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Abstract
In this paper, a class of nonlinear system with mismatched disturbance and actuator failure 
is investigated. A disturbance observer is proposed to estimate the disturbance first and the 
error of the estimation converges to zero exponentially. By introducing an integral sliding 
mode surface, the disturbance observer based integral sliding mode fault tolerant control 
scheme is proposed to attenuate the disturbance and to guarantee the stability of the 
system. Specially, the control law is designed for decoupling the partial disturbance and 
attenuating the disturbance that cannot be decoupled. Finally, two examples are given to 
illustrate the effectiveness of the proposed method. Index Terms—Actuator fault, Fault 
tolerant control (FTC), Disturbance observer, Adaptive Integral Sliding mode control, 
Nonlinear system.
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1. Introduction
Faults frequently occur in the engineering system because of 
the increasing complexity and scalability of industrial 
applications. Unexpected deviations of performance or system 
parameters can induce serious damage and even break down 
the system in the presence of a fault. With the growing demand 
for higher reliability, safety, and maintainability, it is desired 
that the fault can be detected at the early stage, determine the 
location and magnitude of the fault, identify the severity of the 
fault, and then accommodate the effects on the system and 
provide an acceptable performance. Abundant of results have 
been reported on the theme and many achievements have been 
applied to industrial systems such as aircraft systems [1], 
electric systems [2], and motor systems [3-4], etc. Many 
excellent methods were exploited such as robust control [5], 
sliding mode control [6-7], observer-based control [8], intelligent 
learning control [9], and adaptive control [10-11].

As aforementioned, the fault is vulnerable to occur in the 
practical system, which certainly reduces the nominal 
performance, results in vibration, destroys the stability of the 
system, and even causes catastrophic accidents. Actuator fault 
as the most common fault has caused wide attention. In Ye and 
Yang [12], the flight tracking control system with actuator fault 
was investigated; an adaptive controller was designed. In Zuo et 
al. [13], a class of singular systems with actuator saturation was 
developed; an adaptive controller was designed to compensate 
for the fault effects through the linear matrix inequality (LMI) 
technique. A class of nonlinear large-scale systems with 
actuator fault was considered and an observer-based fuzzy 
adaptive control was developed in Tong et al. [14]. The problem 
of part loss of effectiveness of the actuator was addressed in Li 

and Yang [15]. In Van et al. [16], a class of nonlinear systems 
with partial loss of actuator was considered; a third-order 
sliding model control was developed to compensate for the 
actuator faults. These results have considered linear or 
nonlinear systems, however, the nonlinear function either 
satisfies the matched condition [16], i.e., the nonlinear function 
is in the control channel.

It is worth pointing out that disturbance exists widely in many 
industrial processes, which affects the stability of the system 
seriously. The basic characteristics of disturbance are its 
uncertainty, nonlinearity, and complexity. In some cases, the 
fault is considered as an additional uncertainty, disturbance, or 
nonlinear function in the system [16,17]. The common method 
is to make a compensator, i.e. construct an anti-disturbance 
mechanism to compensate for the disturbance. As the 
characteristics of the disturbance, observer design is necessary 
and popular in the existing literature, i.e., disturbance observer 
(DO). In Kempf and Kobayashi [18], a precision positioning table 
system was studied and a discrete time-tracking controller was 
designed based on the DO. In Chen et al. [19], the ball mill 
grinding circuits system was investigated and a DO was 
designed to estimate the strong disturbance, the controller was 
designed based on the observer to compensate for the 
disturbance. In Chen [20], a class of nonlinear systems was 
investigated, by introducing a disturbance generator; the DO-
based control law was established. Yao and Guo [21] addressed 
a class of Markovian jump systems with multiple disturbances; 
the control law was designed by integrating the DO output 
information and state feedback control. Wu et al. [22] take an 
insight into a generic hypersonic vehicle system with modeled 
and unmodeled disturbances. In these results, the disturbance 
matrix Bd  and the control matrix B  are assumed to satisfy the 
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match condition, i.e., rank (B ) = rank ( [B Bd ] ) , this limitation 
may not be applicable in some control processes.

It should be pointed out that the mismatched disturbance, that 
is, the disturbance enters the system in different channels, is 
more practical in industrial dynamic systems. In Zhang et al. 
[23], a class of nonlinear systems with actuator fault, sensor 
fault, and mismatched disturbance was considered. In Wei and 
Guo [24], the disturbance was considered as two parts, the 
matched disturbance was compensated by the DO while the 
mismatched disturbance was attenuated by variable structure 
control. In Yang et al. [25], by constructing a nonlinear 
disturbance observer (NDO), the sliding mode control scheme 
was developed to counteract the mismatched disturbance.

Based on the aforementioned analysis, this paper attempts to 
solve the FTC problem for a class of nonlinear systems with 
actuator fault and mismatched disturbance. The main works 
can be summarized as follows. First of all, an improved 
nonlinear disturbance observer is designed to estimate the 
mismatched disturbance. Then, the integral sliding mode 
controller is presented based on the observer, where the 
reachability of sliding motion is proved. Furthermore, the 
mismatched disturbance is divided into two parts, in which the 
matched part is compensated by the disturbance information 
while the remaining part is attenuated by the adaptive 
controller. Finally, the adaptive control law is proposed, which 
can adaptively adjust controller parameters to compensate for 
the fault and disturbance. The effectiveness of the method is 
verified through two examples.

