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The analysis of nonlinear events related to physical phenomena 
is a popular issue in the modern day. The essential purpose of 
this work is to discover a novel approximate solution to the 
fractional nonlinear Benjamin Bona Mahony Peregrine Burgers 
equation (BBMPB) utilizing the natural decomposition method 
(NDM) of fractional order. The suggested approach provides 
analytical solutions that are extremely near to the exact solution 
obviating the complexities associated with many other 
approaches. The expected issue’s uniqueness theorem and 
convergence analysis are explored using Banach’s fixed-point 
theory. The reliability and accuracy of the recommended 
method were tested using numerical simulations. The graphs 
and tables reflect the results. The comparison of the suggested 
scheme’s solution with the exact solutions demonstrates that 
the scheme is efficient, methodical, and extremely exact in 
tackling nonlinear complicated phenomena.

1 Introduction
Differential equations (DEs) are becoming extremely important 

in industrial applications. These are necessary and stimulating 
since the majority of the operations are connected with rates of 
change, which are clearly shown by them. In particular, DEs 
provide concepts for analyzing occurrences and creating ideas 
in medicine, finance, engineering, economics, and other related 
fields of research [1-2]. The analysis and examination of these 
kinds of equations are based on the survey of the foundations 
that govern the majority of physical phenomena. Furthermore, 
the analysis of nonlinear systems using fractional operators is 
crucial for studying phenomena in everyday life. While 
illustrating real-world issues connected with complexity, the 
researchers investigated its characteristics in greater depth and 
discovered that each notion has its own boundaries. However, 
several scholars discovered numerous limits and flaws in 
classical calculus while researching problems involving memory 
or hereditary characteristics. Many researchers use the core 
concepts and accompanying principles of FC to illustrate their 
points of view on many types of nonlinear phenomena [3-5]. 
They later suggested additional operators defined using 
fractional order. Accordingly, many scholars are drawn to the 
notion of fractional calculus while examining various models [6-
8].

The research on nonlinear analysis in relation to the everyday 
demands of living beings drew the attention of all scholars due 
to its importance in modernization. Finding the solution for the 
relevant system is as important as modeling with mathematical 
tools. In this way, there are various techniques accessible in the 
literature [9-11]. Furthermore, each algorithm has its own set of 
requirements as well as its own set of restrictions. On the other 
hand, scholars are developing new techniques by overcoming 
constraints such as large computations, low precision, complex 
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procedures, calculating time, and so on. There are several 
strategies available in the literature, many of which are quite 
accurate. The Adomian decomposition technique is one of the 
approaches with excellent accuracy and dependability [12-13]. 
Researchers are always exploring and attempting to suggest 
new techniques by altering, fostering, combining, or upgrading 
current ones. In this way, the researchers proposed a new 
method by introducing natural transform (NT) to the ADM, 
which is called the natural decomposition method (NDM) in the 
classical order [14-16]. Then this method was generalized and 
presented in fractional order [17-20].

In many areas of mathematics and science, pseudo-parabolic 
equations are found, and the highest-order term in these 
equations has a one-time derivative. They have been utilized to 
study clay consolidation, thermodynamics, shear in second-
order fluids, fluid flow in fissured rock, and propagation of long 
waves with tiny amplitudes, among other things [21-24]. The 
generalized Benjamin-Bona-Mahony-Burgers (BBMB) equation 
is a significant particular instance of pseudo-parabolic-type 
equations that can be written as follows:

ωt − ωxxt − αωxx + γωx + g (ω )x = 0, (1)

 where γ  denotes any genuine constant value, α  denotes a 
positive constant, ω (x , t )  is the horizontal fluid velocity, and 
g (ω )  is a nonlinear C2 smooth function. Peregrine [25] and 
Benjamin et al. [26] suggested an alternative regularised long-
wave equation if α = 0, γ = 1,  and g (ω )x = ωωx  in Eq. (1), which 
is known as the Kortewegde Vries equation

ωt + ωxxt + ωx + ωωx = 0. (2)

 If g (ω )x = θωωx + βωxxx  in Eq. (1), then the generic form of the 
BBMPB equation is thus obtained as follows

ωt − ωxxt − αωxx + γωx + θωωx + βωxxx = 0. (3)

 If we put α = β = 0 in Eq. (3), then this is the Benjamin-Bona-
Mahony (BBM) equation in its general form

ωt − ωxxt + γωx + θωωx = 0, (4)

 where θ ≠ 0 and γ  are arbitrary constants. Eq. (4) contains 
various forms of BBM equations as seen in the research [27-30].

