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Abstract
Forklift is a kind of material handling robot, which is widely used in short-distance handling 
in the industrial field. However, at present, the structural design of forklifts is generally 
based on designers' experience, and there are still many problems in domestic forklifts 
compared with foreign countries. In this paper, the forklift gantry is taken as the research 
object, and four typical surrogate modeling techniques, namely PRS, KRG, RBF, and SVR 
models, are used for optimal design and analysis. The study shows that the KRG model has 
the best performance and RBF model has the worst performance in terms of global and 
local accuracy. Multi-objective optimization design of the weight and total deformation of 
the gantry is carried out with the maximum stress of the gantry and I-beam geometry as 
constraints. Taking the KRG model as an example, the comparison of the results before and 
after optimization shows that the weight of the I-beam of the forklift gantry is reduced by 
11.9% and the maximum total deformation is reduced by 23.2% while satisfying the 
constraints. Global sensitivity analysis (GSA) of the forklift gantry reveals that the height of 
the I-beam has the greatest impact on the gantry performance.
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1. Introduction
Industrial vehicles play a crucial role in the national economy 
and production activities. Industrial vehicles are mainly divided 
into counterweight forklifts, forward moving forklifts, plug-in 
forklifts, pallet stackers, pallet handling trucks, 
bidirectional/multi-directional operation forklifts, etc. They are 
widely used in ports, stations, airports, freight yards, factory 
workshops, warehouses, distribution centers, and distribution 
centers to load, unload, and handle pallet goods in cabins, 
carriages, and containers. Forklifts experience safety accidents 
every year causing significant losses. If risks of forklifts can be 
predicted in advance, most accidents may be avoided. In the 
past, the design of the forklift was mainly designed and tested 
in cycles by comparing similar products, i.e., estimating the 
dimensions of each component based on experience, 
designing, and installing each component according to 
drawings, and finally verifying the rigidity and strength. This 
traditional method can undoubtedly increase the manufacturing 
cost, and at the same time, due to the large human factor, there 
will be design deviations and other problems. With the wide 
application of computer-aided engineering technology, it has 
brought great convenience to forklift design and solved the 
above-mentioned problems to a certain extent. However, take 
the forklift gantry which is the most important part of forklift as 
an example, computational analysis and design of structural 
gantry often revolve multiple variables and strong nonlinearity, 
requiring significant computing cost, and sometimes the most 
optimal design cannot be found. To mitigate the mathematical 
and computing cost, surrogate model techniques based on a 
small amount of sample data is a fast and effective method for 
structural design, optimization, and analysis.

Up to now, a lot of efforts have been made to apply surrogate 
models for different optimization design problems of different 
fields [1], namely mechanical engineering, material, fluid, 

architecture, etc. In 2012, Song et al. [2] used single surrogate 
models to approximate the crash-worthiness optimization of 
thin-walled structure. In 2019, Asteris et al. [3] proposed a self-
compacting concrete strength prediction method by using 
surrogate model technique. In 2020, Sun et al. [4] considered to 
ease the cost of numerical simulations on fluid dynamics 
problems and developed a physics-constrained surrogate 
model. In 2021, Zhang et al. [5] proposed a multi-fidelity 
surrogate model-based optimization framework by correlating 
the configuration parameters of an aircraft and its aerodynamic 
performance. In 2022, Li et al. [6] offered a vectorial surrogate 
model-based multi-failure correlated probabilistic evaluation 
method for evaluating the reliability performance of complex 
structures, like turbine rotor. In 2023, Yuan et al. [7] used the 
radial basis function (RBF) model and alpine skiing optimization 
algorithm [8] to minimize the operating cost of the dynamic 
positioning system. After studying some recent literature, we 
found that even though surrogate model techniques have been 
developed for more than three decades and some classical 
theories were proposed long ago and are relatively mature, the 
vitality of surrogate model techniques does not stop and still 
plays an important role in various fields with continuous 
theoretical innovations.

