwitz criterian [31] we find that c4, c3, c2, c1, c0 > 0, c2c3 − c1c4 > 0 and c1c2c3 − c1

2c4 − c0c3
2 > 0. Therefore every 

the polynomial roots CJE∗ have a negative real part when R0 > 1 [32,33]. This implies that E∗ = (S1
∗ , P1

∗ , E1
∗ , I1

∗ , R1
∗ )  is locally 

asymptotically stable when R0 > 1 [30].

3.2 The global asymptotic equilibrium stability

Theorem 3.2.1. The disease-free equilibrium of the plant disease model is globally asymptotically stable in the suitable 
range if R0 < 1 and unstable if R0 > 1 .

Proof. We are applying the Lyapunov function [33], which is defined by

L = 1
ℓ1

S1 + 1
ℓ2

P1 + 1
ℓ3

E1 + 1
ℓ4

I1 + 1
ℓ5

R1, (12)

where

ℓ1 = α+γ , ℓ2 = γ−β , ℓ3 = γ + a2 + b1, ℓ4 = γ + a3 + b2 + η , ℓ5 = γ + b3 . (13)

englishConsequently, its derivative along the plant disease model's solutions

ABC D∗υ L = 1
ℓ1

ABC D∗υ S1 + 1
ℓ2

ABC D∗υ P1 + 1
ℓ3

ABC D∗υ E1 + 1
ℓ4

ABC D∗υ I1 + 1
ℓ5

ABC D∗υ R1 . (14)

ABC D∗υ L = 1
ℓ1

[r (M − N ) −
a1
M S1I1 + βP1 − (α+γ )S1]

+ 1
ℓ2

[αS1 − (γ−β )P1 ]

+ 1
ℓ3

[ a1
M S1I1 − (γ + a2 + b1 )E1]

+ 1
ℓ4

[a2E1 − (γ + a3 + b2 + η ) I1 ]

+ 1
ℓ5

[a3I1 − (γ + b3 )R1 ] ,

(15)

ABC D∗υ L = 1
ℓ1

[r (M − N ) −
a1
M S1I1 + βP1 − ℓ1S1] + 1

ℓ2
[αS1 − ℓ2P1 ] + 1

ℓ3
[ a1

M S1I1 − ℓ3E1]
+ 1

ℓ4
[a2E1 − ℓ4I1 ] + 1

ℓ5
[a3I1 − ℓ5R1 ]

= { 1
ℓ1

(r (M − N ) −
a1
M S1I1 + βP1) + α

ℓ2
S1 + 1

ℓ3

a1
M S1I1 +

a2
ℓ4

E1 +
a3
ℓ5

I1}
− (S1 + P1 + E1 + I1 + R1 )

= [ { 1
ℓ1

(r (M − N ) −
a1
M S1I1 + βP1) + α

ℓ2
S1 + 1

ℓ3

a1
M S1I1 +

a2
ℓ4

E1 +
a3
ℓ5

I1}
1

(S1 + P1 + E1 + I1 + R1 ) − 1] (S1 + P1 + E1 + I1 + R1 ) .

(16)

Now we divide by S to get

ABC D∗υ L = [ { 1
ℓ1 ( r (M − N )

S1
−

a1
M I1 + β

P1
S1 ) + α

ℓ2
+ 1

ℓ3

a1
M I1 +

a2
ℓ4

E1
S1

+
a3
ℓ5

I1
S1 }

1
(S1 + P1 + E1 + I1 + R1 ) − 1] (S1 + P1 + E1 + I1 + R1 ) .

(17)
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Since S  is major than P , E , I  and R  categories, so

ABC D∗υ L ≤ [ ra1a2(β+γ )
(a2 + b1 + γ ) (γ + a3 + b2 + η ) (γ + r ) (α+β + γ ) − 1] (S1 + P1 + E1 + I1 + R1 )

≤ [R0 − 1] (S1 + P1 + E1 + I1 + R1 ) ≤ 0.
(18)

Since S1 + P1 + E1 + I1 + R1 > 0, ∀t . According to the proposed model, plant disease model would therefore be eliminated 
if and only if R0 < 1. In general, because all parameters are positive in the plant disease model, Lyapunov function 
(ABC D∗υ L )  therefore decreases if R0 < 1 and increases if R0 > 1, eventually L = 0 if S1 = P1 = E1 = I1 = R1 = 0. L  is therefore 
the function of Lyapunov within the practicable biological interval and the greater compact invariant set in {S1, P1, E1,
I1, R1 ∈ Θ: ABC D∗υ L ≤ 0}  is the point E10. Every solution of the plant disease model proposed in this study with an initial 
term in Θ tends to E10 when t → ∞ if and only if R0 ≤ 1 through the well-known Lasalles invariance principle [38]. In 
conclusion, the plant disease model's disease-free equilibrium E10 presented here is globally asymptotically stable.

Theorem 3.2.2. The endemic equilibrium point E1
∗ of the plant disease system is globally asymptotically stable if R0 ≤ 1.