In this article, we use NDM to solve the fractional nonlinear 
Benjamin Bona Mahony Peregrine Burgers equation. In 
addition, the behavior of the results is described in terms of 
fractional order. The remainder of the work is organized as 
follows: in the next section, we explain the fundamental 
concepts of FC and NDM of fractional order, which are then 
used to obtain the needed results. Section 3 shows the basic 
solution method of the proposed technique using the Caputo 
fractional operator. Section 4 proves the proposed algorithm’s 
uniqueness theorem and convergence analysis. In Section 5, we 
obtain the solution to the fractional nonlinear BBMPB problem 
using the fundamental NDM. In addition, we give the numerical 
results and graphs for the found solution in the same section. 
Finally, we draw conclusions about the stored findings in terms 
of the considered technique and model.

2 Preliminaries to FC

2.1 Definition I
The fractional integral operator of Riemann-Liouville of a 

function ω (θ ) ∈ Cζ , ζ ≥ − 1 is defined as [3]

Ja
ζ ω (θ ) =

{ 1
Γ(ζ + 1)

∫
a

θ

ω (θ ) (dθ )ζ = 1
Γ(ζ )

∫
a

θ

(θ − υ )ζ −1ω (υ )dυ , θ , ζ > 0,

ω (θ ) , ζ = 0.

(5)

2.2 Definition II
The Caputo fractional differential operator of order ζ > 0 is 
defined as [3]

D∗
ζ ω (θ ) =

{ dk

dθk ω (θ ) , ζ = k ∈ N ,

1
Γ(k − ζ )

∫
0

θ

(θ − υ )k −ζ −1ω(k ) (υ )dυ , k − 1 < ζ ≤ k ∈ N .

(6)

2.3 Definition III
The Mittag-Leffler of a one-parameter function Eζ (θ )  with ζ > 0 
is given as [31]

Eζ (θ ) = ∑
i =0

∞

θi

Γ( iζ + 1)
(7)

2.4 Definition IV
The natural transform (NT) of ω (θ )  , which is defined as

N+ {ω (θ )} = ∫
−∞

∞
e−sθ ω (zθ )dθ , s , z ∈ ( − ∞, ∞) . (8)

2.5 Definition V
The effect of the natural transform on the Caputo operator is 
given as [32]

N+{Dζ ω (θ ) } = zζ

sζ N+ {ω (θ ) } − ∑
i =0

n −1

zi −ζ

si +1−ζ
[Di ω (θ ) ]θ =0,

n − 1 < ζ ≤ n .

(9)

3 Construction of fractional NDM
We consider a general form of fractional nonlinear partial 
differential equation to demonstrate the underlying theory and 
solution technique of the suggested approach as

Dt
ζ ω (x , t ) + Rω (x , t ) + Fω (x , t ) = ℏ (x , t ) , n − 1 < ζ ≤ n ,(10)

 with the initial condition

ω (x , 0) = v (x ) , (11)

 where Dt
ζ = ∂ζ

∂tζ  denotes the Caputo operator of ω (x , t )  , R  

denotes the linear function, F  denotes the non-linear function 
and ℏ (x , t )  signifies the source term. Using the NT on Eq. (10), 
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we get

N+[Dt
ζ ω (x , t ) ] + ℕ+ [Rω (x , t ) ] + ℕ+ [Fω (x , t ) ] = ℕ+ [ℏ (x , t ) ] .

Applying definition 5, we get

N+ [ω (x , t ) ] = zζ

sζ ∑
i =0

n −1

zi −ζ

si +1−ζ
[Di ω ( t ) ]t =0 + zζ

sζ N+ [ℏ (x , t ) ] − zζ

sζ N+ [Rω (x , t ) + Fω (x , t ) ] .(12)

 Utilize the inverse NT on the above equation to obtain

ω (x , t ) = H (x , t ) + N−{ zζ

sζ N+ [ℏ (x , t ) − Rω (x , t ) − Fω (x , t ) ] } .(13)

H (x , t )  identified using nonhomogeneous terms and the 
provided guess condition. The infinite series solution is given as