Forklift is a type of material handling robot, and industrial 
robots first originated in the U.S. In 1954, George C. Devol 
designed the world’s first truly robotic arm, which was later 
bought by Joseph F. Engelberger with related patents, and 
established the world’s first robotics company, namely 
Unimation, which developed two types of robots, i.e., Versatran 
and Unimate. Since then, material handling robots have been 
appearing in factories and workshops. In 1961, Stanford 
University developed Shakey, an autonomous mobile robot [9]. 
With the development of computer technology and sensor 
technology, countries in the United States, Japan, and Europe 
have begun to work on the development of mobile robots. 
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Domestic research in this field started late and the technology is 
relatively weak, however, with the national emphasis on 
robotics industry and the continuous progress of science and 
technology, the development has been very rapid in recent 
decades, and many universities, research institutes and 
enterprises (such as Xinsong, CSG Huaxiao, Jizhijia, NOBLELIFT, 
etc.) have also actively invested in the research of robotics 
industry. The first fully hydraulic heavy-duty handling robot in 
China was developed by Qingdao Huadong Construction 
Machinery Co., Ltd. and the TPR series robots were developed 
by the Robotics Research Institute of Shanghai Jiaotong 
University in cooperation with Wadi Packaging Technology Co. 
As the largest robot company in China, mobile robots are one of 
the most internationally competitive products of Xinsong. The 
first AGV of Xinsong was applied in the automotive industry and 
exported to Mexico and the U.S., laying the foundation for the 
domestic material handling robots to the international market. 
CSG Huaxiao is a wholly-owned subsidiary of KDDI, which has 
been cultivating in the field of intelligent material handling 
equipment for nearly forty years and holds many core 
technologies and patents of intelligent handling.

Overall, compared with the advanced level of international 
material handling robots, domestic material handling mobile 
robot research is still in its infancy, in material handling 
accuracy, speed, reliability, load-bearing capacity, design level 
and other aspects there is still a large gap, the relevant core 
technology industrialization and localization still exists a large 
shortage, in addition to some key components still rely on 
imports. However, with the research and application of new 
technologies, the transformation and upgrading of the 
manufacturing industry and the urgent demand for manpower 
replacement, the application prospect of material handling 
mobile robots is very wide in the context of the development of 
intelligent workshops, and how to develop unmanned handling 
robots that can meet the needs of users in all aspects is a 
realistic problem that must be faced in the future.

Forklifts are wheeled handling vehicles for loading, unloading, 
stacking, and transporting goods over short distances. As one 
of the most typical industrial transporting vehicles, forklifts have 
been widely used in ports, stations, airports, yards, factory 
floors, warehouses, and other sectors of the national economy 
for their high productivity, low operating costs, high operational 
safety, and low cargo losses. The gantry is one of the key 
components of forklifts. It is generally composed of inner and 
outer gantry, fork frames, forks, lifting oil tanks, tilting oil tanks, 
chains, oil pipes, roller bearings and other structural 
components. The gantry plays the role of rising and falling in 
the forklift lifting mechanism, which is the basis for the 
operation of the gantry system. When lifting the cargo, it is 
supported by a lifting cylinder to withstand the axial force of the 
cargo. At the same time, the weight of the cargo acts on the 
fork, which is transmitted to the gantry through the fork frame, 
so that the gantry bears the bending moment. Therefore, the 
inner and outer gantries of the forklift play a crucial role in the 
gantry system of the forklift.

The early investigations of forklift gantry were concentrated on 
the reducing shock of gantry using MATLAB optimization 
toolbox, decreasing noise through the optimization of cross-
sectional selection of the gantry steel. Previous researchers 
mostly based on the strength analysis and verification of the 
gantry system, starting from structural optimization and 
verification, but there is still a certain gap between the real 
application of various research results to the mass production 
of products. This paper put pressure on optimization design 
and analysis of the forklift gantry by using multiple surrogate 
models. Surrogate models have been significantly improved 
over the past three decades, and many kinds of surrogate 

models such as polynomial regression surface (PRS) [10], 
Kriging (KRG) [11], radial basis function (RBF) [12], and support 
vector regression (SVR) [13], have been developed and 
successfully applied in many structure and/or multidisciplinary 
design optimization problems. However, different kinds of 
surrogate models often have different modeling precision, 
design and analysis results due to their own mathematical 
characteristics. That is, without sufficient prior information, it is 
often unknown which surrogate model performs best for the 
same problem. Therefore, in this paper, considering the 
uncertainty of the approximation model prediction, we tried 
different kinds of surrogate models for the design and analysis 
of the gantry, and selected the most suitable model from them 
based on the estimation of various errors.

