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Abstract
This paper introduces a sixth-order Immersed Interface Method (IIM) for addressing 2D 
Poisson problems characterized by a discontinuous forcing function with straight interfaces. 
In the presence of this discontinuity, the problem exhibits a non-smooth solution at the 
interface that divides the domain into two regions. Here, the IIM is employed to compute 
the solution on a fixed Cartesian grid. This method integrates necessary jump conditions 
resulting from the interface into the numerical schemes. In order to achieve a sixth-order 
method, the proposed approach combines implicit finite differences with the IIM. The 
proposed scheme is efficient because the matrix arising from discretization remains the 
same as in the smooth problem, and changes are made to the resulting linear system by 
introducing new terms on the right side. These supplementary terms account for the 
discontinuities in the solution and its derivatives, with calculations restricted near the 
interface. The paper demonstrates the accuracy of the proposed method through various 
numerical examples.
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1 Introduction
Developing advanced algorithms for solving the Poisson 
equation holds great significance in numerous research 
domains, including computational fluid dynamics, wave 
propagation, and theoretical physics [1]. The discontinuous 
problem emerges in scenarios marked by abrupt changes at 
interfaces that separate different regions within a given domain 
[2,3,4]. In this article, we particularly focus on linear interfaces, 
which are commonly encountered in layered phenomena (for 
example, as seen in [5,6,7] and the cited references). 
Additionally, the pursuit of high-order methods for addressing 
such challenges is highly advantageous since their enhanced 
precision permits the use of coarser grids, subsequently 
reducing computational expenses.

This paper presents high-order finite-difference schemes up to 
sixth-order for the Poisson equation for straight interfaces. The 
problem is given by [2,3,4].
  

Δu (x ) = f (x ), x ∈ Ω ∖ Γ, Ω = Ω+ ∪ Ω− (1)

[u ]Γ = p (x ), x ∈ Γ, (2)

[un ]Γ = q (x ), x ∈ Γ . (3)

where u  and f  are the solution and known right-hand side 
function, respectively. We divide Ω in two regions, Ω+ and Ω−, 
separated by an immersed interface Γ. The computational 

domain can be one-dimensional (1D) (with several interface 
points), or a two-dimensional (2D) region with straight 
interfaces. We use Dirichlet boundary conditions on ∂Ω. We 
assume that the solution, the right-hand side function, and their 
derivatives may have discontinuities at Γ. Thus, we require jump 
conditions as additional inputs. The principal jump conditions 
[u ] = p  and [un ] = q  are known functions and are defined on Γ. 
Here, un  is the derivative in the normal direction.

Many numerical methods have been proposed to solve 
accurately the Poisson equation; however most of these 
methods are limited to smooth solutions. For instance, many 
developments have been made to get fourth- and sixth-order 
finite-difference methods for the Poisson equation (1), see for 
example [8,9,10,11,12,13,14]. On the other hand, to overcome 
the interface issue, several approaches exist to approximate 
discontinuous solutions, such as the level set method [15], 
immersed boundary method [16], ghost fluid method [17], 
interpolation matched interface method [18], Galerkin finite 
element method [19], boundary condition capturing [20], and 
interface neural networks [21]. However, there are not many 
available high-order discretizations of the Poisson problems 
with interfaces and many of these algorithms are only second-
order accuracy. From these methods, the immersed interface 
method [22,23,24,4,25] is one popular option to solve (1)-(3) 
accurately by simple modifications of standard finite 
differences.

There only exist a few high-order immersed interface methods 
to solve elliptic equations. Fourth-order interface methods for 
elliptic equations with discontinuous solutions or discontinuous 
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coefficients are investigated in [26,27,28,29,30]. Lately, Feng 
and Li [31] presented a third-order IIM for elliptic interface 
problems, but it is limited to straight interfaces lying at grid 
points. Pan et al. [32] proposed a third-order IIM to solve elliptic 
problems on irregular domains, and Colnago et al. [33] 
developed a fourth-order approximation. More recently, Feng et 
al. [34] presented a sixth-order IIM to solve Poisson interface 
problem with singular sources based on the undetermined 
coefficients technique.

This paper presents a new high-order implicit finite-difference 
immersed interface method (HIFD-IIM) up to sixth-order 
accuracy to solve the 2D Poisson problem (1)-(3) with straight 
interfaces. The implicit finite-difference methodology is based 
on calculating the unknown variable and its corresponding 
derivatives simultaneously [35,36]. The system is changed by 
adding new terms on the right side, named jump contributions. 
These terms include the jumps of the solution and its 
derivatives, and they are calculated near the interface. In this 
context, the straight interfaces allows to calculate the jumps 
contributions directly from principal jump conditions (2) and (3) 
without any other calculation. The modifications are only 
performed at grid points where the method's stencil intersects 
the interface. Moreover, the matrix in the linear system is the 
same as the smooth problem. This formulation makes the 
method attractive as it is easy to implement and does not 
require other convergence restrictions than the ones from 
standard methods for smooth solutions. To the best authors' 
knowledge, there is not other methods using the proposed 
formulation.

The paper is organized as follows. Section 2 introduces the 
implicit formulation. The main theoretical results are presented 
in this section. Section 3 deals with the 1D Poisson problem. 
Section 4 shows how to implement the high order methods for 
2D problems with straight interfaces. Section 5 contains several 
examples to test the algorithm's capacity. Finally, in Section 6, 
we present the conclusions and future work.

2 Implicit finite-difference formulation

We begin our analysis by considering the 1D finite-difference 
(FD) scheme for the second derivative of a real-valued function 
u . In this work, the numerical solution is approximated using a 
uniform grid. An interval [a , b ] is divided into N  sub-intervals, 
using xi = a + (i − 1)h , i = 1, 2, …, N , N + 1, where the grid size is 
given by h = (b − a )/N . For simplicity, we set x = xα  between 
two consecutive grid points xI ≤ xα < xI +1. We called xI  and xI +1 
irregular points; meanwhile the reminder points are referred as 
regular. Besides h , the discretization needs the definitions of 
hL = xI − xα , and hR = xI +1 − xα . Note that hR  is a positive value, 
meanwhile hL  is negative, see Fig. 1.

Figure 1: Stencil of the immersed interface method at xI  and xI +1.

Finally, we denote as φi = φ |i = φ (xi ) the evaluation of function 
φ  at the i th-point of the grid.

2.1 Approximation on regular points

It is well-known that the central finite difference gives us a 
second-order approximation, and can be written as

uxx |i = δ2u |i + O (h2), (4)

where

δ2u |i :=
ui −1 − 2ui + ui +1

h2 , (5)

for a given small value h > 0.