Proof. We use the Lyapunov function [38] to prove this

L (S1
∗ , P1

∗ , E1
∗ , I1

∗ , R1
∗ ) = (S1 − S1

∗ − S1
∗ log

S1
∗

S1 ) + (P1 − P1
∗ − P1

∗ log
P1

∗

P1 ) + (E1 − E1
∗ − E1

∗ log
E1

∗

E1 )
+ ( I1 − I1

∗ − I1
∗ log

I1
∗

I1 ) + (R1 − R1
∗ − R1

∗ log
R1

∗

R1 ) .
(19)

Consequently, applying the derivative to both sides gives

ABC D∗υ L = ( S1 − S1
∗

S1 )ABC D∗υ S1 + ( P1 − P1
∗

P1 )ABC D∗υ P1 + ( E1 − E1
∗

E1 )ABC D∗υ E1

+ ( I1 − I1
∗

I1 )ABC D∗υ I1 + ( R1 − R1
∗

R1 )ABC D∗υ R1,
(20)

replacing ABC D∗υ S1, ABC D∗υ P1, ABC D∗υ E1, ABC D∗υ I1 and ABC D∗υ R1 by their values, we obtain

ABC D∗υ L = ( S1 − S1
∗

S1 ) (r (M − N ) −
a1
M S1I1 + βP1 − ℓ1S1)

+ ( P1 − P1
∗

P1 ) (αS1 − ℓ2P1 ) + ( E1 − E1
∗

E1 ) ( a1
M S1I1 − ℓ3E1)

+ ( I1 − I1
∗

I1 ) (a2E1 − ℓ4I1 ) + ( R1 − R1
∗

R1 ) (a3I1 − ℓ5R1 ) .

(21)

Then we have

ABC D∗υ L = ( S1 − S1
∗

S1 ) [r (M − N ) −
a1
M (S1 − S1

∗ ) ( I1 − I1
∗ ) + β (P1 − P1

∗ ) − ℓ1 (S1 − S1
∗ ) ]

+ ( P1 − P1
∗

P1 ) [α (S1 − S1
∗ ) − ℓ2 (P1 − P1

∗ ) ]

+ ( E1 − E1
∗

E1 ) [ a1
M (S1 − S1

∗ ) ( I1 − I1
∗ ) − ℓ3 (E1 − E1

∗ ) ]
+ ( I1 − I1

∗

I1 ) [a2 (E1 − E1
∗ ) − ℓ4 ( I1 − I1

∗ ) ]

+ ( R1 − R1
∗

R1 ) [a3 ( I1 − I1
∗ ) − ℓ5 (R1 − R1

∗ ) ] .

(22)

They can be separated in two part as follows
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ABC D∗υ L = r (M − N )( S1 − S1
∗

S1 ) − ( (S1 − S1
∗ )2

S1 ) ( a1
M ( I1 − I1

∗ ) + ℓ1)
+ β (P1 − P1

∗ ) ( S1 − S1
∗

S1 ) + α (S1 − S1
∗ ) ( P1 − P1

∗

P1 )
− ℓ2( (P1 − P1

∗ )2

P1 ) +
a1
M (S1 − S1

∗ ) ( I1 − I1
∗ ) ( E1 − E1

∗

E1 )
− ℓ3( (E1 − E1

∗ )2

E1 ) + a2 (E1 − E1
∗ ) ( I1 − I1

∗

I1 )
− ℓ4( ( I1 − I1

∗ )2

I1 ) + a3 ( I1 − I1
∗ ) ( R1 − R1

∗

R1 )
− ℓ5( (R1 − R1

∗ )2

R1 ) ,

(23)

ABC D∗υ L = r (M − N ) − r (M − N )
S1

∗

S1
−

a1
M I1( (S1 − S1

∗ )2

S1 ) +
a1
M I1

∗ ( (S1 − S1
∗ )2

S1 )
− ℓ1( (S1 − S1

∗ )2

S1 ) + βP1 − βP1
∗ − βP1

S1
∗

S1
+ βP1

∗ S1
∗

S1
+ αS1 − αS1

∗ − αS1
P1

∗

P1

+ αS1
∗ P1

∗

P1
− ℓ2( (P1 − P1

∗ )2

P1 ) +
a1
M S1I1 −

a1
M S1I1

∗ −
a1
M S1I1

E1
∗

E1

+
a1
M S1I1

∗ E1
∗

E1
−

a1
M S1

∗ I1 +
a1
M S1

∗ I1
∗ +

a1
M S1

∗ I1
E1

∗

E1
−

a1
M S1

∗ I1
∗ E1

∗

E1

− ℓ3( (E1 − E1
∗ )2

E1 ) + a2E1 − a2E1
∗ − a2E1

I1
∗

I1
+ a2E1

∗ I1
∗

I1
− ℓ4( ( I1 − I1

∗ )2

I1 )
+ a3I1 − a3I1

∗ − a3I1
R1

∗

R1
+ a3I1

∗ R1
∗

R1
− ℓ5( (R1 − R1

∗ )2

R1 ) .

(24)

This can be simplified as

ABC D∗υ L = L1 − L2, (25)

where

L1 = r (M − N ) +
a1
M I1

∗ ( (S1 − S1
∗ )2

S1 ) + βP1 + βP1
∗ S1

∗

S1
+ αS1

+ αS1
∗ P1

∗

P1
+

a1
M S1I1 +

a1
M S1I1

∗ E1
∗

E1
+

a1
M S1

∗ I1
∗

+
a1
M S1

∗ I1
E1

∗

E1
+ a2E1 + a2E1

∗ I1
∗

I1
+ a3I1 + a3I1

∗ R1
∗

R1
,

(26)

and

L2 = r (M − N )
S1

∗

S1
+

a1
M I1( (S1 − S1

∗ )2

S1 ) + ℓ1( (S1 − S1
∗ )2

S1 ) + βP1
∗ + βP1

S1
∗

S1

+ αS1
∗ + αS1

P1
∗

P1
+ ℓ2( (P1 − P1

∗ )2

P1 ) +
a1
M S1I1

∗ +
a1
M S1I1

E1
∗

E1

+
a1
M S1

∗ I1 +
a1
M S1

∗ I1
∗ E1

∗

E1
+ ℓ3( (E1 − E1

∗ )2

E1 ) + a2E1
∗ + a2E1

I1
∗

I1

+ ℓ4( ( I1 − I1
∗ )2

I1 ) + a3I1
∗ + a3I1

R1
∗

R1
+ ℓ5( (R1 − R1

∗ )2

R1 ) ,

(27)

this implies ABC D∗υ L > 0 if L1 > L2, ABC D∗υ L < 0 if L2 > L1 and ABC D∗υ L = 0 if L1 = L2, this implies S1 = S1
∗ , P1 = P1

∗ , E1 = E1
∗ , I1 −

I1
∗  and R1 = R1

∗ .