The rest of this paper is organized as follows. The forklift and 
forklift gantry are introduced briefly in Section 2, and Section 3 
focuses on surrogate models approximating the gantry. Section 
4 compares the performance of four individual surrogate 
models, and then surrogate-based design and optimization for 
the gantry is implemented. Conclusions and future work are 
provided in Section 5.

2. Numerical analysis of forklift gantry

2.1 Introduction of forklift
Forklifts are battery-powered industrial vehicles, usually 
equipped with electromagnetic or optical automatic guidance 
devices, can be under the control of the control system, 
according to the established path planning, accurately move to 
the designated location, complete a series of work tasks. Forklift 
is generally composed of mechanical system, power system and 
control system, which is the product of multidisciplinary 
integration of mechanical engineering, computer engineering, 
control engineering and artificial intelligence, etc. With the 
development of information technology and automation 
technology, forklifts are also widely used in various fields such 
as handling, stacking, and logistics, etc. The configuration of a 
forklift is shown in Figure 1. The forklift consists of forklift body, 
gantry system, lifting platform, docking mechanism, and 
hydraulic system. The gantry system is installed on the forklift 
body and is used to lift the platform, which can move up and 
down under the guidance of the gantry system. The front end of 
the lifting platform is equipped with a secondary docking 
mechanism, and the secondary docking mechanism has a 
hydraulic system that can control the movement of the 
secondary docking mechanism.

2.2 Gantry structure

The gantry system consists of two lifting rails, lower cross 
member plate, middle cross member plate, upper cross 
member plate, lifting hydraulic cylinder and U-shaped sprocket 
frame, as shown in Figure 2(a). The two ends of the lower 
crossbeam, middle crossbeam, and upper crossbeam are fixed 
to the lifting rail, and the rear end of the middle crossbeam is 
provided with a rear tubing clamp. The critical component of 
gantry system is gantry as shown in Figure 2(b). As an important 
working device of forklift, the rationality of its lifting system 
design directly determines the quality of forklift. In daily 
operation, the gantry will be subjected to relatively complex 
forces in repeated lifting operations. Therefore, the structural 
design and optimization of gantry will directly lead to the 
degree of deformation of each component and the failure of the 
structure, which affects the safety performance, work efficiency 
and other related functions of the gantry system, and then 
seriously affects the life of each system of the forklift truck.
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Figure 1. Structural diagram of AGV (1-forklift body, 2 -lifting system, 3-lifting 
platform, 4- docking mechanism)

(a) Gantry system (b) Gantry

Figure 2. Structural diagram of gantry

2.3 Gantry simulation analysis

The three-dimensional (3-D) model of the gantry was created 
using SolidWorks, and the parts such as forks, gantry, lifting 
chain, sprockets, lifting hydraulic cylinder and tilting cylinder 
were created in turn according to the actual dimensions. Here 
we mainly focus on the design, optimization, and analysis of the 
gantry. The 3-D model of gantry is imported into ANSYS 
Workbench for static analysis. The material of the gantry is 
25MnV alloy steel with the following material parameters: 
density of 7850 kg/m3, modulus of elasticity of 2.06*105 MPa, 
and Poisson's ratio of 0.3.

As the main structure of the gantry, I-beam is an important 
structure to support the gantry and transfer the force on the 

gantry, and its strength also determines whether the forklift can 
complete the engineering transportation work more efficiently 
and safely. Therefore, structural optimization of I-beams can 
further reduce stress and deformation, reduce mass, and 
improve the economy and overall stability while ensuring the 
strength. Four design variables are selected to design and 
optimize the I-beam section, as shown in Figure 3(a), namely the 
height of I-beam h , the width of I-beam b , the waist thickness of 
I-beam d , and average thickness of I-beam t .

The gantry is free-grid with a grid cell size of 10 mm and the 
stress concentration region is locally encrypted, yielding a total 
of 111,777 grid cells and 223,976 nodes. The main loads and 
restraints on the gantry include the fixed restraint at the bottom 
of the gantry, which restricts the displacement of the gantry; 
the downward pressure F  acting on the top of the I-beam; and 
the moment M  generated by the downward translational 
pressure from the forks with a full load of 2 tons; also, the 
gravity of the gantry itself, G . The overall load diagram of the 
gantry is shown in Figure 3(b).