ω (x , t ) = ∑
n =0

∞

ωn (x , t ), Fω (x , t ) = ∑
n =0

∞

An , (14)

 where An  is signifies the nonlinear component of Fω (x , t )  , and 
we have

∑
n =0

∞

ωn (x , t ) = H (x , t ) + N−{ zζ

sζ N+ [ℏ (x , t ) − Rω (x , t ) − Fω (x , t ) ] } .(15)

 Lastly, the analytical solutions are provided in the form of

ω (x , t ) = ∑
n =0

∞

ωn (x , t ) . (16)

4 Convergence analysis of NDM

The uniqueness and existence theorems are the instruments 
that lead one to infer that there is only one solution that 
satisfies a specific initial condition for a given problem.

4.1 Theorem 1

The solution provided with the aid of NDM for the BBMPM 
equation is unique wherever χ ∈ (0, 1)  , where

χ = {ϵ3 + αφ2 − γφ − θ (X + Y ) − βφ3}Ξ (17)

Proof
The analytical solution determined for the BBMPM equation is 
given as

ω (x , t ) = ∑
j =0

∞

ωj (x , t )qj , (18)

 where

ωm +1 (x , t ) = N−{ ϕ (x )
s } + N− { ( zζ

sζ )N+ [ (ωm )xxt +

α (ωm )xx − γ (ωm )x − θ∑
i =0

m

ωi (ωm −i )x − β (ωm )3x ] } .

(19)

 Let ω  and be the two solutions for the BBMPM equation such 
that |ω | ≤ X  and | | ≤ Y , then usage of the equation above, 
we obtain

|ω − | = |N−{ ( zζ

sζ )N+ [ (ωxxt − xxt ) + α (ωxx − xx ) − γ (ωx − x ) − θ (ω2 − 2 ) − β (ω3x − 3x ) ] } | .(20)

 Transform by using the convolution principle for NT, we obtain

|ω − | = ∫
0

ϕ

{ |ω2xt − 2xt | + α |ω2x − 2x | − γ |ωx − x | − θ |ω2 − 2 | − β |ω3x − 3x | } (ϕ − τ )ζ

Γ(ζ + 1)
dτ .

≤ ∫
0

ϕ

{ ∂3

∂x2∂t
|ω − | + α∂2

∂x2 |ω − | − γ∂
∂x |ω − | − θ | (ω − ) (ω + ) | − β∂3

∂x3 |ω − | } (ϕ − τ )ζ

Γ(ζ + 1)
dτ .

≤ { ∂3

∂x2∂t
|ω − | + α∂2

∂x2 |ω − | − γ∂
∂x |ω − | − θ |ω − | |ω + | − β∂3

∂x3 |ω − | } ∫
0

ϕ
(ϕ − τ )ζ

Γ(ζ + 1)
dτ .

≤ {ϵ3 |ω − | + αφ2 |ω − | − γφ |ω − | − θ (X + Y ) |ω − | − βφ3 |ω − | } ϕζ +1

Γ(ζ + 2)
,

(21)

 where φn = ∂n

∂xn , n = 1, 2, 3 and ϵ3 = ∂3

∂x2∂t
. To minimise the 

previous equation as follows, we can use the integral mean 
value [33]

|ω − | ≤ {ϵ3 |ω − | + αφ2 |ω − | − γφ |ω − | − θ (X + Y ) |ω − | − βφ3 |ω − | }Ξ .

≤ χ |ω − |,
(22)

∴ (1 − χ ) |ω − | ≤ 0. Since 0 < χ < 1, therefore |ω − | = 0, 

which gives ω = , where ω = ϕζ +1

Γ(ζ + 2)
. Hence, the analytical 

solution is unique.