We can now conclude that the largest compact invariant set for the plant diseases model in {S1
∗ , P1

∗ , E1
∗ , I1

∗ ,
R1

∗ ∈ Θ: ABC D∗υ L = 0}  is the point E∗ the endemic equilibrium of the plant diseases model.
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3.3 Sensibility analysis of reproduction number (R0 ) without control3.3 Sensibility 
analysis of reproduction number ( R 0 {\displaystyle \mathrm {\mathcal {R}} {0}} ) without 
control
Since the parameters of the epizootic system are either predestined or equipped, this raises some doubt as to their 
values used to draw a conclusion about the underlying epidemic. Therefore, it's critical to identify the specific effects of 
each element on the dynamics of the pestilence and group the variables that have the most impact to limit or spread 
the outbreak. Within this section, a sensitivity analysis is conducted for the disease parameters identified with the 
suggested SPEIR model via the sensitivity indicator. Quantifying the most sensitive aspects of the basal reproductive 
number R0 can be done with the help of the Sensitivity Indicator strategy. The following equations give the 

standardized sensitivity indicator Ψ∗
R0 of R0 for all the parameters (r , a1, a2, a3, b1, b2, α , β , γ , η )  used within the SPEIR 

model in Table 1 where Ψ∗
R0 =

∂R0
∂ × ∗

|R0 |  

Ψr
R0 =

a1a2γ (β+γ )
A1A2(γ + r )2(α+β + γ )

= 0.266667 > 0,

Ψa1

R0 =
a2r (β+γ )

A1A2(γ + r )(α+β + γ ) = 1 > 0,

Ψa2

R0 =
a1r (β+γ ) (b1 + γ )

A1
2A2(γ + r )(α+β + γ )

= 0.0229885 > 0,

Ψa3

R0 = −
a1a2r (β+γ )

A1A2
2(γ + r )(α+β + γ )

= − 0.300752 < 0,

Ψb1

R0 = −
a1a2r (β+γ )

A1
2A2(γ + r )(α+β + γ )

= 0,

Ψb2

R0 = −
a1a2r (β+γ )

A1A2
2(γ + r )(α+β + γ )

= 0,

Ψα
R0 = −

a1a2r (β+γ )
A1A2(γ + r )(α+β + γ )2 = − 0.0909091 < 0,

Ψβ
R0 =

αa1a2r
A1A2(γ + r )(α+β + γ )2 = 0.0839161 > 0,

Ψη
R0 = −

a1a2r (β+γ )
A1A2

2(γ + r )(α+β + γ )
= − 0.669173 < 0,

Ψγ
R0 =

a1a2r ( − αβ − (β+γ )2 + αr )
A1A2(γ + r )2(α+β + γ )2 −

a1a2r (β+γ )
A1

2A2(γ + r )(α+β + γ )

−
a1a2r (β+γ )

A1A2
2(γ + r )(α+β + γ )

= − 0.312737 < 0,

(28)

As shown in the previous calculations, some component of the sensitivity indicator are positive, like r , a1, a2 and β , 
while others, like a3, α , γ  and η  are negative. Furthermore, the most important feature of these indicators is the 
functionality of the SPEIR model parameters. This means that getting a small amendment in one of the parameters 

will amendment the epidemic dynamics. The value Ψa3

R0 = − 0.300752 displays that decreasing (increasing) a3 for 
example by 70% increases (decreases) the basic reproductive number R0 by about 70% A small change in a parameter 
can head to comparatively enormous quantitative changes, requiring these sensitive parameters to be understood. It 
can be shown from previous calculations that parameters a1 (disease progression diversion rate for Latent 
Compartmentenglish) and η  (rate of roguingenglish) are, respectively, the maximum and minimum sensitivity 
epidemical parameters R0.

4. Achieve existence and uniqueness

In this section, we will prove that model 4 has a unique solution, that the kernel satisfies Lipschitz's condition and that 
the functions in this model is bounded.

Now, we will analyze the fractional model (Eq.(1)). Usage of an integral fractional operator on Eq. (1), we are gaining
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S1 ( t ) − S1 (0) = 1 − υ
χ (υ ) ϱ1 ( t , S1 ) + υ

χ (υ )λ (υ ) 0= ( t − θ )υ −1ϱ1 (θ , S1 )dθ ,

P1 ( t ) − P1 (0) = 1 − υ
χ (υ ) ϱ2 ( t , P1 ) + υ

χ (υ )λ (υ ) 0= ( t − θ )υ −1ϱ2 (θ , P1 )dθ ,

E1 ( t ) − E1 (0) = 1 − υ
χ (υ ) ϱ3 ( t , E1 ) + υ

χ (υ )λ (υ ) 0= ( t − θ )υ −1ϱ3 (θ , E1 )dθ , (29)

I1 ( t ) − I1 (0) = 1 − υ
χ (υ ) ϱ4 ( t , I1 ) + υ

χ (υ )λ (υ ) 0= ( t − θ )υ −1ϱ4 (θ , I1 )dθ ,

R1 ( t ) − R1 (0) = 1 − υ
χ (υ ) ϱ5 ( t , R1 ) + υ

χ (υ )λ (υ ) 0= ( t − θ )υ −1ϱ5 (θ , R1 )dθ ,

where

ϱ1 ( t , S1 ) = r (M − N ) − γS1 ( t ) −
a1
M S1 ( t ) I1 ( t ) − αS1 ( t ) + βP1 ( t ) , ϱ2 ( t , P1 ) = αS1 ( t ) + βP1 ( t ) − γP1 ( t ) , ϱ3 ( t ,

E1 ) =
a1
M S1 ( t ) I1 ( t ) − (γ + a2 + b1 )E1 ( t ) , ϱ4 ( t , I1 ) = a2E1 ( t ) − (γ + a3 + b2 + η ) I1 ( t ) , ϱ5 ( t , R1 ) = a3I1 ( t ) − (γ +

b3 )R1 ( t ) .