(a) (b)

Figure 3. Design variables and structure of the gantry

3. Design and optimization with multiple 
surrogate models

3.1 Surrogate models

The surrogate model is an approximate mathematical model 
widely used in engineering design and optimization problems to 
replace more complex and time-consuming numerical analysis, 
and the relationship between the input parameter variable and 
the output objective function of the system can be fitted on the 
basis of fewer sample points in the design space of complex 
systems [10], which has the characteristics of good fitting 
accuracy, low cost and high work efficiency.

The typical constructing process of surrogate models is shown 
in Figure 4, which mainly includes design of experiments (DoEs), 
generation of sampling points, construction of surrogate 
models, accuracy evaluation and application. If the accuracy of 
surrogate models cannot meet the requirements of the 
accuracy criteria, new sampling points generated by adaptive 
infilling method should be added into the initial sample set. 
Four typical individual surrogate models are briefly introduced 
next, and relevant theory is detailed in references [7-10].

3.1.1 PRS
PRS is a regression model with good global approximation 
performance, poor local performance, simple form, and good 
transparency. Although PRS can be used to fit linear or 
nonlinear problems, its resistance to interference and local 
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Figure 4. Constructing process of surrogate models

fitting ability are poor when the problem has a large number of 
design variables and a high degree of nonlinearity. Therefore, 
PRS is mainly applied to low-dimensional and low-nonlinear 
problems. In practice, first-order or second-order PRS is usually 
used, and here second-order PRS is taken as example in Eq. (1)

ŷ = ω0 + ∑
i =1

n

ωi xi + ∑
i =1

n −1

∑
j =i +1

n

ωij xi xj + ∑
i =1

n

ωii xi
2 (1)

where ŷ  is the prediction at unknown point x , ω  denotes the 
fitted weight coefficient which is evaluated by using sampling 
points, and n  expresses the number of variables.

3.1.2 KRG
The KRG model is essentially a linear weighted combination of 
information from known points to predict unknown information 
within a certain range. Unlike the PRS model, the KRG model 
has good local estimation capability because of the correlation 
functions, good continuity and derivability, and good 
approximation for nonlinear complex problems. General form 
of the KRG model can be expressed as

ŷ = μ̂ + rR−1 (y − 1 μ̂ ) (2)

where y  is the true response vector at sampling points, R  is the 
correlation matrix of known sampling points, and r  denotes the 
correlation vector between the unknown point and known 
sampling points, and μ̂  is the evaluated mean. Generally, the 
kernel function used in the KRG model is the Gaussian function 
(see Simpson et al. [11] for details).

3.1.3 RBF
The RBF method uses basis functions to transform a high-
dimensional nonlinear problem into a low-dimensional linear 
weighted problem, where the basis functions used are radially 
symmetric functions centered on the sampling points. The RBF 

model has been widely used because of its strong robustness 
and adaptability, as well as its fast convergence and low 
computational cost, and its ability to fit many types of functions 
very well. The basic mathematical expression of the RBF model 
is

ŷ = ωT r = ∑
i =1

n

ωi ri ( ∥ x − xi ∥ ) (3)

where xi  which is the i − th  sampling point, is also the i -th 
center point of the basis function, r  denotes the correlation 
between the unknown point and the n  sampling points. The 
weight coefficient vector ω  can be evaluated according to the 
known points (see Matheron [12] for details).

3.1.4 SVR
SVR model is a specific implementation of support vector 
machine (SVM). The essence of the SVR model is to implement 
linear support vector machine regression in high-dimensional 
space by nonlinearly mapping low-dimensional data to high-
dimensional space through kernel functions. Compared to the 
first three models, the SVR model is more flexible and can be 
used in areas such as financial market forecasting [14] and 
probabilistic stability analysis [15]. The linear regression formula 
for SVR can be expressed as

ŷ = ∑
i =1

n

(αi − αi
∗ ) (xi ⋅ x ) + b (4)

where αi  and αi
∗ are dual variables, and b  is the base term (see 

Clarke et al. [13] for details).