4.2 Theorem 2

Presume that

∥ F (ω ) − F (s ) ∥ ≤ χ ∥ ω − s ∥ , ∀ω , s ∈ B , χ ∈ (0, 1) , (23)

where B  is a Banach space with F :B → B . The preceding 
theorem and the fixed-point principle of Banach [34] was used 
to infer that F  has a fixed point. Furthermore, the analytical 
solution acquired utilizing the suggested procedure converges 
with a random election for ω0, s0 ∈ B  to a fixed point of F  and

∥ ωμ − ωσ ∥ ≤ χϕ

1 − χ ∥ ω1 − ω0 ∥ . (24)

Proof
Assume that B  a Banach space (C [ J ] , ∥ . ∥ )  of all continuous 
functions. We can agree that {ωμ }  is a Cauchy sequence in the 
Banach space as

∥ ωμ − ωσ ∥ = max⏟
ϕ ∈J

|ωμ − ωσ |

= max⏟
ϕ ∈J

|N−{( zζ

sζ )N+[( ∂3ωμ −1

∂x2∂t
−

∂3ωσ −1

∂x2∂t ) + α ( ∂2ωμ −1

∂x2 −
∂2ωσ −1

∂x2 ) − γ ( ∂2ωμ −1

∂x −
∂2ωσ −1

∂x )
− θ (ωμ −1

2 − ωσ −1
2 ) − β ( ∂3ωμ −1

∂x3 −
∂3ωσ −1

∂x3 )]}| (25)

≤ max⏟
ϕ ∈J [N−{ ( zζ

sζ )N+[ |
∂3ωμ −1

∂x2∂t
−

∂3ωσ −1

∂x2∂t
| + α |

∂2ωμ −1

∂x2 −
∂2ωσ −1

∂x2 | − γ |
∂2ωμ −1

∂x −
∂2ωσ −1

∂x |

−θ |ωμ −1 − ωσ −1| |ωμ −1 + ωσ −1| − β | ∂3ωμ −1

∂x3 −
∂3ωσ −1

∂x3 | ] } ] . (26)
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Transform by using the convolution principle for NT, we obtain

∥ ωμ − ωσ ∥ ≤ max⏟
ϕ ∈J

[ {ϵ3|ωμ −1 − ωσ −1| + αφ2|ωμ −1 − ωσ −1| − γφ |ωμ −1 − ωσ −1|

−θ (X + Y ) |ωμ −1 − ωσ −1| − βφ3|ωμ −1 − ωσ −1| } ∫
0

ϕ
(ϕ − τ )ζ

Γ(ζ + 1)
dτ ] .

(27)

To minimise the previous equation as follows, we can use the 
integral mean value [33]

∥ ωμ − ωσ ∥ ≤ max⏟
ϕ ∈J

[ {ϵ3 |ωμ −1 − ωσ −1 | + αφ2 |ωμ −1 − ωσ −1 | − γφ |ωμ −1 − ωσ −1|

−θ (X + Y ) |ωμ −1 − ωσ −1 | − βφ3 |ωμ −1 − ωσ −1 | }Ξ]
∥ ωμ − ωσ ∥ ≤ χ ∥ ωμ −1 − ωσ −1 ∥ .

(28)

Subtracting μ  by σ + 1, we obtain

∥ ωσ +1 − ωσ ∥ ≤ χ ∥ ωσ − ωσ −1 ∥ ≤ χ2 ∥ ωσ −1 −
ωσ −2 ∥ ≤ ⋯ ≤ χσ ∥ ω1 − ω0 ∥ . (29)

By using triangular inequality, we obtain

∥ ωμ − ωσ ∥ = ∥ ωσ +1 + ωσ +2 + ωμ − ωσ +1 − ωσ +2 − ωσ ∥
= ∥ ωσ +1 + ωσ +2 + ⋯ + ωμ − ωμ −1 − ⋯ − ωσ +2 − ωσ +1 − ωσ ∥

≤ {χσ + χσ +1 + ⋯ + χμ −1} ∥ ω1 − ω0 ∥

≤ χσ {1 + χ + ⋯ + χμ −σ −1} ∥ ω1 − ω0 ∥

≤ χσ { 1 − χμ −σ −1

1 − χ } ∥ ω1 − ω0 ∥ .

(30)

As χ ∈ (0, 1)  , so 1 − χμ −σ −1 < 1, then we get

∥ ωμ − ωσ ∥ ≤ χσ

1 − χ ∥ ω1 − ω0 ∥ . (31)

Since ∥ ω1 − ω0 ∥ < ∞ , we find that ∥ ωμ − ωσ ∥ → 0 when μ  and 
σ → ∞ . This shows that the sequence {ωμ }  generated by NDM 
is a convergent Cauchy sequence.

