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Abstract
Steel is playing an increasingly important role in industry, and the detection of defects on its 
surface is also of great significance. The complex and diverse defects on the steel surface 
bring great challenges to the detection. In this paper, we propose a SteelGuard-yolo based 
steel surface defect detection model, whose main role is to improve the existing algorithms 
for detecting steel surface defects. First, we design the C2f module with weight aggregation 
and introduce the BiFormer attention mechanism to improve the feature extraction 
capability of the model. Second, we design a new up-sampling structure and introduce the 
Multi-Scale Dilated Attention (MSDA) module to effectively improve the feature fusion 
capability of the model. Finally, we introduce the Simam attention mechanism and use EIoU 
as a new loss function to improve the robustness and accuracy of the model.SteelGuard-
yolo has a powerful multi-scale feature fusion capability and achieves an ideal balance 
between latency and accuracy. The algorithm proposed in this paper is tested on the NEU-
DET dataset and achieves an average accuracy of 69.0%, which compares favorably with 
most one- and two-stage detection algorithms.
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Abstract: Steel is playing an increasingly important role in 
industry, and the detection of defects on its surface is also of 
great significance. The complex and diverse defects on the steel 
surface bring great challenges to the detection. In this paper, 
we propose a SteelGuard-yolo based steel surface defect 
detection model, whose main role is to improve the existing 
algorithms for detecting steel surface defects. First, we design 
the C2f module with weight aggregation and introduce the 
BiFormer attention mechanism to improve the feature 
extraction capability of the model. Second, we design a new up-
sampling structure and introduce the Multi-Scale Dilated 
Attention (MSDA) module to effectively improve the feature 
fusion capability of the model. Finally, we introduce the Simam 
attention mechanism and use EIoU as a new loss function to 
improve the robustness and accuracy of the model.SteelGuard-
yolo has a powerful multi-scale feature fusion capability and 
achieves an ideal balance between latency and accuracy. The 
algorithm proposed in this paper is tested on the NEU-DET 
dataset and achieves an average accuracy of 69.0%, which 
compares favorably with most one- and two-stage detection 
algorithms.

1. Introduction:
Steel plays an important role in many fields such as aviation, 
shipping, real estate and military industry. With the growing 
maturity of industrial development, the demand for steel in 
intelligent industrial manufacturing is also increasing. Different 
types of surface defects are easily produced when steel is 
processed by machines due to various factors such as external 
forces, equipment wear and tear, and processing techniques. 
These defects will adversely affect the appearance, performance 
and fatigue strength of the whole product [1]. The efficiency 
and accuracy of traditional inspection methods through manual 
inspection can no longer meet the inspection needs, and fast 
and accurate intelligent inspection is conducive to reducing the 
labor cost, and will also greatly reduce the loss rate of the 

product. Therefore, it is of great practical value and application 
significance to study an efficient and accurate detection 
algorithm for steel surface defects to effectively reduce 
production costs.

Target detection is a core research area in the field of computer 
vision, in which various types of machine learning (ML) and deep 
learning (DL) models are widely used to improve the 
performance of target detection and its related tasks, and target 
detection is mainly categorized into two different detection 
models, one-phase and two-phase.

Two-stage detection methods were the first to appear, and the 
main element is to generate anchor frames on the input image, 
followed by detecting the contents of the anchor frames and 
finally classifying them. Typical algorithms are R-CNN [2], Fast-
RCNN [3], Faster-RCNN [4], and Grid-RCNN [5], etc. Ross Girshick 
et al. proposed R-CNN, which sets a set of anchors at each pixel, 
and RPN classifies and regresses all of these anchors, and then 
picks the proposals based on the classification confidence of the 
proposed top K proposals. Models such as Fast-RCNN and 
Faster-RCNN, which are improved on its basis, are considered to 
be the classical models in the second stage. In addition, for 
target recognition under different viewing angles, lighting and 
occlusion conditions, Anton Osokin et al. proposed Context-
aware CNNs [6], which realized target recognition under 
different conditions. These models have good detection 
performance and all of them have achieved excellent results, 
but their anchor frame localization modules are very similar and 
there is still room for improvement. To address this problem, lu 
et al. proposed Grid-RCNN, which effectively utilizes explicit 
spatial representations to achieve high-quality localization. The 
two-stage model has higher accuracy but longer detection time, 
although the EfficientDet series model optimizes the detection 
time, but it also consumes more computational resources.