3.2 DoEs
According to the construction process of the surrogate model in 
Figure 5, the range of design variables was determined after 
analyzing the problem, and DoEs can be performed using 
sampling methods. There are several typical sampling methods, 
such as Latin hypercube sampling (LHS) [16], full factorial design 
(FFD) [17], orthogonal array (OA) [18], and central composite 
design (CCD) [19] methods. In this paper, the LHS method was 
used to generate training and testing samples in the design 
space. 50 points were selected and the corresponding 
maximum stress and maximum total deformation under the 
relevant loads were calculated using simulation. The 50 points 
are divided into two groups, 40 points are used for training 
surrogate models and the remaining 10 points are used for 
testing the built surrogate models. 40 training points and 10 
testing points are illustrated in Figure 5. In Figure 5, h , b , t , and 
d  are design variables shown in Figure 3(a). It can be clearly 
seen that the training and testing points are distributed over 
almost the whole design space with good space filling property 
and projection. The testing points and training points are in the 
same design space, which does not involve the problem of 
external interpolation, while the testing points and training 
points are interspersed with each other, indicating that 
distribution of sampling points can meet the requirements.
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(a) b, h, d (b) b, h, t

(c) b, d, t (d) h, d, t

Figure 5. Distribution of sampling points and testing points

3.3 Accuracy evaluation methods

When a surrogate model is established, we need to test the 
accuracy of the model to determine the fit of the model, and 
only the surrogate model with qualified accuracy can meet the 
requirements of engineering applications. A common method is 
to compare the calculated or simulated response values of 
another set of test points with the predicted response values of 
the surrogate model. The commonly used determination 
criteria are multiple Coefficient of determination R2 (R -square), 
normalized root mean squared error (NRMSE) and normalized 
maximum error (NMAE) which are calculated as follows

R2 = 1 −

∑
i =1

nt

(yi − ŷ i )2

∑
i =1

nt

(yi − ȳ )2

(5)

NRMSE =

∑
i =1

nt

(yi − ŷ i )2

∑
i =1

nt

yi
2

(6)

NMAE = max ( |yi − ŷ i |

nt ∗ ∑
i =1

nt

(yi − ŷ i )2 )
(7)

where nt  is the number of testing points, yi  and ŷ i  are the true 
response and the prediction of the surrogate model at the 
testing point xi , respectively. From the above equations, we can 

see that the value of R2 is between 0 and 1, the closer the value 
of R2 is to 1, the closer the surrogate model is to the real 
situation, namely the higher the global accuracy. The value of 
NRMSE  is greater than 0, depending on the system response 
amplitude, the smaller the value of N  NRMSE  for the same 
response surface, the higher the global accuracy of the 
surrogate model. Similar to NRMSE , the value of NMAE  is 
greater than 0, the smaller the value of NMAE  for the same 
response surface, the higher the local accuracy of the surrogate 
model.

4. Results

4.1 Accuracy analysis of surrogate models

In order to explore the performance of different individual 
surrogate models intuitively, both global criteria (i.e., R2 and 
NRMSE ) and local criterion (i.e., NMAE ) are employed which are 
displayed by bar charts in Figure 6 and listed in Table 1. It is 
obvious that the four surrogate models can better approximate 
the total deformation and maximum stress. For the gantry 
weight, the formula can usually be established with the given 
four design variables, so surrogate models can fit the gantry 
weight well. However, the fitting accuracy of the RBF model for 
the gantry weight is poor, probably due to the overfitting 
during the fitting process, which leads to a sharp decrease in 
the global fitting accuracy. In addition, it is found that surrogate 
models with better global accuracy do not necessarily have the 
best local accuracy, as in Figure 6(a), the global accuracy of PRS, 
KRG, and SVR are better than that of RBF, but the local accuracy 
of RBF model is better than that of the other three surrogate 
models. Considering the global and local performance together, 
for total deformation, maximum stress, and weight of gantry, 
the KRG model performs best, followed by the PRS model and 
the SVR model, and finally by the RBF model.