One way to increase the order of accuracy in (4) is using a FD 
operator with more grid points. However, there is another way 
to get high-order approximations without changing the length 
of the FD operator (5). It is by considering a high-order implicit 
finite-difference (HIFD) formulation, as presented in [13]. Thus, 
using Taylor series expansions, it directly follows that the sixth-
order formula is given by

∂4uxx |i = δ2u |i + O (h6), i ≠ I , I + 1. (6)

where the FD operator δ2 is given by (5) and the partial operator 
is defined as

∂4( ⋅ ) := ( ⋅ ) + bh2( ⋅ )xx + eh4( ⋅ )xxxx , (7)

b = 1/12 and e = 1/360. The above formulation (6) turns in a 
fourth-order method if we choose b = 1/12 and e = 0. Moreover, 
if we select b = 0 and e = 0 the standard second-order 
approximation is recovered.

We remark that (6) can only be applied in cases where the 
problem's solution has enough regularity, see [37]. To 
overcome this issue, we combine the HIFD with the IIM to solve 
problems with discontinuous solutions, as described in the next 
section.

2.2 Approximation on irregular points

This paper proposes a new formulation named HIFD-IIM that is 
based on the combination of HIFD and IIM. To derive high-order 
schemes, the IIM requires additional conditions at i = I , I + 1. 
These are known as jump conditions at xα . Thus, for a function 
φ , they are given by

[φ ] = φ+ − φ−, φ+ = φ (xα+ ) = lim
x →xα+

φ (x ), φ− =

φ (xα− ) = lim
x →xα−

φ (x ) . (8)

The IIM contribution requires to include high-order jump 
derivatives. However, we can reduce the number of jumps by 
applying a less accurate scheme at the irregular points. As other 
IIMs proposed by different authors [22,24,38,39,40], the global 
order is O (h2), even if the local truncation error at i = I  and i =
I + 1 is one order lower, i.e., O (h ) [41]. Recently, Pan et al. [32] 
proposed a global third-order IIM using O (h3) and O (h2) local 
truncation errors at regular and irregular grid points, 
respectively. Following similar ideas, the main result of this 
paper is presented in Theorem 1.

Theorem 1: HIFD-IIM. Let us consider the known jump 
conditions

https://www.scipedia.com/public/File:Draft_Balam_338770048-Stencil.png
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[u ] , [ux ] , [uxx ] , [uxxx ] , [uxxxx ] , [uxxxxx ] ,
[uxxxxxx ] , (9)

on xα  such that xI ≤ xα < xI +1. Then uxx  can be approximated at 
xI  and xI +1 by the finite-difference scheme

∂4uxx |i = δ2u |i + Ci + O (h5), i = I , I + 1, (10)

where

 

CI := − 1
h2 {[u ] + hR [ux ] + hR

2

2 [uxx ] + hR
3

3! [uxxx ] +

hR
4

4! [uxxxx ] + hR
5

5! [uxxxxx ] + hR
6

6! [uxxxxxx ] } ,
(11)

CI +1 := 1
h2 {[u ] + hL [ux ] + hL

2

2 [uxx ] + hL
2

3! [uxxx ] +

hL
4

4! [uxxxx ] + hL
6

5! [uxxxxx ] + hL
6

6! [uxxxxxx ] } .
(12)

We obtain a fifth-order scheme for at xI  and xI +1 following 
similar ideas as the generalized Taylor expansion proposed by 
Xu & Wang [38] and the IIM for elliptic interface problems with 
straight interfaces proposed by Feng & Li [39].

We initially consider extended solutions of u , named uℓ  and ur , 
as shown in Fig. 2. The idea is to have smooth functions such 
that we can apply the standard central scheme to xI  and xI +1. 
These functions are defined as

uℓ (x ) =

{ u (x ), x ≤ xα ,

u− + hR ux− + hR
2

2 uxx− + hR
3

3! uxxx− + hR
4

4! uxxxx− + hR
5

5! uxxxxx− + hR
6

6! uxxxxxx− , xα < x ,

(13)

ur (x ) =

{u+ + hL ux+ + hL
2

2 uxx+ + hL
3

3! uxxx+ + hL
4

4! uxxxx+ + hL
5

5! uxxxxx+ + hL
6

6! uxxxxxx+ , x < xα ,
u (x ), xα ≤ x ,

(14)

where u− and u+ are defined as in equation (8).

Figure 2: Extended solutions uℓ  and ur .

Taylor series expansions of uI +1 around xα  yields

uI +1 = u+ + hR ux+ + hR
2

2 uxx+ + hR
3

3! uxxx+ + hR
4

4! uxxxx+ + hR
5

5! uxxxxx+ +

hR
6

6! uxxxxxx+ + O (h7) .

Using the definition of jumps (9), it follows

uI +1 = (u− + hR ux− + hR
2

2 uxx− + hR
3

3! uxxx− + hR
4

4! uxxxx− + hR
5

5! uxxxxx− +

hR
6

6! uxxxxxx− )

+ [u ] + hR [ux ] + hR
2

2 [uxx ] + hR
3

3! [uxxx ] + hR
4

4! [uxxxx ] +

hR
5

5! [uxxxxx ] + hR
6

6! [uxxxxxx ] + O (h7) .

Next, we use uℓ  defintion in (13) to obtain

uI +1 = uℓ I +1 + [u ] + hR [ux ] + hR
2

2 [uxx ] + hR
3

3! [uxxx ] +

hR
4

4! [uxxxx ] + hR
5

5! [uxxxxx ] + hR
6

6! [uxxxxxx ] + O (h7) .

Thus,

uI +1 = uℓ I +1 − h2CI + O (h7), (15)

where CI  is defined as equation (11). Substituting (15) into a 
standard central scheme for the second-order derivative, it 
yields

δ2u |I = 1
h2 uI +1 − 2

h2 uI + 1
h2 uI −1 = 1

h2 uℓI +1 − 2
h2 uℓ I + 1

h2 uℓ I −1 −

CI + O (h5) .

On the other hand, using Taylor series of (uℓ )xx , we have

(uℓ )xx |I = 1
h2 uℓI +1 − 2

h2 uℓ I + 1
h2 uℓ I −1 − bh2(uℓ )xxxx −

eh4(uℓ )xxxxxx + O (h6) .

Thus,

δ2u |I = (uℓ )xx |I + bh2(uℓ )xxxx |I + eh4(uℓ )xxxxxx |I − CI + O (h5) .

Finally, we get ∂4uxx |I = δx
2 u |I + CI + O (h5). This completes the 

proof. The same procedure can be applied for the proof at xI +1 
using definition (14).

It is important to remark that CI  and CI +1 are constants 
computed from the jump derivatives of u  and we assume that 
those values are known. To emphasize that the contribution 
includes all jump derivatives up to sixth-order we write CI

6 
instead CI .