One-stage methods no longer need to generate anchor frames, 
but directly predict the whole image, obtaining an improvement 
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in detection speed. The most typical one-stage target detection 
algorithms includeYOLO [7],SSD [8],SqueezeDet [9] and
DetectNet [10], etc. The OverFeat [11]algorithm proposed by P 
Sermanet et al. is the basis of the first stage of target detection, 
which classifies images at different locations in a multi-scale 
region of the image in the form of a sliding window, as well as 
trains a regressor on the same convolutional layer to predict the 
location of the bounding box. On top of this the yolo series of 
algorithms are also the classic algorithms of the first 
stage.REDMON J proposed the YOLO (You Only Look Once) 
model, which has a strong generalization ability as well as 
adaptability. With the proposal of YOLO, various applications 
have begun to utilize YOLO for target detection and recognition 
in various contexts. Aiming at the deficiencies of YOLO family of 
models in network fusion, Wang et al. proposed gold-yolo [12
],which improves on convolution and self-attention 
mechanisms, and employs Mae-style pre-training to allow the 
model to gain under unsupervised training. Aiming at the 
problems of poor performance of yolov2 backbone and 
underutilization of multi-scale regional features, Huang et al. 
proposed a DC-SPP-YOLO [13] based on dense connectivity (DC) 
and spatial pyramid pooling (SPP), which improves the target 
detection accuracy of YOLOv2 [14]. Aiming at the industrial 
scenarios where image background interference is large, defect 
categories are easily confused, defect scales vary greatly, and 
small defects are poorly detected, Guo et al. proposed MSFT-
YOLO [15], which realizes the fusion of features at different 
scales and enhances the dynamic adjustment of the model to 
targets at different scales.The first-stage models, such as YOLO, 
SSD, and RetinaNet [16], are excellent in terms of speed and 
real-time performance but there is the problem of localization 
accuracy and relatively low detection accuracy for small targets. 
One-stage models such as YolovX have much lower accuracy 
than two-stage models, even though their detection speed is 
faster than that of two-stage models. Two-stage models such as 
Faster-Rcnn have higher accuracy than the one-stage detection 
model, but their computation amount and time are much 
higher than the one-stage model.

To address the above problems, this paper proposes a new 
defect detection algorithm SteelGuard-yolo,to realize the 
improvement of the detection accuracy of the one-stage model 
with reduced computation, the main contributions are:

(1) Feature extraction: in order to extract different levels of 
features more accurately, we replace the original C3 module 
with the improved C2f module with weight aggregation in the 
backbone part, which fuses the low-level feature map and the 
high-level feature map, and at the same time, we introduce the 
BiFormer (BRA) attention mechanism in front of the SPFF 
module, which enhances the model's perceptual ability and 
improves the accuracy of target detection and robustness.

(2) Feature fusion at different scales: in order to realize feature 
fusion at different scales, we design a new up-sampling method 
in the neck: the mutual fusion of features at different scales is 
realized by the concatenation and then summation of bilinear 
interpolation and inverse convolution. We replace the C3 
module in the neck with Multi-Scale Dilated Attention (MSDA) 
module, which suppresses the background sexual information 
and highlights the perceptual region, while aggregating the 
semantic information at all scales of the attended perceptual 
field and reduces the redundancy of the self-attention 
mechanism.

(3) Detection header: In order to further improve the model 
accuracy, we redesigned the detection header: we introduced 
the Simam attention mechanism in front of the original Conv 
module, which improves the efficiency of the model with the 
same parameters.

(4) Loss function: in order to solve the problem of imbalance 
between difficult and easy samples, we replace the original loss 
function with EIOU, which is easier to obtain more accurate 
target localization on various scales.

The experimental results showed that the MAP50 of SteelGuard-
yolo on the NEU-DET dataset was enhanced by 0.082 compared 
to the original Yolov5s.

The remainder of this paper is organized as follows.Section 2 
Section reviews related work on target detection.Section 3 
Section describes the proposed method and the three key 
modules in detail. Sect.4 Section presents relevant experimental 
results, which are compared with state-of-the-art algorithms to 
verify the effectiveness of the proposed method in this paper. 
Finally, we present in Section 5 Section 5 summarizes the 
experiments and gives an outlook.

2. Related work
The YOLO (You Only Look Once) family of algorithms is a 
popular real-time target detection framework that has gained 
popularity in computer vision for its speed and accuracy. Since 
the introduction of YOLOv1, the series has gone through several 
iterations, with each version optimized in terms of performance, 
speed, and model complexity. The core idea of the YOLO 
algorithm is to transform the target detection problem into a 
single regression problem by predicting bounding box and 
category probabilities directly on the full graph, thus avoiding 
the region proposal stage in traditional target detection 
methods. Among many models YOLOv5s is easier to be 
embedded in resource-constrained platforms while maintaining 
high target detection accuracy. Based on this, in this paper, 
YOLOv5s without pre-training weights is chosen as the base 
model and improved on it to propose SteelGuard-yolo.

2.1 The YOLOv5 model
In the field of target detection, the backbone network of 
YOLOv5 model plays a crucial role, and its main task is to 
perform deep feature extraction on the input image. It belongs 
to the category of one-stage model, which takes into account 
both speed and accuracy, and is one of the mainstream models 
at present. Some new techniques are used in YOLOv5, such as 
adaptive training data enhancement, multi-scale training, multi-
scale prediction of the initial detection layer, etc., which make it 
faster and more accurate.The network results of YOLOv5s are 
shown in Fig. 1.