(a) Accuracy for total 
deformation

(b) Accuracy for maximum 
stress

(c) Accuracy for gantry 
weight

Figure 6. Accuracy comparison of the four surrogate models

Table 1. Accuracy evaluation of the four surrogate models

Response Criteria PRS RBF KRG SVR

Total Deformation
R2 0.99 0.96 1.00 0.99

NRMSE 0.04 0.07 0.02 0.04
NMAE 2.90 2.24 2.55 2.77

Maximum Stress
R2 0.86 0.94 0.89 0.85

NRMSE 0.18 0.12 0.16 0.18
NMAE 2.87 2.65 2.70 2.97

Gantry Weight
R2 1.00 0.65 0.99 1.00

NRMSE 0.01 0.06 0.01 0.00
NMAE 2.05 1.54 1.99 2.06

4.2 Optimization and analysis

4.2.1 Problem definition
The surrogate models built in Section 3 need to be used instead 
of the simulation model for optimization design and analysis. In 
the whole gantry optimization process, total deformation and 
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gantry weight are the two optimization objectives. In fact, these 
two optimization goals are contradictory to each other. 
Structures with less deformation have better rigidity and 
corresponding weight will be larger. Therefore, this problem is a 
multi-objective optimization design problem. There are two 
main constraints. The first one is the maximum stress. The 
material of the gantry is 25 MnV alloy steel with yield strength of 
590.0 MPa, and the safety factor is taken as 1.8, then the 
allowable stress of the gantry is [σ ] = 590

1.8 = 327.8 MPa, and 
the maximum stress of the gantry σmax ≤ [σ ] . The other one is 
the gantry size. Considering the specific applications and 
working conditions, load, and local stability, it is necessary to 
constrain geometry size of the non-standard I-beam. To obtain 
the optimal design of the forklift gantry, multi-objective generic 
algorithm (MOGA) is used herein. The entire gantry optimization 
problem is then described as Eq. (8). To obtain the optimal 
design of the forklift gantry, generic algorithm (GA) is used 
herein

min F (b , h , d , t ) = ω1f1 + ω2f2

S . t . σmax ≤ 327.8

68.0 ≤ b ≤ 94.0

100.0 ≤ h ≤ 180.0

4.5 ≤ d ≤ 6.5

8.4 ≤ b ≤ 10.8

(8)

where F ( ⋅ )  is the total objective, f1 means the total 
deformation, f2 is the gantry weight, ω1 and ω2 are coefficient 
weights of two objectives, respectively, and the sum of these 
two is 1.

It should be noted that due to the different dimensions and 
orders of magnitude of the two optimization objectives, they 
are normalized and then subjected to linear weighted multi-
objective optimization. Hence, D  means the normalized total 
deformation, and M  means the normalized the gantry weight. 
According to the experience, total deformation of the forklift 
gantry is more important than the gantry weight, so ω1 is set to 
be larger than and equal to ω2. Three different values of ω1, 
namely 0.5, 0.6, and 0.7, were selected and the predicted and 
true responses of the objective function and constraints were 
compared. Results are listed in Tables 2, 3, and 4. From the 
optimization results based on surrogate models, coefficient 
weight has a certain influence on the optimization results, and 
the best results are obtained when ω1 is equal to 0.6. Therefore, 
it is appropriate to take ω1 equal to 0.6 and ω2 equal to 0.4.

Table 2. Comparison of optimization results of the four surrogate models for ω1=0.5

Response b
 (mm)

h
 (mm)

d
 (mm)

t
 (mm)

Total 
Deformation

 (mm)

Maximum 
Stress
 (MPa)

Gantry 
Weight

 (Kg)
Before optimization 81.0 140.0 5.5 9.6 10.8 317.0 35.9

After 
optimization

PRS 68.4 169.4 4.5 8.4 8.7 220.6 30.8
RBF 68.0 169.1 4.5 8.4 8.5 285.9 31.2
KRG 69.1 171.0 4.5 8.4 8.4 267.9 30.7
SVR 68.9 167.9 4.5 8.5 8.8 246.4 30.9

Table 3. Comparison of optimization results of the four surrogate models for ω1=0.6

Response b
 (mm)

h
 (mm)

d
 (mm)

t
 (mm)

Total 
Deformation

 (mm)

Maximum 
Stress
 (MPa)

Gantry 
Weight

 (Kg)
Before optimization 81.0 140.0 5.5 9.6 10.8 317.0 35.9

After 
optimization

PRS 68.1 170.2 4.5 8.4 8.6 218.3 30.8
RBF 68.8 169.5 4.6 8.4 8.4 281.1 31.4
KRG 68.1 179.3 4.5 8.4 7.7 239.9 31.2
SVR 72.5 178.2 4.6 8.4 7.5 253.1 32.6

Table 4. Comparison of optimization results of the four surrogate models for ω1=0.7