The remaining part of this paper is organized as follows. In 
section 2, the system description and some assumptions are 
presented. In section 3, the construction of the observer and 
the design of the controller are presented. In section 4, two 
simulation examples are used to illustrate the effectiveness of 
the method, and some conclusions are obtained in section 5.

2. Problem formulation
Consider the following nonlinear system with actuator fault and 
mismatched disturbance as

{ ẋ ( t ) = Ax ( t ) + Bu ( t ) + Bd d ( t ) + Δf (x , t ) + ξ (x , t )

y = Cx ( t )
(1)

where x ( t ) ∈ Rn  is the state vector, y ( t ) ∈ Rq  is the output of 
the system, u ( t ) ∈ Rp  is the control input, Δf (x , t )  is a 
nonlinear function, which can be regarded as the un-modeled 
uncertainty, d ( t ) ∈ Rv  is the unmatched external disturbance, 
ξ (x , t )  is the mismatched nonlinearity, A , B , Bd , and C  are 
known constant coefficient matrices with appropriate 
dimensions.

In this paper, the actuator failure problem is concerned. The 
actuators can be divided into two parts uH  and uF , where uH  
stands for the health actuator and uF  represent the actuator in 
a fault condition. Then system (1) becomes (2)

{ ẋ ( t ) = Ax ( t ) + BH uH ( t )  + BF uF ( t ) + Bd d ( t ) + Δf (x , t ) + ξ (x , t )

y = Cx ( t )
(2)

where BH  and BF  denote the healthy and fault matrices.

One can see that proposer designing of uH  can guarantee the 
stability of the system despite the existence of external 
disturbance.

Assumption 1 [17]. The actuators in fault condition work 

abnormally, and the remaining actuators work normally.

With assumption 1, one can use ū F  and uF  represent the actual 
control and designed control respectively for the actuators in 
fault condition. Then system (2) becomes (3)

{ ẋ ( t ) = Ax ( t ) + Bu ( t ) + BF ΔuF ( t ) + Bd d ( t ) + Δf (x , t ) + ξ (x , t )

y = Cx ( t )
(3)

 where ΔuF = ū F − uF .

Assumption 2 [15]. There exists a known function f̄ (x )  and two 
unknown constants θ0 and υ0 , such that the following inequality 
holds,

Δf (x , t ) ≤ θ0 f̄ (x ) + υ0. (4)

Assumption 3. The disturbance and the derivative of the 
disturbance are bounded, i.e., ∥ d ( t ) ∥ ≤ ϵ1, ∥ ḋ ( t ) ∥ ≤ ϵd , 
where ϵ1 and ϵd  are two positive constants.

Assumption 4. The nonlinearity function ξ (x , t )  is bounded and 
satisfies the following condition

ξ~ (x , t )T RΔξ~ (x , t ) ≤ x~ (x , t )T Q x~ (x , t ) (5)

where R  and Q  are two positive symmetry matrices, ξ~ (x , t ) =
ξ (x1, t ) − ξ (x2, t ) , x~ (x , t ) = x1 (x , t ) − x2 (x , t ) .

Remark 1. The assumption 1 is general for the actuator failure 
condition [16,17], in which the actuator fault can be treated as 
an additional uncertainty or disturbance. Compared with the 
results in [26], the assumption 2 in this study has been much 
more relaxed. Assumption 3 is common in FTC control results 
[15]. Assumption 4 is more general compared with the 
traditional Lipschitz condition [16], it should be noted that if R=
I , and Q = lf

2I , then assumption 4 degenerates to the normal 
Lipschitz condition, where lf  is the Lipschitz constant.

With assumptions 1 and 2, the object of the paper is to design a 
control law to compensate for the effects of the disturbance and 
fault so that the stability and convergence of the system can be 
guaranteed in normal and fault conditions.

3. Main results
In this part, an observer will be applied to estimate the external 
disturbance, and an observer-based integral sliding mode fault 
colorant control scheme will be designed.

3.1 Observer design

For the feasibility of the observer, the following assumption is 
necessary.

Assumption 5 [16]. The additional fault term φ ( t ) = BF ΔuF ( t )  
satisfies the following condition, ∥ BF ΔuF ( t ) ∥ ≤ ω̄ b , where ω̄ b  
is a positive scalar.

For system (3), the following observer is proposed in the form of

{ ṗ ( t ) = − g (x )Bd p ( t ) − g (x ) [Bd p ( t ) + Ax ( t )

+ Bu ( t )  + ω̄ b + Bd d ( t )  + Δf (x , t ) + ξ (x , t ) ] + Tn δn ( t )

d̂ ( t ) = p ( t ) + q (x )

(6)

where p ( t )  is the internal state of the observer, d̂ ( t )  is the 
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estimation of the disturbance d ( t ) , q (x )  is a nonlinear 
function to be designed, Tn  is a parameter matrix with proper 
dimensions, and g (x )  is the observer gain and satisfies the 
following condition

g (x ) = ∂q (x )
∂x

(7)

δn  is the error compensator and is defined by

δn = − Tn
T

∥ Tn ∥2 δd (8)

where δd = ω̄ b − ∥ BF ΔuF ( t ) ∥ .