5 Solution for BBMPB equation

To offer the solution to the relevant problem, we will use the 
fractional natural decomposition approach. We will provide four 
examples to demonstrate the dependability of the proposed 
method. In this part, we will look at the new fractional Benjamin 
Bona Mahony Peregrine Burgers equation, which is stated as 
follows

∂ζ ω (x , t )
∂tζ = ∂3ω (x , t )

∂x2∂t
+ α ∂2ω (x , t )

∂x2 − γ ∂ω (x , t )
∂x − θω (x , t ) ∂ω (x , t )

∂x − β ∂3ω (x , t )
∂x3 , 0 < ζ ≤ 1, (32)

in the operator form, with initial condition

ω (x , 0) = ϕ (x ) . (33)

Using NT on Eq.(32), one may obtain

N+[Dt
ζ ω (x , t ) ] = N+[ ∂3ω

∂x2∂t
+ α ∂2ω

∂x2 − γ ∂ω
∂x − θω ∂ω

∂x − β ∂3ω
∂x3 ] . (34)

By using the natural transformation, we find that

sζ

zζ N+ [ω (x , t ) ] − ]n − 1∑ zi −ζ

si +1−ζ
[Di ω ]t =0 = N+[ ∂3ω

∂x2∂t
+ α ∂2ω

∂x2 − γ ∂ω
∂x − θω ∂ω

∂x − β ∂3ω
∂x3 ] . (35)

By Eqs. (34) and (35), we find that

N+ [ω (x , t ) ] = ϕ (x )
s + zζ

sζ N+[ ∂3ω
∂x2∂t

+ α ∂2ω
∂x2 − γ ∂ω

∂x − θω ∂ω
∂x − β ∂3ω

∂x3 ] . (36)

By using the inverse NT to above Eq.

ω (x , t ) = ϕ (x ) + N−{ zζ

sζ N+[ ∂3ω
∂x2∂t

+ α ∂2ω
∂x2 − γ ∂ω

∂x − θω ∂ω
∂x − β ∂3ω

∂x3 ] } . (37)

Suppose that the solution to the infinite series of ω (x , t ) =

∑
n =0

∞

ωn (x , t )  . Keep in mind ωωx = ∑
n =0

∞

An  is the Adomian 

polynomial and signify the nonlinear terms. Eq. (37) may be 
rewritten using this term as

∑
n =0

∞

ωn (x , t ) = ϕ (x ) + N−{ zζ

sζ N+[∑
n =0

∞

ωxxt + α∑
n =0

∞

ωxx − γ∑
n =0

∞

ωx − θ∑
n =0

∞

An − β∑
n =0

∞

ωxxx ] } . (38)

5.1 Application 1

The initial condition for Eq. (32) take the following form [35]

ω (x , 0) = − ( β + γ
θ ) + β + γ

θ
tanh ( −β − γ

2δ
x ) , (39)

If α = β = γ = θ = 1, we get

ω1 = 3tζ (cosh (2x ) − 3)sech4 (x )
Γ(ζ + 1)

, (40)

ω2 = 3t2ζ sech7 (x )
4Γ(2ζ + 1)

{3[546sinh (x ) − 93sinh (3x ) + sinh (5x ) ] + 64cosh (x ) − 32cosh (3x ) }

+ 6ζ t2ζ −1

Γ(2ζ + 1)
( − 34cosh (2x ) + cosh (4x ) + 45)sech6 (x ) , ⋯

(41)

The prior analytical solution leads to the following exact 
solution [35]

ω (x , t ) = − ( β + γ
θ ) + β + γ

θ
tanh ( −β − γ

2δ
(x + βt ) ) . (42)

For the specific instance when ζ = 1, the approximative findings 
and table 1 demonstrate that the exact solution of Eq. (32) has a 
generic type that is equivalent to the aforementioned analytical 
solutions. In order to comprehend the geometric behavior of 
our approximation to Eq. (32), shown in Figure 1, the exact 
solution in two and three dimensions is compared to the 2nd 
iteration of NTM. When ζ = 1, ζ = 0.95, ζ = 0.90 and ζ = 0.80, the 
NTM solution and the exact solution were also compared.