Response b
 (mm)

h
 (mm)

d
 (mm)

t
 (mm)

Total 
Deformation

 (mm)

Maximum 
Stress
 (MPa)

Gantry 
Weight

 (Kg)
Before optimization 81.0 140.0 5.5 9.6 10.8 317.0 35.9

After 
optimization

PRS 70.1 178.4 4.9 8.4 7.4 234.3 32.6
RBF 69.4 170.4 4.5 8.4 8.2 275.5 31.6
KRG 68.1 180.0 4.5 8.4 7.6 236.8 31.2
SVR 68.6 173.8 4.8 8.5 7.9 261.8 31.8

 In order to check the accuracy of the optimization results 
obtained from the four surrogate models, they were substituted 
into the simulation model to obtain the real results as listed in 
Tables 5, 6, and 7. Tables 5, 6, and 7 list the total deformation, 
maximum stress, and gantry weight results of before and after 
optimization based on the four surrogate models, respectively. 
From the results of after optimization, the errors of total 
deformation of the PRS, RBF, KRG, and SVR model are 3.6%, 
2.4%, 1.3%, and 1.4%, respectively. The errors of maximum 
stress of the PRS, RBF, KRG, and SVR model are 16.5%, 9.5%, 
4.4%, and 1.4%, respectively. The errors of the I-beam weight of 
the PRS, RBF, KRG, and SVR model are 0.6%, 0.0%, 1.6%, and 
1.5%, respectively. Collectively, the SVR model performs the 
best, followed by the KRG model, and the accuracy of PRS and 
RBF model is similar, which is similar to the results obtained in 
Section 4.1.

From the comparison of before and after optimization, for the 
total deformation, PRS, RBF, KRG, and SVR model decreases 
16.2%, 17.2%, 23.2%, and 25.3%, respectively. For the maximum 
stress, PRS, RBF, KRG, and SVR model decreases 17.1%, 18.6%, 
20.4%, and 20.8%, respectively. For the I-beam weight, PRS, RBF, 
KRG, and SVR model decreases 14.9%, 12.8%, 11.9%, and 8.1%, 
respectively. The comparison shows that the optimal design 
based on KRG model has the best performance. Hence, the 
optimal solution obtained from the KRG model was substituted 
into the simulation model and a comparison of the results 
before and after optimization was shown in Figures 7 and 8.

Table 5. Total deformation results of before and after optimization

Optimal model
After optimization Before optimization Decrease

Prediction True Error
PRS 8.6 8.3 3.6% 9.9 16.2%
RBF 8.4 8.2 2.4% 9.9 17.2%
KRG 7.7 7.6 1.3% 9.9 23.2%
SVR 7.5 7.4 1.4% 9.9 25.3%

Table 6. Maximum stress results of before and after optimization

Optimal model
After optimization Before optimization Decrease

Prediction True Error
PRS 218.3 261.3 16.5% 315.2 17.1%
RBF 281.1 256.6 9.5% 315.2 18.6%
KRG 239.9 250.9 4.4% 315.2 20.4%
SVR 253.1 249.7 1.4% 315.2 20.8%

Table 7. Maximum stress results of before and after optimization

Optimal model
After optimization Before optimization Decrease

Prediction True Error
PRS 30.8 31.0 0.6% 36.0 14.9%
RBF 31.4 31.4 0.0% 36.0 12.8%
KRG 31.2 31.7 1.6% 36.0 11.9%
SVR 32.6 33.1 1.5% 36.0 8.1%
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(a) Before optimization (b) After optimization

Figure 7. Comparison of total deformation before and after optimization

(a) Before optimization (b) After optimization

Figure 8. Comparison of maximum stress before and after optimization

4.2.2 Global sensitivity analysis

Global Sensitivity analysis (GSA) is to study the impact of 
simultaneous changes of different input parameters on the 
system or model in the entire design space. The most 
representative Sobol’s GSA method [20] is used in this study, 
which is a sensitivity analysis method based on variance. This 
method can simultaneously calculate the first order sensitivity 
index and the full order sensitivity index of design variables, 
where the first order sensitivity represents the influence of a 
single design variable, while the full order sensitivity considers 
the interaction between each variable. Given any integrable 
function in n -dimensional space, it can be represented as

f (x ) = f0 + ∑
i

fi (xi ) + ∑
i <j

fij (xi , xj ) + f12...n (x1, x2, . . . , xn ) (9)

where xi  and xj  xi  are the i − th  and j − th  variables, 
respectively.