Lemma 1. With the assumption 4 and the observer (6), the error 
of the observer converges to zero exponentially.

Proof. Define ed ( t ) = d ( t ) − d̂ ( t ) . From the observer (6), it is 
easy to obtain that

ḋ̂ ( t ) = − g (x )Bd p ( t ) − g (x ) [Bd p ( t ) + Ax ( t ) + Bu ( t ) +
ω̄ b

+ Bd d ( t ) + Δf (x , t ) + ξ (x , t ) ] + ∂q (x )
∂x ẋ ( t )

= g (x )Bd ed ( t ) + g (x ) (BF ΔuF ( t ) − ω̄ b ) + Tn δn ( t )

(9)

It can be derivate that

ė d ( t ) = − g (x )Bd ed ( t ) + g (x ) (BF ΔuF ( t ) − ω̄ b ) +
ḋ ( t ) − Tn δn ( t )

(10)

 The solution of (9) is given by

ed =e
−g (x )Bd t

ed (0) + ∫
0

t

e
−g (x )Bd (t −s )

ḋ (s )ds −

∫
0

t

e
−g (x )Bd (t −s )

g (x ) (BF ΔuF (s ) − ω̄ b − Tn δn ( t ) )ds

(11)

 From Eq.(10), one can deduce that

ed ≤ ∥ e
−g (x )Bd t

ed (0) ∥ + ∫
0

t

∥ e
−g (x )Bd (t −s )

ḋ (s ) ∥ ds

+ ∫
0

t

∥ e
−g (x )Bd (t −s )

g (x ) ( ∥ BF ΔuF (s ) ∥ − ω̄ b −

Tn δn ( t ) ) ∥ ds

≤ ∥ e
−g (x )Bd t

ed (0) ∥ + ∫
0

t

∥ e
−g (x )Bd (t −s )

ϵd ∥ ds  

(12)

 According to the inequality ∥ eAt ∥ ≤ ce−ρt  [3], where c  and ρ  are 
two positive constants. The one can obtain that

ed ≤ ∥ e
−g (x )Bd t

ed (0) ∥ + ∫
0

t

∥ e
−g (x )Bd (t −s )

ϵd ∥  ds

= ce−ρt h0 + c ∫
0

t

ϵd e−ρ (t −s )ds

= ce−ρt h0 +
cϵd
ρ (1 − e−ρt )

(13)

where h0 is a constant bound satisfy ∥ ed (0) ∥ ≤ h0 . Define κ̄ =

ce−ρt h0 +
cϵd
ρ (1 − e−ρt )  , then (13) can be written as ed ≤ κ̄  . This 

completes the proof.

3.2 Adaptive FTC design

In this section, the observer-based integral sliding mode fault 
tolerant control will be designed. κ̄  and υ0 are supposed to be 
unknown, the adaptive controller is designed as follows:

u ( t ) = um ( t ) + un ( t ) (14)

where

um ( t ) = (K1 ( t ) + K2 ( t ) + K3 ( t ) )x ( t ) − (Kd 1 + Kd 2 ) d̂ ( t ) (15)

un ( t ) = u1 ( t ) + u2 ( t ) + u3 ( t ) (16)

where K1 ( t ) , K2 ( t ) , K3 ( t )  Kd 1 ( t )  and Kd 2 ( t )  are the 
parameter functions to be designed

u1 ( t ) = −
(DB )−1DBd Bd

T DT s ( t )
∥ sT ( t )DBd ∥

( κ̂̄ + λ1 ) (17)

u2 ( t ) = − (DB )−1DDT s ( t )
∥ sT ( t )D ∥

( δ̂ m + υ̂ 0 + λ2 ) (18)

u3 ( t ) = − (DB )−1D f̄ (x ) f̄ (x )T DT s ( t )
∥ sT ( t )D f̄ (x ) ∥

γ1
∗ (19)

where λ1 and λ2 are two positive scalars, υ1 ≥ υ0 , γ1
∗ ≥ γ1 and γ1 is 

defined in Eq.(23), δm  is the bound of the nonlinear function 
ξ (x , t ) , κ̂̄ , υ̂ 0 and δ̂ m  are the estimate of κ̄ , υ0 and δm  , and the 
adaptive control laws are designed in the form of

κ̇̂̄ = χq ( ∥ sT ( t )DBd ∥ + βq ) (20)

υ̇̂ 0 = χp ( ∥ sT ( t )D ∥ + βp ) (21)

δ̇̂ m = χr ( ∥ sT ( t )D ∥ + βr ) (22)

where χp  χq , χr , βp , βq  and βr  are positive parameters.