(30)

When S1 ( t )  has an upper limit, the Lipschitz condition for the ϱ1 ( t , S1 )  will be fulfilled. So, if S1 ( t )  has an upper limit, 
we find that

∥ ϱ1 ( t , S1 ) − ϱ1 ( t , S1
~ ) ∥ = ∥ − γ (S1 − S1

~ ) −
a1I1
M (S1 − S1

~ ) − α (S1 − S1
~ ) ∥

≤ γ ∥ S1 − S1
~ ∥ +

a1ϕ
M ∥ S1 − S1

~ ∥ + α ∥ S1 − S1
~ ∥

≤ {γ +
a1ϕ
M + α } ∥ S1 − S1

~ ∥ ,

(31)

that is ∥ S1 ∥ ≤ c1 and ∥ S1
~ ∥ ≤ c2, where S1 and S1

~  are bounded functions and ϕ = max ∥ I1 ∥ . We have that,

∥ ϱ1 ( t , S1 ) − ϱ1 ( t , S1
~ ) ∥ ≤ XS1

∥ S1 − S1
~ ∥ ,

similarly, we obtain the other kernels as following

∥ ϱ2 ( t , P1 ) − ϱ2 ( t , P1
~ ) ∥ ≤ XP1

∥ P1 − P1
~ ∥ , (32)

∥ ϱ3 ( t , E1 ) − ϱ3 ( t , E1
~ ) ∥ ≤ XE1

∥ E1 − E1
~ ∥ , (33)

∥ ϱ4 ( t , I1 ) − ϱ4 ( t , I1
~ ) ∥ ≤ XI1

∥ I1 − I1
~ ∥ , (34)

∥ ϱ5 ( t , R1 ) − ϱ5 ( t , R1
~ ) ∥ ≤ XR1

∥ R1 − R1
~ ∥ , (35)

where

XS1
= γ +

a1ϕ
M + α ,

XP1
= β+γ ,

XE1
= γ + a2 + b1,

XI1
= γ + a3 + b2 + η ,

XR1
= γ + b3,

(36)

and ∥ P1 ∥ ≤ c3, ∥ P1
~ ∥ ≤ c4, ∥ E1 ∥ ≤ c5, ∥ E1

~ ∥ ≤ c6, ∥ I1 ∥ ≤ c7, ∥ I1
~ ∥ ≤ c8, ∥ R1 ∥ ≤ c9, ∥ R1

~ ∥ ≤ c10. Hence, for the kernels 
ϱ1 ( t , S1 ) , ϱ2 ( t , P1 ) , ϱ3 ( t , E1 ) , ϱ4 ( t , I1 )  and ϱ5 ( t , R1 ) , the Lipschitz condition is justified.

Theorem 4.1. Presume that S1 ( t )  is obliged, then the operator ξ {S1 ( t ) }  is supplied by
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ξ {S1 ( t ) } = S1 (0) + 1 − υ
χ (υ ) ϱ1 ( t , S1 ) + υ

χ (υ )λ (υ ) 0= ( t − θ )υ −1ϱ1 (θ , S1 )dθ , (37)

satisfies the Lipschitz condition.

Proof. Assume that S1 ( t )  and S1
~ ( t )  are bounded functions with S1 (0) = S1

~ (0) , then we have

∥ ξ {S1 ( t ) } − ξ {S1
~ ( t ) } ∥ = ∥ 1 − υ

χ (υ ) (ϱ1 ( t , S1 ) − ϱ1 ( t , S1
~ ) ) + υ

χ (υ )λ (υ ) 0= ( t − θ )υ −1 (ϱ1 (θ , S1 ) − ϱ1 (θ , S1
~ ) )dθ ∥

≤ 1 − υ
χ (υ ) ∥ ϱ1 ( t , S1 ) − ϱ1 ( t , S1

~ ) ∥ + υ
χ (υ )λ (υ ) 0= ( t − θ )υ −1 ∥ ϱ1 (θ , S1 ) − ϱ1 (θ , S1

~ ) ∥ dθ

≤ ( 1 − υ
χ (υ ) XS1

−
XS1

tυ

χ (υ )λ (υ ) ) ∥ S1 − S1
~ ∥ .

(38)

This completes the proof. The same process can be applied to P1 ( t ) , E1 ( t ) , I1 ( t )  and R1 ( t ) .

Theorem 4.2. If S1 ( t )  is a bounded, then the operator

ξ1 {S1 ( t ) } = r (M − N ) − γS1 ( t ) −
a1
M S1 ( t ) I1 ( t ) − αS1 ( t ) + βP1 ( t ) , (39)

satisfies

(i) 

| ⟨ξ1 (S1 ) − ξ1 (S1
~ ) , S1 − S1

~ ⟩ | ≤ XS1
∥ S1 − S1

~ ∥2, (40)

where ⟨ . , . ⟩ is the inner product space bounded in L2.