Table 1: Comparison of case 1 for the exact solution with NDM 
solution and absolute errors using numerical calculations at t =
1 and α = β = γ = θ = 1.

x ωEx

ωNDM (ζ =
1)

Absolute 
error

ωNDM (ζ =
0.95)

ωNDM (ζ =
0.90)

2
-3.9901
09507

-3.5640
48679

4.26060
8E-01

-3.556574
735

-3.549577
917

4
-3.9998
18408

-3.9906
34473

9.18393
5E-03

-3.990469
718

-3.990315
480

6
-3.9999
96673

-3.9998
27971

1.68702
6E-04

-3.999824
943

-3.999822
109
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8
-3.9999
99939

-3.9999
96849

3.09006
1E-06

-3.999996
793

-3.999996
741

10
-3.9999
99998

-3.9999
99942

5.65965
1E-08

-3.999999
941

-3.999999
940

12
-3.9999
99999

-3.9999
99998

1.03660
1E-09

-3.999999
998

-3.999999
998

14
-3.9999
99999

-3.9999
99999

1.89859
2E-11

-3.999999
999

-3.999999
999

16
-3.9999
99999

-3.9999
99999

3.47721
8E-13

-3.999999
999

-3.999999
999

18 -4
-3.9999
99999

6.21724
8E-15

-3.999999
999

-3.999999
999

20 -4 -4 0 -4 -4

(a) Exact solution of ω (x,t). (b) NDM solution of ω (x,t).

(c) Absolute error at t = 0.01. (d) Comparison of results at t 
= 0.01.

(e) Comparison between exact 
and various values of ζ.

(f) Comparison between 
various values of ζ at x = 1.

Figure 1: Periodic wave analytical (NDM) solutions ω (x,τ) of Eq. 
(32) with initial condition (39) and α = β = γ = θ = 1.

5.2 Application 2

The initial condition for Eq. (32) take the following form [35]

ω (x , 0) = − ( β + γ
θ ) − β + γ

θ
coth ( −β − γ

2δ
x ) , (43)

If α = β = γ = θ = 1, we get

ω1 = − 3tζ (cosh (2x ) + 3)csch4 (x )
Γ(ζ + 1)

, (44)

ω2 = 3t2ζ csch7 (x )
4Γ(2ζ + 1)

{64sinh (x ) + 32sinh (3x ) + 1638cosh (x ) + 279cosh (3x ) + 3cosh (5x ) }

+ 3t2ζ −1

Γ(2ζ )
(34cosh (2x ) + cosh (4x ) + 45)csch6 (x ) , ⋯

(45)

The prior analytical solution leads to the following exact 
solution [35]

ω (x , t ) = − ( β + γ
θ ) − β + γ

θ
coth ( −β − γ

2δ
(x + βt ) ) . (46)

For the specific instance when ζ = 1, the approximative findings 
and table 2 demonstrate that the exact solution of Eq. (32) has a 
generic type that is equivalent to the aforementioned analytical 
solutions. In order to comprehend the geometric behavior of 
our approximation to Eq. (32), shown in Figure 2, the exact 
solution in two and three dimensions is compared to the 2nd 
iteration of NTM. When ζ = 1, ζ = 0.95, ζ = 0.90 and ζ = 0.80, the 
NTM solution and the exact solution were also compared.

 Table 2: Comparison of case 2 for the exact solution with NDM 
solution and absolute errors using numerical calculations at t =
1 and α = β = γ = θ = 1.

x ωEx ωNDM (ζ =
1)

Absolute 
error

ωNDM (ζ =
0.95)

ωNDM (ζ =
0.90)

2 -4.0099
39646

-4.6001
12243

5.90172
5E-01

-4.610901
692

-4.621002
357

4 -4.0001
81607

-4.0094
20444

9.23883
6E-03

-4.009586
308

-4.009741
583

6 -4.0000
03326

-4.0001
72047

1.68721
0E-04

-4.000175
075

-4.000177
909

8 -4.0000
00060

-4.0000
03150

3.09006
8E-06

-4.000003
206

-4.000003
258

10 -4.0000
00001

-4.0000
00057

5.65965
1E-08

-4.000000
058

-4.000000
059

12 -4.0000
00000

-4.0000
00001

1.03660
1E-09

-4.000000
001

-4.000000
001

14 -4.0000
00000

-4.0000
00000

1.89859
8E-11

-4.000000
000

-4.000000
000

16 -4.0000
00000

-4.0000
00000

3.47460
7E-13

-4.000000
000

-4.000000
000

18 -4.0000
00000

-4.0000
00000

6.01094
4E-15

-4.000000
000

-4.000000
000

20 -4.0000
00000

-4.0000
00000

1.01960
5E-16

-4.000000
000

-4.000000
000

(a) Exact solution of ω (x,t). (b) NDM solution of ω (x,t).
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(c) Absolute error at t = 0.01. (d) Comparison of results at t 
= 0.01.