Remark 1: We can rewrite the contributions (11) and (12) as 
follows

https://www.scipedia.com/public/File:Draft_Balam_338770048-Function_ul.png
https://www.scipedia.com/public/File:Draft_Balam_338770048-Function_ul.png
https://www.scipedia.com/public/File:Draft_Balam_338770048-Function_ur.png
https://www.scipedia.com/public/File:Draft_Balam_338770048-Function_ur.png
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CI
6 := − 1

h2 {[u ] + hR [ux ] + hR
2

2 [uxx ] + b (2hR
3 [uxxx ] +

hR
4

2 [uxxxx ] )

+ e (3hR
5 [uxxxxx ] + hR

6

2 [uxxxxxx ] ) } , (16)

CI +1
6 := 1

h2 {[u ] + hL [ux ] + hL
2

2 [uxx ] + b (2hL
3 [uxxx ] +

hL
4

2 [uxxxx ] )

+ e (3hL
5 [uxxxxx ] + hL

6

2 [uxxxxxx ] ) } , (17)

where b  and e  are defined as in (7).

Remark 2: If the solution is smooth, then all contributions CI
6 

and CI +1
6  are equal to zero and the standard sixth-order method 

[37] is recovered in equation (6).

Corollary 1: If we consider b = 1/12 and e = 0 in (1) and (17), 
then we obtain a third-order scheme for i = I , I + 1 (global 
fourth-order method) as follows

uxx |i + bh2(uxx )xx |i = δ2u |i + Ci
4 + O (h3), i = I , I + 1, (18)

where
 

CI
4 = − 1

h2 {[u ] + hR [ux ] + hR
2

2 [uxx ] + hR
3

3! [uxxx ] +

hR
4

4! [uxxxx ] } ,
(19)

CI +1
4 = 1

h2 {[u ] + hL [ux ] + hL
2

2 [uxx ] + hL
3

3! [uxxx ] +

hL
4

4! [uxxxx ] } .
(20)

Corollary 2: If b = e = 0 in (1) and (17), the method represents an 
explicit finite-difference scheme of first-order of accuracy for 
i = I , I + 1 (global second-order method) as follows

uxx |i = δ2u |i + Ci
2 + O (h ), i = I , I + 1, (21)

where
 

CI
2 = − 1

h2 {[u ] + hR [ux ] + hR
2

2 [uxx ] } , (22)

CI +1
2 = 1

h2 {[u ] + hL [ux ] + hL
2

2 [uxx ] } . (23)

In this case, we only require to explicitly know jump conditions 
[u ], [ux ] , and [uxx ] .

Observe that previous corollaries include the superscript 2 and 
4 to emphasize contributions upto second- and fourth-order 
derivatives, respectively.

3 One-dimensional problem

In this section, we use uxx  approximation from Theorem 1 to 
study the 1D Poisson problem given by

uxx (x ) = f (x ), x ∈ Ω = (a , xα ) ∪ (xα , b ), (24)

where u  and f  can be discontinuous functions at a given point 
x = xα , and the principal jump conditions [u ] = p , [ux ] = q  are 
known values at xα . For the boundary conditions, we impose the 
Dirichlet type. Although this technique can be applied to several 
interface points, we only focus on one point xα ∈ [xI , xI +1) to 
simplify our exposition.

If we apply the partial operator (7) at both sides of (24), then we 
get

∂4uxx |i = ∂4f |i , i = 2, …, I , I + 1, …, N . (25)

Substituting equations (6) and (10) into the left hand-side of 
equation (25), we get

∂4uxx |i = δ2u |i + Ci
6{u}, i = 2, …, I , I + 1, …, N , (26)

where Ci
6 corresponds to the contribution term of u  at xi  given 

by

Ci
6{u} =

{ − 1
h2 {[u ] + hR [ux ] + hR

2

2 [uxx ] + hR
3

3! [uxxx ] + hR
4

4! [uxxxx ]

+ hR
5

5! [uxxxxx ] + hR
6

6! [uxxxxxx ] } , i = I ,

1
h2 {[u ] + hL [ux ] + hL

2

2 [uxx ] + hL
2

3! [uxxx ] + hL
4

4! [uxxxx ]

+ hL
6

5! [uxxxxx ] + hL
6

6! [uxxxxxx ] } , i = I + 1,
0, otherwise .

(27)

Here, we introduce the notation Ci
6{u} to emphasize that the 

contribution depends on the high-order jump derivatives and it 
is computed from the function u . It is necessary because in next 
section we will require to obtain contributions from different 
functions.

If we explicitly know the function f  and its derivatives, then the 
right-hand side of (25) can be calculated as:

∂4f |i = fi + bh2fxx |i + eh4fxxxx |i .

On the other hand, if we only know values of f  on the grid, we 
have to approximate the second- and fourth-order derivative of 
f  at xi . As with other implicit schemes [13,36], the right-hand 
side derivatives are calculated using a central finite-difference 
method. The discretization of the right-hand side for i ≠ I , I + 1 
is given by

∂4f |i = fi + bh2fxx |i + eh4fxxxx |i

= dfi −2 + (b − 4d )fi −1 + (1 − 2b + 6d )fi + (b − 4d )fi +1 + dfi +2 +
O (h5),

where d =: e − b2 = − 1/240. For i = I , I + 1, we need to compute 
the derivatives using the IIM technique which is described as 
follows. Notice that the second derivative of f  in bh2fxx  requires 
a discretization of third-order accuracy to obtain a local error of 
O (h5) because it is already multiplied by a factor h2. Thus, using 
(1), we obtain
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fxx |i = δ2f |i − bh2fxxxx |i + Ci
4{f} + O (h3) . (28)

On the other hand, the fourth-order derivative of f  in eh4fxxxx  
only requires an approximation of the first-order accuracy 
because its coefficient includes the term h4; thus, we still have a 
local O (h5) to keep a global sixth-order accurate method. Now 
applying (1) and (2) we get

fxxxx |i = δ2fxx |i + Ci
2{fxx } + O (h )

= δ2 ( [δ2f − bh2∂xx fxx |i + Ci
4{f} + O (h3) ) + Ci

2{fxx } + O (h ),

then,

fxxxx |i = δ4f |i + δ2Ci
4{f} + Ci

2{fxx } + O (h ) . (29)

where

δ4f = 1
h4 ( fi +2 − 4fi +1 + 6fi − 4fi −1 + fi −2 ) .