(ii)

| ⟨ξ1 (S1 ) − ξ1 (S1
~ ) , D ⟩ | ≤ XS1

∥ S1 − S1
~ ∥ ∥ D ∥ , 0 < ∥ D ∥ < ∞ . (41)

Proof (i). Suppose that S1 ( t )  is bounded function, then

| ⟨ξ1 (S1 ) − ξ1 (S1
~ ) , S1 − S1

~ ⟩ | = | ⟨ − γ (S1 − S1
~ ) −

a1I1
M (S1 − S1

~ ) − α (S1 − S1
~ ) , S1 − S1

~ ⟩ |
≤ | ⟨γ (S1 − S1

~ ) , S1 − S1
~ ⟩ | + | ⟨ a1I1

M (S1 − S1
~ ) , S1 − S1

~ ⟩ | + | ⟨α (S1 − S1
~ ) , S1 − S1

~ ⟩ |

≤ γ ∥ S1 − S1
~ ∥ ∥ S1 − S1

~ ∥ +
a1ϕ
M ∥ S1 − S1

~ ∥ ∥ S1 − S1
~ ∥ + α ∥ S1 − S1

~ ∥ ∥ S1 − S1
~ ∥

≤ {γ +
a1ϕ
M + α } ∥ S1 − S1

~ ∥2

≤ XS1
∥ S1 − S1

~ ∥2 .

(42)

Proof (ii). Suppose that 0 < ∥ D ∥ < ∞, since S1 ( t )  is bounded function, so

| ⟨ξ1 (S1 ) − ξ1 (S1
~ ) , D ⟩ | = | ⟨ − γ (S1 − S1

~ ) −
a1I1
M (S1 − S1

~ ) − α (S1 − S1
~ ) , D ⟩ |

≤ | ⟨γ (S1 − S1
~ ) , D ⟩ | + | ⟨ a1I1

M (S1 − S1
~ ) , D ⟩ | + | ⟨α (S1 − S1

~ ) , D ⟩ |

≤ γ ∥ S1 − S1
~ ∥ ∥ D ∥ +

a1ϕ
M ∥ S1 − S1

~ ∥ ∥ D ∥ + α ∥ S1 − S1
~ ∥ ∥ D ∥

≤ {γ +
a1ϕ
M + α } ∥ S1 − S1

~ ∥ ∥ D ∥

≤ XS1
∥ S1 − S1

~ ∥ ∥ D ∥ .

(43)
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This completes the proof. The same process can be applied to P1 ( t ) , E1 ( t ) , I1 ( t )  and R1 ( t ) .

An inquiry into the existence and uniqueness of Eq.(1) will be discussed in the following. From Eq. (29) we can write

(S1 )n = 1 − υ
χ (υ ) ϱ1 ( t , (S1 )n −1 ) + υ

χ (υ )λ (υ ) 0= ( t − θ )υ −1ϱ1 (θ , (S1 )n −1 )dθ , n = 1, 2, 3, ⋯ . (44)

The difference of the successive term can be written as

Υn +1 ( t ) = (S1 )n +1 − (S1 )n = 1 − υ
χ (υ ) [ϱ1 ( t , (S1 )n ) − ϱ1 ( t , (S1 )n −1 ) ]

+ υ
χ (υ )λ (υ ) 0= ( t − θ )υ −1 [ϱ1 (θ , (S1 )n ) − ϱ1 (θ , (S1 )n −1 ) ]dθ .

(45)

According to Castillo-Chavez et al. [34], it would be easy to write

(S1 )n +1 = I1 = 1= ΥI1−1 . (46)

Then, from Eq. (45), we get

∥ Υn +1 ( t ) ∥ = ∥ (S1 )n +1 − (S1 )n ∥ = ∥ 1 − υ
χ (υ ) [ϱ1 ( t , (S1 )n ) − ϱ1 ( t , (S1 )n −1 ) ] ∥ . ∥ . + υ

χ (υ )λ (υ ) 0= ( t − θ )υ −1 [ϱ1 (θ ,

(S1 )n ) − ϱ1 (θ , (S1 )n −1 ) ]dθ ∥ .
(47)

By triangular inequality, the above Eq. turn into

∥ Υn +1 ( t ) ∥ ≤ 1 − υ
χ (υ ) ∥ ϱ1 ( t , (S1 )n ) − ϱ1 ( t , (S1 )n −1 ) ∥ + υ

χ (υ )λ (υ ) 0= ( t − θ )υ −1 ∥ ϱ1 (θ , (S1 )n ) − ϱ1 (θ , (S1 )n −1 ) ∥ dθ . (48)

Whereas, the kernel fulfilled the Lipschitz condition. we have

∥ Υn +1 ( t ) ∥ ≤ 1 − υ
χ (υ ) XS1

∥ (S1 )n − (S1 )n −1 ∥ +
υXS1

χ (υ )λ (υ ) 0= ( t − θ )υ −1 ∥ (S1 )n − (S1 )n −1 ∥ dθ . (49)

Theorem 4.3. If t0 fits the following condition

1 − υ
χ (υ ) XS1

+
XS1

t0
υ

χ (υ )λ (υ ) ≤ 1, (50)

then, model (Eq.(1)) has a unique solution.

Proof. Suppose that S1(t ) is bounded. As the Lipschitz condition is fulfilled by the kernel, therefore, utilizing the 
recursive process of Eq. (49), we acquire

∥ Υn +1 ( t ) ∥ ≤ { 1 − υ
χ (υ ) XS1

+
υXS1

t0
υ

χ (υ )λ (υ ) }n +1
∥ S1 (0) ∥ .