The total variance and partial deviation of f (x )  are shown in 
Eqs. (10) and (11)

D = ∫f2 (x )dx − f0
2 QUOTE D = ∫f2(x )dx − f0

2 D =

∫f2(x )dx − f0
2

(10)

Di1...is = ∫fi1...is
2 (x )dxi1

. . . dxis  Di1…is =

∫fi1…is
2 (x )dxi1

…dxis

(11)

 The first-order sensitivity index of each variable is as follows

Si =
Di1...is

D
(12)

where Si  denotes the first-order sensitivity index of the i − th  
variable. The full-order sensitivity index Sti  of the i − th  variable 
is the sum of the sensitivity indices of the i − th  variable.

The GSA of the gantry is carried out based on the four 
surrogate model, and results are shown in Figure 9. It is obvious 
that the height of I-beam h  has the greatest impact on the total 
deformation, maximum stress, and the I-beam weight, with the 
highest first-order sensitivity index and full-order sensitivity 
index, which are greater than the total influence of the other 3 
variables. From Figure 9(b), the average thickness of I-beam t  
also affects the maximum stress of the gantry to some extent. 
The other two parameters, namely b  and d , have almost 
negligible effects on the total deformation, maximum stresses, 
and I-beam weight.

(a) Total deformation (b) Maximum stress (c) I-beam weight

Figure 9. Comparisons of GSA based on the four surrogate models

 When designing the gantry, great attention should be paid to 
the influence of the height of I-beam. Compared with the 
simulation-based GSA, the surrogate-based GSA method can 
save a lot of time. In this problem, using 10000 Monte Carlo 
sample points, it needs to build a model 20000 times, and it 
takes about 48 hours to run the Sobol’s GSA method once, while 
it takes about 30 minutes to run the gantry model once, and it 
takes about 10000 hours to run 20000 times, which increases 
the speed by about 2083 times. The surrogate model technique 
has proven to be more effective for GSA method and more 
suitable for GSA of mechanical equipment and systems.

5. Conclusions
This paper reviewed the previous gantry optimization design 
methods and surrogate models in different fields, as well as the 
development history of forklift industrial robots. Due to the gap 
between the domestic forklift research in terms of scientific 
application and product production, this paper compares and 
studies the application of four surrogate models, namely PRS, 
KRG, RBF and SVR, in the multi-objective optimization design of 
forklift gantry. The main conclusions are as follows.

1) The 3-D model of the gantry was established through 
statistical analysis and numerical settings, and four parameters, 
namely height h , width b , waist thickness d , and average 
thickness t  of the I-beam were selected as the design variables. 
Using the LHS sampling method, 40 training points and 10 
testing points with good projection and space-filling property 
were selected.

2) Global accuracy criteria (R2 and NRMSE) and local criterion 
(NMAE) were used to evaluate the prediction accuracy of each 
surrogate model. Comparing the total deformation, maximum 
stress, and I-beam weight, the KRG model performed the best, 
followed by the PRS model and the SVR model, and finally by the 
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RBF model.

3) Multi-objective optimization design for maximum total 
deformation and I-beam weight was conducted using I-beam 
geometry and maximum stress as constraints. Results of before 
and after optimization show that, for the total deformation, PRS, 
RBF, KRG, and SVR model decreases 16.2%, 17.2%, 23.2%, and 
25.3%, respectively. For the maximum stress, PRS, RBF, KRG, 
and SVR model decreases 17.1%, 18.6%, 20.4%, and 20.8%, 
respectively. For the I-beam weight, PRS, RBF, KRG, and SVR 
model decreases 14.9%, 12.8%, 11.9%, and 8.1%, respectively. 
The optimal design based on KRG model has the best 
performance.

4) Finally, using the KRG model and Sobel’s GSA method, the 
GSA of the gantry was investigated. The height of the I-beam 
has the greatest influence on the performance of the gantry, 
and the average thickness also has a certain influence on the 
maximum stress of the gantry, so it is necessary to pay more 
attention to the height of the I-beam and the average thickness 
of the I-beam when designing forklift gantries in the future.
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