Note that now the contribution notation includes from which 
function f  or fxx  it comes. We also remark that term bh2δ2fxxxx  
will be small if we guarantee δ2fxxxx ≈ fxxxxxx  is bounded, which is 
always true in our analysis. Now, using identities (28) and (29), 
we obtain the discretization of the right-hand side as follows

fi + bh2fxx |i + eh4fxxxx |i = dfi −2 + (b − 4d )fi −1 + (1 − 2b +
6d )fi + (b − 4d )fi +1 + dfi +2

+ bh2Ci
4{f} + dh4 (Ci

2{fxx } + δ2Ci
4{f}) + O (h5) .

(30)

Finally, the HIFD-IIM for the 1D Poisson equation (24) at xi  is 
given by

δ2u |i = dfi −2 + (b − 4d )fi −1 + (1 − 2b + 6d )fi + (b −
4d )fi +1 + e fi +2 + C + O (h5),

(31)

where C = (Cf )i − Ci
6{u} and

(Cf )i := bh2Ci
4{f} + dh4Ci

2{fxx } + dh2 (Ci +1
4 {f} − 2Ci

4{f} + Ci −1
4 {f}) ,

for i = 2, …, N . Note that Dirichlet boundary conditions are 
directly applied at i = 1 and i = N + 1.

Using definitions (19), (20), (22), and (23), we can simplify 
contribution (Cf )i  as

(Cf )i =

{ − d ( [f ] + hR [ fx ] + hR
2

2 [ fxx ] + hR
3

3! [ fxxx ] + hR
2

4! [ fxxxx ] ) i = I − 1
− (a0[f ] + r1 [ fx ] + r2 [ fxx ] + r3 [ fxxx ] + r4 [ fxxxx ] ) i = I ,

a0[f ] + l1 [ fx ] + l2 [ fxx ] + l3 [ fxxx ] + l4 [ fxxxx ] , i = I + 1,

d ( [f ] + hL [ fx ] + hL
2

2 [ fxx ] + hL
3

3! [ fxxx ] + hL
4

4! [ fxxxx ] ) i = I + 2,
0 otherwise,

(32)

where a0 = b − d , and

r1 = bhR + d (hL − 2hR ), l1 = bhL + d (hR − 2hL ),

r2 = 1
2 (bhR

2 + d (hL
2 − 2hR

2 + 2h2) ) , l2 = 1
2 (bhL

2 + d (hR
2 − 2hL

2 + 2h2) ) ,

r3 = 1
3! (bhR

3 + d (hL
3 − 2hR

3 + 6h2hR ) ) , l3 = 1
3! (bhL

3 + d (hR
3 − 2hL

3 + 6h2hL ) ) ,

r4 = 1
4! (bhR

4 + d (hL
4 − 2hR

4 + 24h2hR
2 ) ) , l4 = 1

4! (bhL
4 + d (hR

4 − 2hL
4 + 24h2hL

2 ) ) .

3.1 1D HIFD-IIM and the principal jump 
conditions
Note that [u ] , [ux ] , [uxx ] , [uxxx ] , [uxxxx ] , [uxxxxx ]  and 
[uxxxxxx ]  must be known to apply the proposed sixth-order 
HIFD-IIM. Thus, it seems that more jump conditions of u  rather 
than the principal jump conditions are required to have a sixth-
order accurate method. However, we can use the Poisson 
equation (24) to obtain relations between u , f  and their 
derivatives as follows

[uxx ] = [f ], [uxxx ] = [ fx ] , [uxxxx ] = [ fxx ] , [uxxxxx ] =
[ fxxx ] , [uxxxxxx ] = [ fxxxx ] .

Thus, the total jump contribution for the 1D problem, C , is given 
by 

C =

{ − d ( [f ] + hR [ fx ] + hR
2

2 [ fxx ] + hR
3

3! [ fxxx ] + hR
2

4! [ fxxxx ] ) , i = I − 1,

1
h2 {[u ] + hR [ux ] } − (R0[f ] + R1 [ fx ] + R2 [ fxx ] + R3 [ fxxx ] + R4 [ fxxxx ] ) , i = I ,

− 1
h2 {[u ] + hL [ux ] } + L0[f ] + L1 [ fx ] + L2 [ fxx ] + L3 [ fxxx ] + L4 [ fxxxx ] , i = I + 1,

d ( [f ] + hL [ fx ] + hL
2

2 [ fxx ] + hL
3

3! [ fxxx ] + hL
4

4! [ fxxxx ] ) , i = I + 2,
0, otherwise,

where

R0 = a0 − hR
2

2h2 , Rk = rk − hR
k +2

(k + 2)!h2 , L0 = a0 − hL
2

2h2 , Lk =

lk − hL
k +2

(k + 2)!h2 .

for k = 1, 2, 3, 4. Thus, the contribution C = (Cf )i − Ci
6{u} depends 

only on the principal jump conditions and right-hand side jumps 
[f ], [ fx ] , [ fxx ] , [ fxxx ] , and [ fxxxx ] .

Remark 3: For the 1D Poisson problem, a second-order IIM (b =
0, d = 0) only requires knowing the principal jump conditions 
[u ], [ux ] , and [ f ] . On the other hand, a fourth-order IFD-IIM (
d = 0) is obtained knowing the principal jump conditions [u ], 
[ux ] , [ f ] , and additionally [ fx ]  and [ fxx ] . However, the extra 
jumps are from the right-hand side, which is already known 
analytically or can be approximated using the current values of 
f . In this paper, we will assume that we know them.

Remark 4: We can achieve sixth or fourth-order approximation 
in some particular grids even if we do not know high-order 
derivative jumps. For example, for the sixth-order HIFD-IIM, if 
hR /h = 1, then hL = 0, and both weight terms next to the fourth-
order derivative jump of f  are equal to zero. Thus, we do not 
require to know the jump condition [ fxxxx ]  to obtain a sixth-
order method when the interface is located at a grid point. 
Similarly, we can get a fourth-order scheme even if we do not 
know jump condition [ fxx ]  when the interface is located at a 
grid point.
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4 Two-dimensional problem

We now apply the methodology to 2D problems and straight 
interfaces. We study the 2D Poisson problem given by

uxx (x , y ) + uyy (x , y ) = f (x , y ), (x , y ) ∈ Ω = (a , xα ) ∪ (xα ,
b ) × (c , d ), (33)

where u  and f  can be discontinuous functions at x = xα , and the 
principal jump conditions are known functions in the variable y  
and specified as follows

[u ] = p (xα , y ), and [un ] = q (xα , y ), c ≤ y ≤ d . (34)

The numerical domain is discretized using an uniform mesh, 
h = (b − a )/N  (N  sub-intervals in the x -direction) and assuming 
that d − c = Mh  (M  sub-intervals in the y -direction). We denote 
as uij = u (xi , yj ) and fij = f (xi , yj ) where the ij th point is given by

(xi , yj ) = (a + (i − 1)h , c + (j − 1)h ), i = 1, …, N , N + 1, j = 1,
…, M , M + 1.