The control law will be used in the integral sliding mode control, 
um  is used to make the system asymptotically stable, un  is used 
to compensate for the effects of the actuator fault, disturbance 
estimation error, and nonlinear factors. In this paper, the sliding 
mode switching function is designed as follows

s ( t ) = Dx ( t ) − Dx (0) − D ∫
0

t

(Ax (τ ) + Bum (τ ) +

Bd d̂ (τ ) )dτ
(23)

where D ∈ Rp ×n  is a designed matrix that DB  is invertible. In the 
next section, the reaching ability will be verified.

Theorem 1. With the controller in Eq.(14), the state strategies of 
the system will drive onto the sliding surface s ( t )  in finite time.

Proof. Denote κ̄~ = κ̄ − κ̂̄ , υ~ 0 = υ0 − υ̂ 0, δ~ m = δm − δ̂ m  . Consider 
the following Lyapunov function candidate

V ( t ) = 1
2 s ( t )T s ( t ) + 1

2χq
κ̄~ 2 + 1

2χp
υ~ 0

2 (24)

 From the expression (20), the time derivative of s ( t )  is
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ṡ ( t ) = D (Ax ( t ) + Bu ( t )  + BF ΔuF ( t )  + Bd d ( t )  ) −
DAx ( t )

− DBum ( t ) − DBd d̂ ( t ) + D (Δf (x , t ) + ξ (x , t ) )
= DBun ( t ) + DBF ΔuF ( t ) + DBd d ( t )
− DBd d̂ ( t ) + DΔf (x , t ) + Dξ (x , t )

(25)

 From assumption 2, one has

θ0 ≤ γ1 (26)

 From Eq.(23), one has

ṡ ( t ) = DBun ( t ) + DBF ΔuF ( t ) + DBd d ( t ) − DBd d̂ ( t ) +
DΔf (x , t ) + Dξ (x , t )

≤ −
DBd Bd

T DT s ( t )
∥ sT ( t )DBd ∥ ( κ̄ + λ1 ) − DDT s ( t )

∥ sT ( t )D ∥ (δm + υ0 +

λ2 ) − D f̄ (x ) f̄ (x )T DT s ( t )
∥ sT ( t )D f̄ (x ) ∥

γ1

+ DBd ed ( t ) + D (γ1 f̄ (x ) + ξ (x , t ) + BF ΔuF ( t ) + ν0 )

(27)

 The time derivative of Eq.(35) can be determined as

V̇ ( t ) = s ( t )T ṡ ( t ) + 1
χq

κ̄~ κ̇̂̄ + 1
χp

υ~ 0υ̇̂ 0 + 1
χr

δ~ m δ̇̂ m (28)

 By introducing Eqs.(17)-(27), Eq.(28) can be rewritten as

V̇ ( t ) ≤ −
s ( t )T DBd Bd

T DT s ( t )
∥ sT ( t )DBd ∥ ( κ̂̄ + λ1 ) +

∥ s ( t )T DBd ∥ κ̄ − s ( t )T DDT s ( t )
∥ sT ( t )D ∥

( δ̂ m + υ̂ 0 + λ2 ) + ∥ s ( t )T D ∥ (δm + υ0 )

− s ( t )T D f̄ (x ) f̄ (x )T DT s ( t )
∥ sT ( t )D f̄ (x ) ∥

γ1
∗ + γ1 ∥ s ( t )T D f̄ (x ) ∥ − κ̄~

( ∥ sT ( t )DBd ∥ + βq ) − υ~ 0 ( ∥ sT ( t )D ∥ + βp )
− δ~ m ( ∥ sT ( t )D ∥ + βr ) < − λ1 ∥ sT ( t )DBd ∥ −

λ2 ∥ sT ( t )D ∥ < 0

(29)

 Thus, the reaching ability is satisfied, this completes the proof.

Remark 2. The controller proposed in (14) is discontinuous, to 
reduce chattering in the practical implementation, the 
discontinuous function can be replaced, for example, u1 ( t )  can 

be replaced by −
(DB )−1DBd Bd

T DT s ( t )
∥ sT ( t )DBd ∥ + α

( κ̂̄ + λ1 ) , where α  is a 

small positive constant.

3.3 Stability analysis

In this section, the stability of the closed-loop system will be 
analyzed. By solving the equation ṡ ( t ) = 0 in Eq.(25), the 
equivalent control law can be obtained as

ueq ( t ) = − (DB )−1DBF ΔuF ( t ) − (DB )−1DBd ed ( t ) −
(DB )−1DΔf (x , t ) − (DB )−1Dξ (x , t )

(30)

 Substituting Eqs.(26) and (30) into the system (3) yields

ẋ ( t ) = (A + B (K1 ( t ) + K2 ( t ) + K3 ( t ) ) )x ( t ) −
BKd d̂ ( t ) + BF ΔuF ( t )  + Δf (x , t ) + ξ (x , t ) + Bd d ( t )  −

B (DB )−1DBF ΔuF ( t ) − B (DB )−1DBd ed ( t ) −
B (DB )−1D (Δf (x , t ) + ξ (x , t ) )

(31)