(e) Comparison between exact 
and various values of ζ.

(f) Comparison between 
various values of ζ at x = 1.

Figure 2: Periodic wave analytical (NDM) solutions ω (x,τ) of Eq. 
(32) with initial condition (42) and α = β = γ = θ = 1.

5.3 Application 3

The initial condition for Eq. (32) take the following form [35]

ω (x , 0) = − ( β + γ
θ ) + β + γ

2θ
tanh ( −β − γ

4δ
x ) + β + γ

2θ
coth ( −β − γ

4δ
x ) , (47)

If α = β = γ = θ = 1, we get

ω1 = − 3tα (cosh (2x ) + 3)csch4 (x )
Γ(α + 1)

, (48)

ω2 = − 3t2ζ csch7 (x )
4Γ(2ζ + 1)

{64sinh (x ) + 32sinh (3x ) + 1638cosh (x ) + 279cosh (3x ) + 3cosh (5x ) }

− 3t2ζ −1

Γ(2ζ )
(34cosh (2x ) + cosh (4x ) + 45)csch6 (x ) , ⋯

(49)

The prior analytical solution leads to the following exact 
solution [35]

ω (x , t ) = − ( β + γ
θ ) + β + γ

2θ
tanh ( −β − γ

4δ
(x + βt ) ) + β + γ

2θ
coth ( −β − γ

4δ
(x + βt ) ) . (50)

For the specific instance when ζ = 1, the approximative findings 
and table 3 demonstrate that the exact solution of Eq. (32) has a 
generic type that is equivalent to the aforementioned analytical 
solutions. In order to comprehend the geometric behavior of 
our approximation to Eq. (32), shown in Figure 3, the exact 
solution in two and three dimensions is compared to the 2nd 
iteration of NTM. When ζ = 1, ζ = 0.95, ζ = 0.90 and ζ = 0.80, the 
NTM solution and the exact solution were also compared.

Table 3: Comparison of case 3 for the exact solution with NDM 
solution and absolute errors using numerical calculations at t =
1 and α = β = γ = θ = 1.

x ωEx ωNDM (ζ =
1)

Absolute 
error

ωNDM (ζ =
0.95)

ωNDM (ζ =
0.90)

2 -4.0099
39646

-4.6001
12243

5.901725
E-01

-4.610901
692

-4.621002
357

4 -4.0001
81607

-4.0094
20444

9.238836
E-03

-4.009586
308

-4.009741
583

6 -4.0000
03326

-4.0001
72047

1.687210
E-04

-4.000175
075

-4.000177
909

8 -4.0000
00060

-4.0000
03150

3.090068
E-06

-4.000003
206

-4.000003
258

10 -4.0000
00001

-4.0000
00057

5.659651
E-08

-4.000000
058

-4.000000
059

12 -4.0000
00000

-4.0000
00001

1.036601
E-09

-4.000000
001

-4.000000
001

14 -4.0000
00000

-4.0000
00000

1.898619
E-11

-4.000000
000

-4.000000
000

16 -4.0000
00000

-4.0000
00000

3.476832
E-13

-4.000000
000

-4.000000
000

18 -4.0000
00000

-4.0000
00000

6.403864
E-15

-4.000000
000

-4.000000
000

20 -4.0000
00000

-4.0000
00000

7.907517
E-17

-4.000000
000

-4.000000
000

(a) Exact solution of ω (x,t). (b) NDM solution of ω (x,t).

(c) Absolute error at t = 0.01. (d) Comparison of results at t 
= 0.01.

(e) Comparison between exact 
and various values of ζ.

(f) Comparison between 
various values of ζ at x = 1.

Figure 3: Periodic wave analytical (NDM) solutions ω (x,τ) of Eq. 
(32) with initial condition (46) and α = β = γ = θ = 1.