The grid points are also classified into two types: regular and 
irregular. If the straight interface, x = xα , intersects the FD 
stencil surrounding the ij th point, the center point is called 
irregular; otherwise, the grid point is regular, see Fig. 3.

Finally, let us define the discrete operators δx
2  and δx

4  at the ij th 
point as

δx
2 u (xi , yj ) =

ui +1j − 2uij + ui −1j

h2 ,

δx
4 u (xi , yj ) = δx

2 δx
2 u (xi , yj ) =

ui +2j − 4ui +1j + 6uij − 4ui −1j + ui −2j

h4 .

Formulas δy
2  and δy

4  are defined similarly.

Figure 3: Two-dimensional computational domain with a uniform mesh showing regular 
and irregular grid points. On the right-hand side, we list different types of stencils used to 

discretize the 2D Poisson problem.

We develop the discretization around the ij th point. However, to 
simplify our exposition we drop the evaluation at ij th point. We 
start the discretization by applying the HIFD operator (7) in x - 
and y -direction to the Poisson equation (33), as

∂y
4uxx + ∂y

4uyy = ∂y
4 f , and ∂x

4 uxx + ∂x
4 uyy = ∂x

4 f , (35)

where

∂x
4 ( ⋅ ) := ( ⋅ ) + bh2( ⋅ )xx + eh4( ⋅ )xxxx , and ∂y

4( ⋅ ) := ( ⋅ ) +
bh2( ⋅ )yy + eh4( ⋅ )yyyy .

(36)

Adding both equations in (35),

∂x
4 uxx + ∂y

4uyy + ∂y
4uxx + ∂x

4 uyy = ∂x
4 f + ∂y

4 f . (37)

In the following sections, we will describe the discretization of 
(37) for regular and irregular grid points.

4.1 The HIFD-IIM at regular points

Using one-dimensional formula (6), equations (36) and some 
algebraic simplifications, the sixth-order implicit method applied 
on the regular grid points is given by

δx
2 u + δy

2u + bh2 (δy
2δx

2 u + δx
2 δy

2u ) + (e − 2b2)h4 (δx
4 δy

2u +
δy

4δx
2 u )

= f + bh2 ( fxx + fyy ) + eh4 ( fxxxx + fyyyy ) + O (h6) .

(38)

The implicit methods have not only high accuracy, but they are 
also more efficient in terms of the number of iterations required 
to solve the linear system of the discretization [13]. In the next 
section we work with the irregular grind points.

4.2 The HIFD-IIM at irregular points

As the interface is a vertical line, the left-hand side terms 
without cross derivatives of (37) can be approximated using the 
HIFD-IIM formulation as follows

∂x
4 uxx = δx

2 u + C6{u} + O (h5), and ∂y
4uyy = δy

2u + O (h6) . (39)

The left-hand side terms with cross derivatives of (37) require 
more attention. Using the Poisson equation and Theorem 1, we 
can show that the following equation holds

∂y
4uxx + ∂x

4 uyy = f + bh2 (δy
2δx

2 u + δx
2 δy

2u ) + (e −
2b2)h4 (δx

4 δy
2u + δy

4δx
2 u )

+ bh2δy
2C6{u} + bh2 (C4{uyy } + bh2C2{uyyyy })

+ (e − 2b2)h4 (δx
2 C4{uyy } + bh2δx

2 C2{uyyyy } + C2{uyyxx } +
δy

4C6{u}) + O (h5) .

(40)

On the other hand, using the definition of operator ∂4 given by 
(36), the right-hand side can be written as follows

∂x
4 f + ∂y

4 f = 2f + bh2 ( fxx + fyy ) + eh4 ( fxxxx + fyyyy ) . (41)

Substituting equations (39)-(41) into (37) we obtain

δx
2 u + δy

2u + bh2 (δy
2δx

2 u + δx
2 δy

2u ) + (e − 2b2)h4 (δx
4 δy

2u +
δy

4δx
2 u )

= f + bh2 ( fxx + fyy ) + eh4 ( fxxxx + fyyyy ) + Cu + O (h5),

(42)

where

https://www.scipedia.com/public/File:Draft_Balam_338770048-Fig_IRPoints.png
https://www.scipedia.com/public/File:Draft_Balam_338770048-Fig_IRPoints.png
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Cu = − C6{u} − bh2δy
2C6{u} − bh2 (C4{uyy } + bh2C2{uyyyy })

− (e − 2b2)h4 (δx
2 C4{uyy } + bh2δx

2 C2{uyyyy } + C2{uyyxx } +
δy

4C6{u}) + O (h5) .

(43)

All above terms are evaluated at the ij th point (omitted to avoid 
misunderstandings). If we known explicitly f , then the 
discretization is complete. However, there are problems which 
the Poisson implementation only allows to known the right-
hand side at the discretization points. In the following section, 
we focus on this case.

4.3 Right-hand side approximation

It is possible that f  is only know at the grid points. If this is the 
case, we only require to compute terms fxx  and fxxxx  using HIFD-
IIM because the interface is a vertical line, see Fig. 3. Moreover, 
formulas (28) and (29) are valid in this case. Then,

f + bh2 ( fxx + fyy ) + eh4 ( fxxxx + fyyyy ) = f + bh2 (δx
2 f +

δy
2 f ) + dh4δx

4 f + eh4δy
4 f

+ bh2C4{f} + dh4 (δx
2 C4{f} + C2{fxx }) + O (h5),

(44)

where d = e − b2. Finally, putting together equations (42) and 
(44), we obtain the fully discretized 2D problem as follows

δx
2 u + δy

2u + bh2 (δy
2δx

2 u + δx
2 δy

2u ) + (e − 2b2)h4 (δx
4 δy

2u +
δy

4δx
2 u )

= f + bh2 (δx
2 f + δy

2 f ) + dh4δx
4 f + eh4δy

4 f + Cf + Cu + O (h5),

(45)

where Cf = bh2C4{f} + dh4 (δx
2 C4{f} + C2{fxx }) .

If the 2D Poisson problem admits a smooth solution, then all 
contribution terms in (45) are equal to zero, and a sixth-order 
method is recovered. In the presence of an interface, the 
contributions C2, C4, and C6 on regular grid points are always 
zero. This scheme requires a stencil type C, see Fig. 3

Remark 5: Taking e = 0 into equations (36) and only considering 
approximations up to four-order accurate, we obtain the IFD-
IIM

δx
2 u + δy

2u + bh2 (δy
2δx

2 u + δx
2 δy

2u ) = f + bh2 (δx
2 f + δy

2 f ) +

Cf
^ + Cû + O (h3),

(46)

where Cf
^ = C4{f} and Cû = − C4{u} − bh2δy

2C4{u} − bh2C2{uyy }. In 
addition, if the 2D Poisson problem admits a smooth solution, 
all contribution terms in (5) vanish, and we get a fourth-order 
implcit scheme. In fact, the contributions Ck  are always zero on 
regular grid points. This scheme requires a stencil type A, see 
Fig. 3. Furthermore, if we consider that b = 0 in (5) then we 
obtain the standard explicit immersed interface method, called 
IIM, which is second order accurate.