 By defining Kd 1 = (DB )−1DBd , B̄ d = Bd − B (DB )−1DBd , M̄ = I −
B (DB )−1D , Eq.(31) can be rewritten as

ẋ ( t ) = (A + B (K1 ( t ) + K2 ( t ) + K3 ( t ) ) )x ( t ) + B̄ d d ( t ) −
BKd 2d̂ ( t ) + M̄BF ΔuF ( t )  + M̄ (Δf (x , t ) + ξ (x , t ) )

(32)

 As before mentioned, the disturbance-matched condition is not 
satisfied, i.e. rank (B ) < rank (B , Bd ) . From the definition of B̄ d , 
we can easily check that rank (B ) < rank (B , B̄ d ) . In this paper, 
the disturbance is divided into two parts, i.e.,

B̄ d = [ B̄ d1
B̄ d2] , d = [d1 d2 ]T ,

then B̄ d d ( t )  can be written as

B̄ d d ( t ) = B̄ d 1d1 ( t ) + B̄ d 2d2 ( t ) ,

where

B̄ d1
= [ B̄ dκ 1

B̄ dκ 2
. . . B̄ dκm 1] ∈ R

n ×m1, B̄ d2
=

[ B̄ dθ 1
B̄ dθ 2

. . . B̄ dθm 2] ∈ R
n ×m2,

d1 = [dκ 1 dκ 2 . . . dκ m1]T ∈ R
m1×1

,

d2 = [dθ 1 dθ 2 . . . dθ m1]T ∈ R
m2×1

,
m1 + m2 = ν

 Let rank (B ) = rank (B , B̄ d 1 ) , rank (B ) < rank (B , B̄ d 2 )  and the 
parameter Kd 2 in Eq.(15) can be chosen as Kd 2 =
[Ks 1 Ks 1 . . . Ksυ ] ∈ Rp ×υ , where BKsi = B̄ dκi  for i ≤ m1 and 
Ksi = 0 for i > m1. Then the equation BKd 2 = B̄ d 1 is solvable. 
Note that M̄ = BM~  and M~ = (B† − (DB )−1D ) , where B† =
BT (BBT )−1. Then (32) can be rewritten as

ẋ ( t ) = (A + B (K1 ( t ) + K2 ( t ) + K3 ( t ) ) )x ( t ) +
B̄ d 2d2 ( t ) + B̄ d 1ed 1 ( t ) + BM~ BF ΔuF ( t )  + BM~ (Δf (x , t ) +

ξ (x , t ) )
(33)

Remark 3. We can see that if B̄ d 2 = 0, then rank (B ) = rank (B ,
B̄ d ) , so the matched condition is a special case, i.e., this paper 
considers a more general case. In addition, we can also obtain 
that one of the solutions of Kd 2 is Ksi = B†B̄ dκi  and B† is the 
general inverse of B .

The object of the next part is to design K1 ( t ) , K2 ( t )  and K3 ( t )  
such that the stability of the system can be guaranteed. The 
control laws are designed as follows

K1 ( t ) = − ϖ̂BT P ∥ xT P ∥
∥ xT PB ∥2 (34)

K2 ( t ) = −
Kd 2ŵ 1B̄ d 1

T P
∥ xT P B̄ d 1 ∥

(35)

K3 ( t ) = −
M~ γ̂ 2

1 f̄ 2 (x )M~ T BT P
∥ xT PBM~ ∥ f̄ (x ) γ̂ 1 + σ ( t )

(36)

where ŵ 1, ϖ̂  and γ̂ 1 are estimations of w1, ϖ  and γ1, 
respectively, w1 and ϖ  are designed in Eqs.(59) and (60), P  is a 
positive symmetry matrix, and σ ( t )  is a continuous function, 
and satisfies
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∫
0

∞
σ ( t )dt ≤ σ∗ < ∞ . (37)

where σ∗ is a positive scalar.

The adaptive updating control laws are given by

ϖ̇̂ = − β1ϖ̂σ ( t ) + 2β1 ∥ xT P ∥ (38)

ẇ̂ 1 = − β2ŵ 1σ ( t ) + 2β2 ∥ xT PBd 1 ∥ (39)

γ̇̂ 1 = − β3γ̂ 1σ ( t ) + 2β3 ∥ xT PBM~ ∥ f̄ (x ) (40)

where β1, β2 and β3 are three positive constants.

Denote ϖ~ = ϖ − ϖ̂ , w~ 1 = w1 − ŵ 1, γ~ 1 = γ1 − γ̂ 1, we can obtain the 
following dynamics

ϖ~̇ = − β1ϖ~ σ ( t ) + β1ϖσ ( t ) − 2β1 ∥ xT P ∥ (41)

w~̇ 1 = β2w1σ ( t ) − β2w~ 1σ ( t ) − 2β2 ∥ xT PBd 1 ∥ (42)

γ~ 1 = β3γ1σ ( t ) − β3γ~ 1σ ( t ) − 2β3 ∥ xT PBM̄ ∥ f̄ (x ) (43)

Theorem 2. With the controller (34)-(36) and the adaptive 
control laws (38)-(40), the closed-loop system is stable if there 
exist two positive symmetry matrices P  and Q  , such that the 
following condition holds

[PA + AT P + Q P1

∗ − I ] < 0 (44)

where P1 = PBM~ , Q  is defined in Eq.(5).