5.4 Application 4

The initial condition for Eq. (32) take the following form [35]

ω (x , 0) = −10βμ − 10γμ + δ
20θμ

− (6δμ ) tanh2 (μx )
5θ

− (12δμ ) tanh (μx )
5θ

, (51)
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where μ =
5β + 5γ 25β2 + 50βγ + 25γ2 − 24δ2

24δ
. If α = β = γ =

θ = 1, we get

ω1 = tζ

10800Γ(ζ + 1) { − 3(959 19 + 4180)sinh ( 1
6 ( 19 + 5)x ) + (4003 19 + 17480)cosh ( 1

6 ( 19 + 5)x ) ,

−95(79 19 + 344) } ( tanh ( 1
12 ( 19 + 5)x ) + 1)sech4( 1

12 ( 19 + 5)x ) , ⋯
(52)

The prior analytical solution leads to the following exact 
solution [35]

ω (x , t ) = −10βμ − 10γμ + δ
20θμ

− (12δμ )
5θ

tanh (μ (x − Vt ) ) − (6δμ )
5θ

tanh2 (μ (x − Vt ) ) . (53)

For the specific instance when ζ = 1, the approximative findings 
and table 4 demonstrate that the exact solution of Eq. (32) has a 
generic type that is equivalent to the aforementioned analytical 
solutions. In order to comprehend the geometric behavior of 
our approximation to Eq. (32), shown in Figure 4, the exact 
solution in two and three dimensions is compared to the 2nd 
iteration of NTM. When ζ = 1, ζ = 0.95, ζ = 0.90 and ζ = 0.80, the 
NTM solution and the exact solution were also compared.

Table 4: Comparison of case 4 for the exact solution with NDM 
solution and absolute errors using numerical calculations at t =
1 and α = β = γ = θ = 1.

x ωEx ωNDM (ζ =
1)

Absolute 
error

ωNDM (ζ =
0.95)

ωNDM (ζ =
0.90)

2 -3.6600
80833

-3.2127
23611

4.47357
2E-01

-3.208190
131

-3.203946
062

4 -3.7398
12014

-3.7015
29867

3.82821
4E-02

-3.700965
987

-3.700438
105

6 -3.7433
93916

-3.7416
58721

1.73519
4E-03

-3.741632
941

-3.741608
807

8 -3.7435
52259

-3.7434
75523

7.67363
0E-04

-3.743474
382

-3.743473
314

10 -3.7435
59254

-3.7435
55864

3.38987
1E-06

-3.743555
813

-3.743555
766

12 -3.7435
59563

-3.7435
59413

1.49742
4E-07

-3.743559
411

-3.743559
409

14 -3.7435
59576

-3.7435
59570

6.61462
7E-09

-3.743559
570

-3.743559
569

16 -3.7435
59577

-3.7435
59577

2.92190
2E-10

-3.743559
577

-3.743559
577

18 -3.7435
59577

-3.7435
59577

1.29074
5E-11

-3.743559
577

-3.743559
577

20 -3.7435
59577

-3.7435
59577

5.70210
5E-13

-3.743559
577

-3.743559
577

(a) Exact solution of ω (x,t). (b) NDM solution of ω (x,t).

(c) Absolute error at t = 0.01. (d) Comparison of results at t 
= 0.01.

(e) Comparison between exact 
and various values of ζ.

(f) Comparison between 
various values of ζ at x = 1.

Figure 4: Periodic wave analytical (NDM) solutions ω (x,τ) of Eq. 
(32) with initial condition (50) and α = β = γ = θ = 1.

6 Conclusion
Studying and exploring nonlinear physical models using new 
techniques always help us advance in science and technology. 
In the current framework, we used NDM to evaluate the BBMPB 
equation with fractional order. Banach’s fixed-point theory is 
used to investigate the anticipated issue’s uniqueness theorem 
and convergence analysis. The anticipated method’s 
dependability and applicability are demonstrated by presenting 
four cases. The behaviors for the obtained findings are provided 
in 2D, 3D graphs, and tables for featured fractional order. These 
graphs aid to conclude the stimulating behaviors of the 
analogical models. Furthermore, while solving nonlinear issues, 
NDM does not require any conversion, perturbation, or 
consideration of extra polynomials or parameters. The 
examination of these kinds of occurrences can provide new 
ideas for investigating more real-world events. It can also 
generate ideas for employing an accurate method to evaluate 
nonlinear models related to science and technology. This work 
elucidates the proposed model, which is notably dependent on 
time instant and its history and can be convincingly illustrated 
utilizing fractional notions.
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