Remark 6: It is possible to develop a discrete formulation for the 
2D Poisson problem when the straight interface is horizontal. 
The resulting scheme is

δx
2 u + δy

2u + bh2 (δy
2δx

2 u + δx
2 δy

2u ) + (e − 2b2)h4 (δx
4 δy

2u + δy
4δx

2 u )
= f + bh2 (δx

2 f + δy
2 f ) + dh4δx

4 f + eh4δy
4 f + C + O (h5),

where

C = bh2C4{f} + dh4 (δy
2C4{f} + C2{fyy })

− C6{u} − bh2δx
2 C6{u} − bh2 (C4{uxx } + bh2C2{uxxxx })

− (e − 2b2)h4 (δy
2C4{uxx } + bh2δx

2 C2{uxxxx } + C2{uxxyy } +
δx

4 C6{u}) .

The constants C2, C4, and C6 are computed using jump 
derivatives in the y -direction.

4.4 Boundary treatment

The grid points close to the interface require special treatment 
because the HIFD-IIM formulation of the 21-point stencil C 
cannot be applied there. For regular grid points, we use the 
following fourth-order method

δx
2 u + δy

2u + bh2 (δy
2δx

2 u + δx
2 δy

2u ) = f + bh2 (δx
2 f + δy

2 f ) + O (h4) .

The deduction of this scheme, stencil type A, can be found in 
[13].

It is necessary to develop a new fourth-order method for the 
grid points near both boundary and interface. Following the 
same ideas to develop the sixth-order method, we obtain a new 
scheme with stencil of type B

δx
2 u + δy

2u + bh2 (δx
2 δy

2u + δy
2δx

2 u ) + (e − 2b2)h4δx
4 δy

2u = f +
bh2 (δx

2 f + δy
2 f ) + h4δx

4 f

− b2h4δy
4 f + Cboundary + O (h4),

where

Cboundary = bh2C4{f} + dh4 (δx
2 C4{f} + C2{fxx }) − C6{u} −

bh2δy
2C6{u}

− bh2 (C4{uyy } + bh2C2{uyyyy })
− (e − 2b2)h4 (δx

2 C4{uyy } + bh2δx
2 C2{uyyyy } + C2{uyyxx }) + O (h4) .

Remark 7: We emphasized that the proposed methods are high-order 
accuracy regardless of the position of the interface concerning 
the grid. Moreover, the scheme does not assume restrictions 
in the jumps, such as the natural jump conditions (
[ux ] = 0, [uy ] = 0). This characteristic is a significant advantage of 
the proposed HIFD-IIM, besides the higher-order, compared 
with the fourth-order simplified immersed interface method 
developed by Feng et al.[39].

5 Numerical results
This section tests the HIFD-IIM for different one- and two-
dimensional examples with straight interfaces. In the following 
simulations, we numerically solve the Poisson equation for a 
given right-hand side function and compare it with its analytic 
solution. We present different examples to test the HIFD-IIM 
capabilities. First, we investigate the method's accuracy for one-
dimensional problems. Next, we validate the HIFD-IIM for two-
dimensional solutions with straight interfaces.

The errors are reported utilizing the L∞-norm, as ∥ e ∥∞ =
maxi ,j |uij − Uij | , where uij  and Uij  corresponds to the exact 

and numerical solution at (xi , yj ), respectively. The estimated 
order of accuracy is computed as
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Order := log( ∥ e ∥N1
/ ∥ e ∥N2 ) /log(N2/N1 ) ,

where N1 and N2 indicates the different number of sub-
intervals. In all tables, the last row shows the numerical order 
calculated by the regression-line slope based on a Least 
Squares Method (LSM).

5.1 One-dimensional examples

We initially consider the 1D problem (24) to analyze the order of 
the proposed implicit methods. The numerical method is tested 
using three different tests. Example 1.A was designed to verify 
the high-order implicit method for smooth solutions. Example 
1.B studies a Poisson equation with a discontinuous solution in 
a single interface point. Example 1.C presents a discontinuous 
problem with multiple interface points. Thus, the proposed 
solution is taken from the following list of functions:
  

Example1.A: u (x ) = e−4π (x −1/4)2 . (47)

Example1.B: u (x ) = { sin(πx ) x ≤ xα ,
cos(πx ) x > xα . (48)

Example1.C: u (x ) = { sin(2πx ) x ≤ xα1
,

cos(2πx ) xα1
< x ≤ xα2

,
sin(2πx ) xα2

< x .
(49)

where xα , xα1
 and xα2

 are known values corresponding to the 
interface location. The right-hand side function, f , is obtained 
directly from (33) and u . For all cases, we impose the Dirichlet 
boundary conditions according to u . The computational domain 
is the interval [0, 1], and the grid spacing is h = 1/N  for different 
N  numbers.

For Example 1.A, due to the solution's regularity, the jump 
contributions are equal to zero. Table 1 presents the 
convergence analysis of Example 1.A for different grid 
resolutions. Note that the IIM, IFD-IIM, and HIFD-IIM achieve 
their corresponding order of accuracy. These results match with 
the ones obtained using an implicit methodology as presented 
in [13].

Table. 1 Convergence analysis of Example 1.A for IFD-IIM and HIFD-IIM.

N L∞-norm Order L∞-norm Order L∞-norm Order
10 7.52e-02 –- 9.30e-03 –- 1.39e-04 –-

20 1.70e-02 2.15 5.05e-04 4.20 1.52e-06 6.51
40 4.15e-03 2.03 3.06e-05 4.04 1.77e-08 6.43
80 1.03e-03 2.01 1.90e-06 4.01 2.34e-10 6.24
160 2.57e-04 2.00 1.18e-07 4.00 3.24e-12 6.18
LSM 2.04 4.06 6.34

Example 1.B shows the capacity of the proposed method to 
solve a single interface problem located at x = xα . We test two 
different interface points: xα = 0.40 and xα = 0.63. We initially 
select the mesh grid given by N = 10 × 2n , thus the first interface 
is always located on a grid point (hR /h = 1). For the second case, 
we have different hR /h  values for the same N  numbers. Fig. 4 
shows the numerical and exact solution using N = 40. As 
expected, the exact solution is accurately recovered for both 
cases.

Figure 4: Numerical and exact solution of Example 1.B using N =40 using (a) xα =0.4, and 
(b) xα =0.63.