Proof. Design the Lyapunov function candidate as

V ( t ) = x ( t )T Px ( t ) + 1
2β1

ϖ~ 2 + 1
2β2

w~ 1
2 + 1

2β3
γ~ 1

2 (45)

 Then the time derivative of Eq.(51) can be obtained as

V̇ ( t ) = 2x ( t )T Pẋ ( t ) + 1
β1

ϖ~ ϖ~̇ + 1
β2

w~ 1w~̇ 1 + 1
β3

γ~ 1γ~̇ 1

= 2x ( t )T P ( (A + B (K1 ( t ) + K2 ( t ) + K3 ( t ) ) )x ( t ) +
B̄ d 1ed 1 ) + 2x ( t )T P (BM~ BF ΔuF ( t )  + B̄ d 2d2 ( t ) )

+ 2x ( t )T PBM~ Δf (x , t ) + 2x ( t )T PBM~ ξ (x , t ) + 1
β1

ϖ~ ϖ~̇ +

1
β2

w~ 1w~̇ 1 + 1
β3

γ~ 1γ~̇ 1

(46)

 From Eqs.(41)-(46), it can be derivative that

2xT ( t )PBK1 ( t )x ( t ) = − 2xT ( t )PB ϖ̂BT P ∥ xT P ∥
∥ xT PB ∥2 = −

2ϖ̂ ∥ xT P ∥
(47)

2xT ( t )PBK2 ( t )x ( t ) = − 2xT ( t )PB
Kd 2ŵ 1B̄ d 1

T P
∥ xT P B̄ d 1 ∥

= −

2 ∥ xT P B̄ d 1 ∥ ŵ 1

(48)

2xT ( t )PBK3 ( t )x ( t ) = − 2
γ̂ 2

1 f̄ 2 (x ) ∥ xT PBM~ ∥2

∥ xT PBM~ ∥ f̄ (x ) γ̂ 1 + σ ( t )
(49)

1
β1

ϖ~ ϖ~̇ = 1
β1

ϖ~ ( − β1ϖ~ σ ( t ) + β1ϖσ ( t ) − 2β1 ∥ xT P ∥ )

= − ϖ~ 2σ ( t ) + ϖ~ ϖσ ( t ) − 2ϖ~ ∥ xT P ∥
(50)

1
β2

w~ 1w~̇ 1 = 1
β2

w~ 1 (β2w1σ ( t ) − β2w~ 1σ ( t ) −

2β2 ∥ xT PBd 1 ∥ )
= w~ 1w1σ ( t ) − w~ 2

1σ ( t ) − 2w~ 1 ∥ xT PBd 1 ∥

(51)

1
β3

γ~ 1γ~̇ 1 = 1
β3

γ~ 1 (β3γ1σ ( t ) − β3γ~ 1σ ( t ) − 2β3 ∥ xT PBM~ ∥ )
= γ~ 1γ1σ ( t ) − γ~ 2

1σ ( t ) − 2γ~ 1 ∥ xT PBM~ ∥
(52)

 By assumptions 2, 4, 5, and lemma 1, we can derivative that the 
following inequalities hold

∥ BM~ BF ΔuF ( t ) ∥ + ∥ B̄ d 2 ∥ ∥ d2 ( t ) ∥ + ∥ BM~ υ0 ∥ ≤ ϖ (53)

ed 1 ≤ w1 (54)

2x ( t )T PBM~ ξ (x , t ) ≤ 2 ∥ x ( t )T PBM~ ∥ ∥ ξ (x , t ) ∥
≤ ∥ x ( t )T PBM~ ∥2 + ∥ ξ (x , t ) ∥2 = x ( t )T (P1

T P1 + Q )x ( t )
(55)

where ϖ  and w1 are positive scalars.

Substituting Eqs.(47)-(55), Eq.(46) can be rewritten as

V̇ ( t ) ≤ x ( t )T (PA + AT P + P1
T P1 + Q )x ( t ) −

2ϖ̂ ∥ xT P ∥ + ∥ 2x ( t )T P B̄ d 1 ∥ w1

− 2
γ̂ 2

1 f̄ 2 (x ) ∥ xT PBM~ ∥2

∥ xT PBM~ ∥ f̄ (x ) γ̂ 1 + σ ( t )
− 2γ~ 1 ∥ xT PBM~ ∥ +

2γ1 ∥ xT PM~ ∥ f̄ (x )

− 2 ∥ xT P B̄ d 1 ∥ ŵ 1 + ∥ 2x ( t )T P ∥ ϖ − 2ϖ~ ∥ xT P ∥ −
2w~ 1 ∥ xT PBd 1 ∥

(56)

 Note that the following equalities

∥ 2x ( t )T P ∥ w1 − 2 ∥ xT P B̄ d 1 ∥ ŵ 1 + 2w~ 1 ∥ xT PBd 1 ∥ = 0 (57)