Therefore, the S1(t ) function offered by Eq. (46) exists and is smooth as well. Currently, we wish to illustrate that the 
above-mentioned functions are actually a solution to englishmodel (Eq.(1)). Presume that

S1(t ) − S1(0) = (S1 )n − (S1̄ )n (51)

So that,
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∥ (S1̄ )n ∥ = ∥ 1 − υ
χ (υ ) [ϱ1 ( t , S1 ) − ϱ1 ( t , (S1 )n ) ] + υ

χ (υ )λ (υ ) 0= ( t − θ )υ −1 [ϱ1 (θ , S1 ) − ϱ1 (θ , (S1 )n ) ]dθ ∥

≤ 1 − υ
χ (υ ) ∥ ϱ1 ( t , S1 ) − ϱ1 ( t , (S1 )n ) ∥ + υ

χ (υ )λ (υ ) 0= ( t − θ )υ −1 ∥ ϱ1 (θ , S1 ) − ϱ1 (θ , (S1 )n ) ∥ dθ

≤ 1 − υ
χ (υ ) XS1

∥ S1 − (S1 )n ∥ +
υXS1

tυ

χ (υ )λ (υ ) ∥ S1 − (S1 )n ∥ .

(52)

Using the recursive approach once more, we get

∥ (S1̄ )n ∥ ≤ { 1 − υ
χ (υ ) + υtυ

χ (υ )λ (υ ) }n +2
XS1

n +2 . (53)

If t = t0, we get

∥ (S1̄ )n ∥ ≤ { 1 − υ
χ (υ ) +

υt0
υ

χ (υ )λ (υ ) }n +2
XS1

n +2 . (54)

Using the limit in Eq. (54) as n  gets closer to ∞ , we arrive at ∥ (S1̄ )n ∥ → 0. Thus, the existence is demonstrated. It is 
still necessary to demonstrate the uniqueness of the model english (Eq.(1)). Assume that S1

~ ( t )  is another solution of 
model (Eq.(1)), then

S1 ( t ) − S1
~ ( t ) = 1 − υ

χ (υ ) [ϱ1 ( t , S1 ) − ϱ1 ( t , S1
~ ) ] + υ

χ (υ )λ (υ ) 0= ( t − θ )υ −1 [ϱ1 (θ , S1 ) − ϱ1 (θ , S1
~ ) ]dθ . (55)

Using the norm for Eq. (55), we get

∥ S1 ( t ) − S1
~ ( t ) ∥ ≤ 1 − υ

χ (υ ) ∥ ϱ1 ( t , S1 ) − ϱ1 ( t , S1
~ ) ∥ + υ

χ (υ )λ (υ ) 0= ( t − θ )υ −1 ∥ ϱ1 (θ , S1 ) − ϱ1 (θ , S1
~ ) ∥ dθ . (56)

Because the kernel fulfills the Lipschitz condition, thus we may write

∥ S1 ( t ) − S1
~ ( t ) ∥ ≤ 1 − υ

χ (υ ) XS1
∥ S1 ( t ) − S1

~ ( t ) ∥ +
υXS1

χ (υ )λ (υ ) 0= ( t − θ )υ −1 ∥ S1 ( t ) − S1
~ ( t ) ∥ dθ . (57)

Consequently,

∥ S1 ( t ) − S1
~ ( t ) ∥ (1 − 1 − υ

χ (υ ) XS1
−

XS1
t0

υ

χ (υ )λ (υ ) ) ≤ 0. (58)

If

(1 − 1 − υ
χ (υ ) XS1

−
XS1

t0
υ

χ (υ )λ (υ ) ) ≥ 0, (59)

then,

∥ S1 ( t ) − S1
~ ( t ) ∥ = 0, S1 ( t ) − S1

~ ( t ) = 0, S1 ( t ) = S1
~ ( t ) . (60)

Thus, the uniqueness is verified. We can prove the uniqueness of the rest of equations in model (Eq.(1)) by using the 
same method. Therefore model has a unique solution (Eq.(1)).

5. Numerical algorithm with ABC fractional derivative

It is not possible to solve various real and physical applications developed using fractional PDEs accurately. However, a 
numerical approach to the solution is always enough to take care of a problem in engineering and science. For the 
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Adams-Bashforth-Moulton technique, it can be used here to score a solution. Compared to the RK4, ABMM offers 
many noteworthy benefits, due to the fact that RK4 calculates four function evaluations per integration step while 
ABMM only calculates two [42]. As a result of the wider interpolation interval, Adams-Moulton methods produce more 
precise approximations. Generally speaking, implicit procedures are more stable than their explicit counterparts and 
they also achieve a greater order with the same number of preceding steps. Naturally, its implicit nature makes it 
challenging to solve because it results in a non-linear equation.

In this part, we discuss the plant diseases model known as the SPEIR model with the Atangana-Baleanu fractional 
operator to show the effectiveness, excellence and generality of our approach. All analytical and numerical analyses 
were detailed throughout the time spent computation using the MATLAB software package.

Taking into account the following fractional differential equation

ABC Dt
υ φ ( t ) = F ( t , φ ( t ) ) , φ (0) = φ0 . (61)

We apply the basic calculus theorem in order to transform the Eq. (61) to

φ ( t ) − φ (0) = 1 − υ
χ (υ ) F ( t , φ ( t ) ) + υ

χ (υ )λ (υ ) 0=F (χ , φ (χ ) ) ( t − χ )υ −1dχ , (62)

at t = tn +1, n = 1, 2, ⋯,  we find that

φ ( tn +1 ) − φ (0) = 1 − υ
χ (υ ) F ( tn , φn ) + υ

χ (υ )λ (υ ) 0=F ( t , φ ( t ) ) ( tn +1 − t )υ −1dt , (63)

and at t = tn , we have

φ ( tn ) − φ (0) = 1 − υ
χ (υ ) F ( tn −1, φn −1 ) + υ

χ (υ )λ (υ ) 0=F ( t , φ ( t ) ) ( tn − t )υ −1dt . (64)

The result of subtracting (64) from (63) is as follows

φ ( tn +1 ) − φ ( tn ) = 1 − υ
χ (υ ) {F ( tn , φn ) − F ( tn −1, φn −1 ) }

+ υ
χ (υ )λ (υ ) 0=F ( t , φ ( t ) ) ( tn +1 − t )υ −1dt

− υ
χ (υ )λ (υ ) 0=F ( t , φ ( t ) ) ( tn − t )υ −1dt

(65)