Table 2 shows the convergence analysis for Example 1.B. As 
expected, the desired order of accuracy are obtained for the 
two xα  values. Observe that high-order methods do not depend 
on the location of the interface. However, their error magnitude 
presents minor variations due to the interface position. Errors 
with mesh size close to N = 160 have a random behavior due 
the effect of arithmetic operations close to the machine 
precision. Fig. 5 shows the error analysis corresponding to 
interface locations xα = 0.40 and xα = 0.63 for N = 10, 11, 12, …,
100. Note that errors of IFD-IIM give a good behavior even if the 
hR /h  varies and they are close to fourth order. As expected, 
errors of HIFD-IIM are also near sixth order.

Table. 2 Convergence analysis of Example 1.B using the IFD-IIM and HIFD-IIM.

N L∞-norm Order L∞-norm Order L∞-norm Order
10 1.69e-02 –- 5.75e-05 –- 6.42e-07 –-

20 4.21e-03 2.00 3.58e-06 4.00 1.01e-08 6.42
40 1.05e-03 2.00 2.24e-07 4.00 1.59e-10 6.21
80 2.63e-04 2.00 1.40e-08 4.00 2.48e-12 6.11
160 6.57e-05 2.00 8.74e-10 4.00 4.55e-14 5.82
LSM 2.00 4.00 5.95

N L∞-norm Order L∞-norm Order L∞-norm Order
10 6.63e-03 –- 3.42e-05 –- 6.38e-07 –-

20 1.48e-03 2.16 1.97e-06 4.12 9.89e-09 6.44
40 4.46e-04 1.73 1.39e-07 3.82 1.58e-10 6.18
80 9.37e-05 2.25 7.75e-09 4.16 2.40e-12 6.15
160 2.75e-05 1.77 5.37e-10 3.85 7.31e-14 5.08
LSM 1.98 3.99 5.81

Figure 5: Convergence analysis of Example 1.B for N =10,…,100 using (a),(b) IFD-IIM and 
(c),(d) HIFD-IIM for xα =0.40 and xα =0.63.

We remark that, the contribution formula includes jumps [u ], 
[ux ], [uxx ], [uxxx ], and [uxxxx ] to obtain a fourth-order accurate 
method. Fig. 6 shows that if we add additional jumps of high-
order derivatives to C , such as [uxxxxx ], we observe that the 
error oscillation decreases compared to Fig. 5 results. It is 
expected because now the method is O (h4) for the whole 
computational domain, including the irregular points. Thus, we 
can mitigate error oscillations due to interface position by 
adding high-order jumps. A similar behavior is observed for the 
sixth-order HIFD-IIM if we include the seventh derivative jump 

https://www.scipedia.com/public/File:Draft_Balam_338770048-Fig_Exa1B_1D_sol.png
https://www.scipedia.com/public/File:Draft_Balam_338770048-Fig_Exa1B_1D_sol.png
https://www.scipedia.com/public/File:Draft_Balam_338770048-Fig_Exa1B_1D_CloudOrder4.png
https://www.scipedia.com/public/File:Draft_Balam_338770048-Fig_Exa1B_1D_CloudOrder4.png
https://www.scipedia.com/public/File:Draft_Balam_338770048-Fig_Exa1B_1D_CloudOrder6.png
https://www.scipedia.com/public/File:Draft_Balam_338770048-Fig_Exa1B_1D_CloudOrder6.png
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[uxxxxxxx ].

Figure 6: Convergence analysis of Example 1.B for N =10,…,100 using (a) xα =0.40, and (b) 
xα =0.63. The contribution term includes jumps up to fifth-order ([uxxxxx ]=[fxxx ]).

Finally, Example 1.C investigates the method's capacity to solve 
a multiple interface problem. We only focus on two interface 
points located at xα1

= 0.30 and xα2
= 0.70. However, the 

methodology could be applied for several interfaces by doing 
minor modifications in the implementation. Fig. 7 presents the 
analytical and numerical solution using N = 40. This figure also 
shows the corresponding absolute error. Fig. 8 shows the error 
analysis for high-order IIM using different grid resolutions N =
10, 20, 80, 160. As expected, the IFD-IIM and HIFD-IIM are 
fourth- and sixth-order accurate methods, respectively.

Figure 7: (a) Numerical and exact solution of Example 1.C with multiple interfaces using 
N =40; (b) Absolute error of the numerical solution using the HIFD-IIM.

Figure 8: Convergence error analysis of (c) the IFD-IIM, and (d) HIFDM-IIM, using different 
grid resolutions N =10,20,40,80,160.

5.2 Two-dimensional examples

In this section we study the method's capacities to solve two-
dimensional problems with different jump-contribution 
characteristics. Here we use straight interfaces located at x = xα
. First, we consider smooth problem to verify the accurate 
implementation of the implicit method. Next, we analyze several 
discontinuous problems and finally, we include a more complex 
test where the jump derivatives increase rapidly.

For all 2D examples, the right-hand side function and jump 
conditions are computed from the corresponding exact 
solution, the computational domain is Ω = [ − 1, 1] × [ − 1, 1] and 

the grid size in both directions is the same using N = 10, 20, 40, 
80, 160. We impose Dirichlet boundary conditions. This paper 
uses the Successive-Over Relaxation (SOR) method with ϵ =
10−14 and ω = 1.9 as tolerance and relaxation parameters, 
respectively.

5.2.1 2D Poisson equation with smooth solution

In the first 2D example, we solve the Poisson equation (33) for a 
smooth solution to show the correct implementation of the 
high-order implicit methods. In this case, the exact solution is 
given by

Example2.A: u (x , y ) = sin(3x )sin(3y ) . (50)

Table 3 shows the convergence analysis of Example 2.A using 
different grid resolutions for the fourth- and sixth-order implicit 
formulation. As expected for a smooth solution, the implicit 
formulation improves the precision of the standard second-
order numerical solution.

Table. 3 Convergence analysis of Example 2.A.

N L∞-norm Order L∞-norm Order L∞-norm Order
10 2.65e-02 –- 3.07e-04 –- 4.64e-05 –-

20 7.06e-03 1.91 2.10e-05 3.87 7.54e-07 5.94
40 1.76e-03 2.00 1.32e-06 3.99 1.17e-08 6.01
80 4.40e-04 2.00 8.24e-08 4.00 1.82e-10 6.00
160 1.10e-04 2.00 5.16e-09 4.00 2.95e-12 5.95
LSM 1.98 3.97 5.98

5.2.2 2D Poisson equation with straight 
interfaces
In this section, we solve the 2D Poisson problem using the 
following set of functions:
  

Example2.B: u (x , y ) = { sin(x )ey x ≤ xα ,
− x2ey + 2 xα < x ,

where

xα = 0.