∥ 2x ( t )T P ∥ ϖ − 2ϖ̂ ∥ xT P ∥ − 2ϖ~ ∥ xT P ∥ = 0 (58)

2γ1 ∥ xT PM~ ∥ f̄ (x ) − 2γ~ 1 ∥ xT PBM~ ∥ f̄ (x ) −

2
γ̂ 2

1 f̄ 2 (x ) ∥ xT PBM~ ∥2

∥ xT PBM~ ∥ f̄ (x ) γ̂ 1 + σ ( t )
= 2γ̂ 1 ∥ xT PM~ ∥ f̄ (x )σ ( t )

∥ xT PM~ ∥ f̄ (x ) γ̂ 1 + σ ( t )
(59)

 Substituting Eqs.(57)-(59) into (56) yields

V̇ ( t ) ≤ x ( t )T (PA + AT P + P1
T P1 + Q )x ( t ) − σ ( t ) (ϖ~ 2 −

ϖ~ ϖ ) − σ ( t ) (w~ 2
1 − w~ 1w1 + γ~ 2

1 − γ~ 1γ1 ) +
2γ̂ 1 ∥ xT PM~ ∥ f̄ (x )σ ( t )
∥ xT PM~ ∥ f̄ (x ) γ̂ 1 + σ ( t )

(60)

 For any positive scalar λm  and λn  , the following equality holds 

0 ≤ λm λn
λm + λn

≤ λn . Then we can obtain that

V̇ ( t ) ≤ x ( t )T (PA + AT P + P1
T P1 + Q )x ( t ) + ζκ σ ( t ) (61)

where ζκ = 2 + 1
4 (ϖ2 + w2

1 + γ2
1 ) .

According to Eq.(45), by integrating Eq.(61) yields
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V ( t ) ≤ V ( t0 ) − ∫t0

t

λmin (Q1 ) ∥ x (s ) ∥2ds + ∫t0

t

ζκ σ (s )ds

≤ V ( t0 ) − ∫t0

t

λmin (Q1 ) ∥ x (s ) ∥2ds + ζκ σ∗

(62)

which means the system described in Eq.(33) is bounded. 
λmin (Q 1 )  denotes the minimum eigenvalue of Q1, and − Q1 =
AT P + PA + P1

T P1 + Q . Eq.(68) also implies

∫t0

t

λmin (Q1 ) ∥ x (s ) ∥2ds ≤ V ( t0 ) + ζκ σ∗ (63)

 According to Barbalat Lemma, we have lim
t →∞

∥ x ( t ) ∥2 = 0. This 
completes the proof.

Remark 4. Compared with the results in [15], where the 
nonlinear function is matched, i.e., Δf (x , t )  is in the control 
channel. In this paper, Δf (x , t )  exists in the different channel 
from the control input, i.e., which means that Δf (x , t )  is more 
general.

4. Numerical examples

In this section, two examples are simulated to illustrate the 
effectiveness of the proposed method.

Example 1. In this example, the linearized longitudinal dynamic 
of the VTOL aircraft which is borrowed from [23] is considered. 
It is assumed that the system is subjected to unmodeled 
dynamics, actuator fault, and external disturbance. Then, the 
system can be described as system (1), where x ( t ) =
[x1 ( t ) x2 ( t ) x3 ( t ) x4 ( t ) ]T , x1 ( t )  is the horizontal velocity 
(knot ), x2 ( t )  represents the vertical velocity (knot ), x3 ( t )  is the 
pitch rate (degree /s ), and x4 ( t )  expresses the pitch angle (
degree ). The parameters of the system are given as follows

A = [ − 9.9477 − 0.7476 0.2632 5.0337
52.1659 2.7452 5.5532 − 24.4221
26.0922 2.6361 − 4.1975 − 19.2774

0 0 1 0
]  , B =

[ 0.4422 0.1761
3.5446 − 7.5922

− 5.5200 4.4900
0 0

] ,

C = [1 0 0 0
0 1 0 0
0 0 1 0
0 1 1 1

]  , Bd = [ 0.4422 0.116
3.5446 − 0.102

− 5.5200 0
0 0

]  , BF =

[0.1767.5924.4900] .

The nonlinear unmodeled uncertainty and mismatched 
nonlinearity are assumed to be: Δf (x , t ) = sin(x4 ) , ξ (x , t ) =
sin(x1 ) . The actuator fault and external are supposed to be as 
follows

f ( t ) = { 0(0 ≤ t < 8)
0.5sin(2t + 1) (8 ≤ t < 10)

0(10 ≤ t < 15)
 , 

{ d1 ( t ) = 2sin(2t + 1) (0 ≤ t < 15)

d2 ( t ) = 0.5sin(2t − 3)  (0 ≤ t < 15)
.

Note that the mismatched disturbance and the condition 
rank (B ) ≠ rank (B , B̄ d )  hold, hence that the traditional method 
will be failed in this example. Choosing the matrix D =

[ 1 0 1 0
− 1 1 0 1]  , we can check that DB  is invertible. By solving 

(50), we can obtain that

P = [14843 161.7 226.9 − 745.0
161.7 25.50 12.80 − 101.8
226.9 12.80 74.80 − 47.40
745.0 − 101.8 − 47.40 896.5

]  .