Consequently,

φ ( tn +1 ) − φ ( tn ) = 1 − υ
χ (υ ) {F ( tn , φn ) − F ( tn −1, φn −1 ) } + Aυ − Bυ , (66)

where

Aυ = υ
χ (υ )λ (υ ) 0=F ( t , φ ( t ) ) ( tn +1 − t )υ −1dt , (67)

and

Bυ = υ
χ (υ )λ (υ ) 0=F ( t , φ ( t ) ) ( tn − t )υ −1dt . (68)

Then, we have
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Aυ = υ
χ (υ )λ (υ ) 0= ( tn +1 − t )υ −1{ t − tn −1

h F ( tn , φn ) − t − tn
h F ( tn , φn ) }dt

=
υF ( tn , φn )
hχ (υ )λ (υ ) 0= ( tn +1 − t )υ −1F ( t − tn −1 )dt

−
υF ( tn −1, φn −1 )

hχ (υ )λ (υ ) 0= ( tn +1 − t )υ −1F ( t − tn −1 )dt

=
υF ( tn , φn )
hχ (υ )λ (υ ) { 2htn +1

υ

υ −
tn +1

υ +1

υ+1 } −
υF ( tn −1, φn −1 )

hχ (υ )λ (υ ) { htn +1
υ

υ −
tn +1

υ +1

υ+1 } .

(69)

likewise, we obtain

Bυ =
υF ( tn , φn )
hχ (υ )λ (υ ) { htn

υ

υ − tn
υ +1

υ+1 } −
υF ( tn −1, φn −1 )

hχ (υ )λ (υ ) . (70)

The analytical solution is thus given as

φ ( tn +1 ) = φ ( tn ) + F ( tn , φn ) { 1 − υ
χ (υ ) + υ

hχ (υ )λ (υ ) [ 2htn +1
υ

υ −
tn +1

υ +1

υ+1 ] − υ
hχ (υ )λ (υ ) [ htn

υ

υ − tn
υ +1

υ+1 ] }
+ F ( tn −1, φn −1 ) { υ−1

χ (υ ) − υ
hχ (υ )λ (υ ) [ htn +1

υ

υ −
tn +1

υ +1

υ+1 + tn
υ +1

hχ (υ )λ (υ ) ] } .

(71)

Therefore, the model's solution (Eq.(1)) is

(S1 )n +1 = (S1 )n + { 1 − υ
χ (υ ) + υ

hχ (υ )λ (υ ) [ 2htn +1
υ

υ −
tn +1

υ +1

υ+1 ] − υ
hχ (υ )λ (υ ) [ htn

υ

υ − tn
υ +1

υ+1 ] }
{r (M − N ) − (S1 )n ( tn ) (γ −

a1
M ( I1 )n ( tn ) − α ) + β (P1 )n ( tn ) }

+ { υ−1
χ (υ ) − υ

hχ (υ )λ (υ ) [ htn +1
υ

υ −
tn +1

υ +1

υ+1 + tn
υ +1

hχ (υ )λ (υ ) ] }
{r (M − N ) − (S1 )n −1 ( tn −1 ) (γ −

a1
M ( I1 )n −1 ( tn −1 ) − α ) + β (P1 )n −1 ( tn −1 ) } ,

(72)

(P1 )n +1 = (P1 )n + { 1 − υ
χ (υ ) + υ

hχ (υ )λ (υ ) [ 2htn +1
υ

υ −
tn +1

υ +1

υ+1 ] − υ
hχ (υ )λ (υ ) [ htn

υ

υ − tn
υ +1

υ+1 ] }
{α (S1 )n ( tn ) + (P1 )n ( tn ) (β−γ ) }

+ { υ−1
χ (υ ) − υ

hχ (υ )λ (υ ) [ htn +1
υ

υ −
tn +1

υ +1

υ+1 + tn
υ +1

hχ (υ )λ (υ ) ] }
{α (S1 )n −1 ( tn −1 ) + (P1 )n −1 ( tn −1 ) (β−γ ) } ,

(73)

(E1 )n +1 = (E1 )n + { 1 − υ
χ (υ ) + υ

hχ (υ )λ (υ ) [ 2htn +1
υ

υ −
tn +1

υ +1

υ+1 ] − υ
hχ (υ )λ (υ ) [ htn

υ

υ − tn
υ +1

υ+1 ] }
{ a1

M (S1 )n ( tn ) ( I1 )n ( tn ) − (γ + a2 + b1 ) (E1 )n ( tn ) }
+ { υ−1

χ (υ ) − υ
hχ (υ )λ (υ ) [ htn +1

υ

υ −
tn +1

υ +1

υ+1 + tn
υ +1

hχ (υ )λ (υ ) ] }
{ a1

M (S1 )n −1 ( tn −1 ) ( I1 )n −1 ( tn −1 ) − (γ + a2 + b1 ) (E1 )n −1 ( tn −1 ) } ,

(74)

( I1 )n +1 = ( I1 )n + { 1 − υ
χ (υ ) + υ

hχ (υ )λ (υ ) [ 2htn +1
υ

υ −
tn +1

υ +1

υ+1 ] − υ
hχ (υ )λ (υ ) [ htn

υ

υ − tn
υ +1

υ+1 ] }
{a2 (E1 )n ( tn ) − (γ + a3 + b2 + η ) ( I1 )n ( tn ) }

+ { υ−1
χ (υ ) − υ

hχ (υ )λ (υ ) [ htn +1
υ

υ −
tn +1

υ +1

υ+1 + tn
υ +1

hχ (υ )λ (υ ) ] }
{a2 (E1 )n −1 ( tn −1 ) − (γ + a3 + b2 + η ) ( I1 )n −1 ( tn −1 ) } ,