Example2.C: u (x , y ) = { sin(x )sin(y ) x ≤ xα ,
ex sin(3y ) + 1 xα < x , where

xα = 0.4.

Example2.D: u (x , y ) =

{cos(3x )cos(3y ) x ≤ xα ,
sin(3y )sin(3y ) xα < x , wherexα = 0.5.

Examples 2.B, 2.C and 2.D investigate the influence on the 
absolute error and the accuracy over several assumptions of the 
jump derivatives. Example 2.B analyzes the solution where jump 
derivatives in the y -direction vanish at xα . In Example 2.C, the 
jump derivative in the y -direction changes slower for x < xα  
than the one for x > xα . Example 2.D studies the problem 
without any assumption about the jump derivatives. Note that 
the interface location xα  is also different for each example.

Fig. 9 shows the numerical solution of these examples using a 
grid resolution of N = 80. As expected, the HIFD-IIM solves the 
problem accurately for each case.

https://www.scipedia.com/public/File:Draft_Balam_338770048-Fig_Exa1B_1D_OrderCloud5th.png
https://www.scipedia.com/public/File:Draft_Balam_338770048-Fig_Exa1B_1D_OrderCloud5th.png
https://www.scipedia.com/public/File:Draft_Balam_338770048-Fig_Exa1C_1D_SolError6th.png
https://www.scipedia.com/public/File:Draft_Balam_338770048-Fig_Exa1C_1D_SolError6th.png
https://www.scipedia.com/public/File:Draft_Balam_338770048-Fig_Exa1C_1D_Cloud4th6th.png
https://www.scipedia.com/public/File:Draft_Balam_338770048-Fig_Exa1C_1D_Cloud4th6th.png
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Figure 9: Numerical solution of 2D Poisson equation with a straight interface 
corresponding to Examples 2.B, 2.C, and 2.D using N =80.

Table 4 shows the convergence analysis for Example 3 using the 
implicit methods. As expected, the IFD-IIM and HIFD-IIM 
schemes are close to fourth- and sixth-order, respectively. This 
table also confirms the standard IIM is second-order accurate. 
Observe that the order corresponding to the HIFD-IIM with N =
160 in Example 2.B is reduced due to the arithmetic operations 
close to the machine precision. Fig. 10 shows more details of 
the convergence analysis using a cloud of points from N = 10 to 
N = 160.

Table. 4 Convergence analysis of Examples 2.B, 2.C, and 2.D using a straight 
interface.

N L∞-norm Order L∞-norm Order L∞-norm Order
10 5.76e-04 –- 5.06e-06 –- 2.10e-06 –-

20 1.50e-04 1.94 3.19e-07 3.99 3.78e-08 5.79
40 3.77e-05 1.99 2.00e-08 3.99 6.34e-10 5.90
80 9.45e-06 2.00 1.25e-09 4.00 1.03e-11 5.95
160 2.36e-06 2.00 7.84e-11 4.00 1.17e-12 3.13
LSM 1.99 4.00 5.34

N L∞-norm Order L∞-norm Order L∞-norm Order
10 2.65e-02 –- 8.40e-04 –- 3.01e-04 –-

20 6.60e-03 2.00 6.58e-05 3.67 6.74e-06 5.48
40 1.61e-03 2.04 4.52e-06 3.86 1.25e-07 5.75
80 3.98e-04 2.01 2.96e-07 3.93 2.14e-09 5.87
160 9.90e-05 2.01 1.90e-08 3.97 3.50e-11 5.93
LSM 2.02 3.87 5.77

N L∞-norm Order L∞-norm Order L∞-norm Order
10 4.62e-02 –- 5.46e-04 –- 2.62e-04 –-

20 1.13e-02 2.03 3.94e-05 3.79 2.91e-06 6.49
40 2.81e-03 2.01 2.63e-06 3.91 5.40e-08 5.75
80 7.04e-04 2.00 1.69e-07 3.96 9.12e-10 5.89
160 1.76e-04 2.00 1.07e-08 3.98 1.48e-11 5.95
LSM 2.01 3.91 5.98

Figure 10: Convergence analysis of Examples 2.B, 2.C, and 2.D using the (a)-(c) IFD-IIM and 
(d)-(f) HIFD-IIM from N =10 to 100.

5.2.3 2D Poisson solution with large jump 
derivatives
Finally, we construct the following example to analyze the 
variations in the errors due to jump derivative magnitudes. 

Thus, we have

Example2.E:u (x , y ) = { 0 x ≤ xα ,
2 + ln(x (1 + y2)) xα < x ,

wherexα =

0.5.

Here, the jump derivatives for all points at the interface are 
[ux ] = 2, [uxx ] = − 4, [uxxx ] = 16, [uxxxx ] = − 96, [uxxxxx ] = 768, and 
[uxxxxxx ] = − 7680. Is important to remark that opposite to the 
previous examples, the jump derivatives increase rapidly. This 
behavior makes the problem challenging to solve.

Table 5 and Fig.11 show the convergence analysis for Example 
2.E. Numerical results show that Example 2.E has more 
variability in error than previous examples. However, the order 
of each technique is close to the proposed one. These findings 
also confirm that local truncation error depends not only on hR  
and hL  but also on the jump magnitudes.

Table. 5 Convergence analysis of Example 2.E.

N L∞-norm Order L∞-norm Order L∞-norm Order
10 1.11e-02 –- 2.72e-04 –- 1.38e-04 –-

20 1.80e-03 2.62 5.61e-05 2.28 2.48e-06 5.80
40 5.64e-04 1.67 3.62e-06 3.96 9.43e-08 4.72
80 1.57e-04 1.85 2.29e-07 3.98 2.61e-09 5.17
160 4.11e-05 1.93 1.43e-08 3.99 6.10e-11 5.42
LSM 1.97 3.64 5.21

Figure 11: Numerical and exact solution of Example 2.E using N =80; (b),(c) convergence 
error analysis of IFD-IIM and HIFD-IIM respectively, using different grid resolutions from 

N =10 to 100.

6 Conclusions
The present paper introduces a new sixth-order immersed 
interface combined with an implicit finite difference to solve 2D 
Poisson problems with straight interfaces. The resulting 
numerical method is O (h6) at regular points, and O (h5) at 
irregular points. Furthermore, a fourth-order immersed 
interface method is obtained as a particular case of the 
proposed scheme. This paper also presents a numerical 
technique to handle the boundaries in the Poisson problem. The 
global accuracy of the sixth-order was demonstrated using 
several numerical examples. As expected, this approach does 
not depend on the interface position. For future work, the 
proposed approximation will be used to solve more general 
elliptic equations and interface shapes, and time-dependent 
problems in higher dimensions.
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