 Choose σ ( t ) = 2e−t , the results of the simulation are as follows.

Figure 1 shows the trajectory of the system. Figure 2 illustrates 
the estimation of the disturbance signals, the solid line is the 
original signal and the dashed line is the estimated value. From 
Figure 1, we can know that the states of the system have a fast 
response with the proposed method. In addition, the controller 
can ensure the stability of the system in the presence of the 
actuator fault and mismatched disturbance. Figure 2 
characterizes that the observer has a good performance of the 
disturbance.

Figure 1. Response of state x (t )

Figure 2. Estimation of disturbance d (t )

 In order to illustrate the importance of the disturbance 
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observer, the responses of the system are shown in Figure 3 
without the disturbance observer. From the figure, we can see 
that the closed-loop system becomes unstable when removing 
the disturbance observer and compensator.

Figure 3. Response of state x (t ) without disturbance compensator

Example 2. In this section, the two-cart system which borrowed 
form is provided to illustrate the effectiveness of the proposed 
method [27].

As shown in Figure 4, the first cart is connected to a rigid wall 
via a damper, and is connected to a second cart by a spring. The 
external force is applied to a second cart via an actuator. Both 
carts have a nominal mass of a = 1kg , the damper has a 
constant of b0 = 1N /m , and the spring constant c0 = 1N /m . The 
time constant of the actuator τ = 0.2. The states are the force, 
velocities, and positions of the two carts. The actuator fault and 
mismatched disturbance are considered. The system 
parameters are given as follows

A = [ − 1
τ 0 0 0 0

0 − b0
a 0 −

c0
a

c0
a

1
a 0 0 c

a −
c0
a

0 1 0 0 0
0 0 1 0 0

]  , B = [
1
τ
0
0
0
0

]  , BF = [
1
τ
0
0
0
0

]  , 

C = [0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]  , Bd = [
1 1
0 0.2
0 0.2
0 0.1
0 0.2

] .

Figure 4. Geometric structure of the two-cart system

 The nonlinear unmodeled uncertainty and mismatched 
nonlinearity are assumed to be: Δf (x , t ) = sin(x4 ) , ξ (x , t ) =
sin(x1 ) . The actuator fault and external are supposed to be as 
follows

f ( t ) = { 0(0 ≤ t < 25)
0.5sin(0.2t ) (25 ≤ t < 40)

1(40 ≤ t < 80)
 ,

d1 ( t )={ 0(0 ≤ t < 15)
0.5sin( t ) (15 ≤ t < 50)

1(50 ≤ t < 80)
 ,

d2 ( t ) = { 0.5sin(3t ) (0 ≤ t < 20)
0.5sin(3t ) (20 ≤ t < 50)

1(50 ≤ t < 80)
.

 Choosing the matrix D = [1 0 0 0 0] , we can check that 
DB  is invertible. By solving Eq.(50), we can obtain that

P = [
0.0799 − 0.000 − 0.000 − 0.000 − 0.000
− 0.000 1.1046 0.000 − 0.000 − 0.000
− 0.000 0.000 1.1046 0.000 − 0.000
− 0.000 − 0.000 0.000 1.1046 0.000
− 0.000 − 0.000 − 0.000 0.000 1.1046

] .

 Choose σ ( t ) = 2e−t  , the results of the simulation are as follows.

Figures 5 and 6 express the trajectories of the system. From 
Figures 5 and 6, we can see that the stability of the positions 
and velocities of the first and second carts can be guaranteed. 
Figure 7 shows the estimation of the external disturbance, we 
can check that the proposed method performs better than the 
intermediate method proposed in [27], precisely, the method 
proposed responds faster than the method in [27], and the 
proposed method has less chattering.

Figure 5. Response of state x1(t ) , x2(t ) and x3(t )
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Figure 6. Response of state x4(t ) and x5(t )

Figure 7. Estimation of disturbance d (t )

 In order to illustrate the effectiveness of the proposed method, 
the responses of the system are shown in Figures 8 and 9 
without the controller. From the figure, we can infer from this 
that the closed-loop system becomes unstable when removing 
the disturbance observer and compensator.

Figure 8. Response of state x1(t ) , x2(t ) and x3(t ) without controller

Figure 9. Response of state x4(t ) and x5(t ) without controller

5. Conclusion
In this paper, the problem of a general Lipschitz nonlinear 
system with actuator fault and unmatched disturbance is 
investigated. Specifically, a disturbance observer is designed to 
estimate the mismatched disturbance first. Then, an observer-
based integral sliding mode fault tolerant control scheme is 
proposed. In order to guarantee the stability of the system, 
three adaptive control laws are constructed because of the 
unknown nonlinear function parameters and the unmodeled 
uncertainty. Finally, two examples are given to illustrate the 
effectiveness of the proposed method. In our future work, we 
would like to focus on the fault-tolerant control methods for 
multiple faults and disturbances and their applications.
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