(75)
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(R1 )n +1 = (R1 )n + { 1 − υ
χ (υ ) + υ

hχ (υ )λ (υ ) [ 2htn +1
υ

υ −
tn +1

υ +1

υ+1 ] − υ
hχ (υ )λ (υ ) [ htn

υ

υ − tn
υ +1

υ+1 ] }
{a3 ( I1 )n ( tn ) − (γ + b3 ) (R1 )n ( tn ) }

+ { υ−1
χ (υ ) − υ

hχ (υ )λ (υ ) [ htn +1
υ

υ −
tn +1

υ +1

υ+1 + tn
υ +1

hχ (υ )λ (υ ) ] }
{a3 ( I1 )n −1 ( tn −1 ) − (γ + b3 ) (R1 )n −1 ( tn −1 ) } .

(76)

6. Numerical simulation and discussion
This section employs the Adams-Bashforth-Moulton technique to numerically dissolve the fractional operator SPEIR 
model [40,41].

The values of the initial conditions for model (Eq.(1)) are given as follows: M = 1000, S1 (0) = 100, P1 (0) = 30, E1 (0) =
60, I1 (0) = 60 and R1 (0) = 60. The parameter values applied in the mathematical simulation were extracted from the 
classical case of the model as shown in Table 1 [8,9]. The outcomes of the numerical simulation of the SPEIR model are 
shown in the paragraphs that follow (with and without control).

Table 1. Values of parameters

Parameter a1 a2 a3 b1 b2 b3 r α β γ η

Value (R0<1) 0.06 0.17 0.04 0 0 0.01 0.011 0.0052 0.048 0.004 0.089

Value (R0>1) 0.3 0.17 0.02 0 0 0.01 0.013 0.0052 0.048 0.0008 0.087

Figure 1 shows the numerical simulation of plant compartments Susceptible S1 ( t ) , Protected P1 ( t )  and Latent E1 ( t )  
with time history for various values of fractional order at R0 < 1 and R0 > 1. Figures 1(a) and 1(b) show that the 
maximum value of S1(t ) decreases whether R0 < 1 and R0 > 1, as the time increases and the fractional-order decreases. 
Figures 1(c) and 1(d) show that P1(t ) decreases as the fractional order decreases and on a big difference between the 
situation when R0 < 1 and R0 > 1. Figure 1(e) shows that E1(t ) decreases dramatically during the first period with 
increasing the fractional order until it reaches about 120 days, and then the process reverses after that. While Figure 1
(f) shows that E1(t ) is decreasing, but only until 50 days before it starts increasing again.

Figure 1. Numerical simulation of plant compartments S1(t ),P1(t ),E1(t ) for various values of fractional order with R0<1 
and R0>1

https://www.scipedia.com/public/File:Draft_Hagag_877846790-1.png
https://www.scipedia.com/public/File:Draft_Hagag_877846790-1.png
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Figure 2 shows the numerical simulation of plant compartments Infected I1 ( t )  and Removed R1 ( t )  with time history 
for several values of fractional order at R0 < 1 and R0 > 1. Figure 2(a) shows that I1(t ) initially decreases until close to 
150 days with the value of the fractional order differing, and then the process reverses after that. While Figure 2(b) 
shows that I1(t ) decreases until the period from 60 to 80 days, but its value does not reach zero on the vertical axis, as 
happened with Figure 2(a).

Figure 2. Numerical simulation of plant compartments I1(t ),R1(t ) for various values of fractional order with R0<1 and 
R0>1

Figure 3 shows the numerical simulation of plant compartments S1 ( t ) , P1 ( t ) , E1 ( t ) , I1 ( t )  and R1 ( t )  with time history 
for various values of fractional order at R0 < 1 and R0 > 1.

https://www.scipedia.com/public/File:Draft_Hagag_877846790-2.png
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Figure 3. Numerical simulation of plant compartments S1(t ),P1(t ),E1(t ),I1(t ),R1(t ) with R0<1 and R0>1

Figure 4 shows the dynamic compartments of Susceptible and Infected with various roguing and replanting values at 
υ = 0.85. Figures 4(a) and 4(b) show that the maximum value of S1(t ) increases as the rate of replanting decreases and 
the rate of roguing increases. Figures 4(c) and 4(d) show that infectious can be increased as the rate of replanting 
decreases and the rate of roguing increases.

https://www.scipedia.com/public/File:Draft_Hagag_877846790-3.png
https://www.scipedia.com/public/File:Draft_Hagag_877846790-3.png
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Figure 4. Dynamic compartments of Susceptible and Infected with various roguing and replanting values at υ =0.85

Figures 5 and 6 illustrate the effect of different parameters on plant compartments of americanthe SPEIR model at 
υ = 0.85.

Figure 5. The effect of alteration the values of parameters a1, a2, b1 and b2 on all compartment stages where the 
fractional operator υ =0.85
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Figure 6. The effect of alteration the values of parameters α , β , γ  and η  on all compartment stages where the fractional 
operator υ =0.85

7. Conclusion
In this study, we considered and analyzed the SPEIR model displayed the dynamics of plant diseases with the 
Atangana-Baleanu fractional derivative in Caputo sense. Both the NEE and EE points were analyzed in terms of model 
equilibria and stability analysis (local-global). We also demonstrated the generic form of R0 and the effects of the 
controls proposed on it. The Adams-Bashforth-Moulton approach was used to study and solve numerical simulations 
of the suggested model. The value of the fractional order υ  as well as the parameters of the SPEIR model affect the 
numerical results that are obtained. Because of this, solutions generated by the fractional order model typically 
converge extremely quickly to real issues.
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