The YOLOv5 network structure consists of four parts: input 
(Input), feature extraction network (Backbone), feature fusion 
network (Neck), and output (Head).

The input side preprocesses the image, including image flipping 
and adaptive anchor frame calculation.

The feature extraction network contains a 3-layer structure 
consisting of the CBS module, the C3 module and the SPPF 
module. The Conv module is the basic component of the 
convolutional neural network, which consists of the 
convolutional layer, the BN layer and the activation function. 
Among them, the convolutional layer is responsible for 
extracting the local spatial information of the input features, the 
BN layer performs the normalization of the feature values after 
the convolutional layer, and the activation function introduces 
the nonlinear transformation capability for the neural network. 
The C3 module is the core component of the YOLOv5 network, 
which effectively improves the feature extraction capability by 
increasing the depth and the sensory field of the network. The 
SPPF module is a pooling module, and its s main role is to 
realize the spatial invariance and positional invariance of the 
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input data so as to improve the recognition ability of the neural 
network.

The feature fusion network adopts FPN and PAN structures, the 
FPN structure passes the semantic information of the layer 
feature map to the shallow features from top down, and the 
PAN structure passes the position information of the shallow 
feature map to the deep features, thus realizing the multi-scale 
feature fusion.

The output, on the other hand, contains three detection layers 
of different sizes to classify and predict the fused features.

Fig.1. YOLOv5s network architecture.

YOLOv5s is a target detection algorithm based on a lightweight 
convolutional neural network. Its network architecture consists 
of three main components; Backbone, Neck and Head.The 
Backbone network utilizes CSP-Darknet53 for extracting 
features from the input image. The Neck network integrates the 
features to improve the detection accuracy. The Head network 
is used to predict the location and class of the target.YOLOv5 
achieves high-performance target detection through key 
techniques such as multi-scale detection, FPN network, Focal 
Loss loss function, and non-extremely large value suppression.

2.2. Attention mechanisms
Attention Mechanism is a strategy to simulate human cognitive 
attention in artificial neural networks, which allows the model to 
pay more attention to the important parts of the input 
information Attention Mechanism selectively extracts features 
of interest in the model in only two steps by fusing the CNN 
with the attention module. Step 1 adds the attention 
mechanism branch into the initial network structure for weight 
learning. Step 2 applies the weights learned in Step 1 to the 
feature maps output by the CNN. During the training process, 
the model assigns different weights according to the according 
to the importance of the feature map in turn. The more 
important the feature is, the more weights the model assigns to 
it. The model will focus more on high weighted effective 
features and low weighted features as well as ineffective 
features will be suppressed. This process can be described by 
the following equation:

Attention = F (f (x ), x )

 where f (x ) denotes the process of learning weights by the 
attention mechanism, and F (f (x ), x ) denotes the process of 
processing the input features according to the weights.

Based on the network structure and region of action, attention 
mechanisms can be categorized into channel attention 
mechanisms, spatial attention mechanisms, and hybrid domain 
attention mechanisms. Hybrid attention mechanisms include 
Multidimensional collaborative attention (MCA) [17], Bi-Level 
Routing Attention (biformer) [18], and Multi-Scale Dilated 
Attention (MSDA) [19].

Multi-Scale Dilated Attention (MSDA) is a typical example of a 
mixed-domain attention mechanism.

Fig. 2. MCA network structure.

MCA is a statistical moment-based channel attention network. It 
captures global spatial context through the Ex-tensive Moment 
Aggregation (EMA) mechanism and efficiently integrates multi-
level moment-based information through the Cross Moment 
Convolution (CMC) module.MCA is lightweight and easy to 
integrate into various neural network architectures, and it has 
achieved leading results in image classification, target 
detection, and instance segmentation tasks, achieving leading 
results that outperform existing channel attention methods

where C, W and H represent the number, width and height of 
channels in the feature map, respectively. Here, AvgPool and 
StdPool represent the global average pooling and theglobal 
standardized difference pooling, respectively. ⊙ stands for 
broadcast element-wise multiplication, and ⊕ stands for 
broadcast element-wise summation. three branches are used to 
capture the interactions between different dimensions and 
channels. A substitution operation is used in the first two 
branches to capture the remote dependence between the 
channel dimension and any of the spatial dimensions. The final 
branch aggregates the outputs of all three branches in the 
integration phase.
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Fig. 3. SteelGuard-yolo network structure.

We made a series of improvements to YOLOv5s: the original C3 
convolutional module was replaced with the improved C2f in 
Backbone, and the Biformer attention mechanism was 
introduced; a module with both inverse convolution and bilinear 
interpolation upsampling was designed in Neck, and the 
original C3 module was replaced with an MSDA module; a 
convolutional module was added in Head before the Simam 
attention mechanism was added to improve the detection 
accuracy and efficiency; the loss function was replaced with 
EIOU to obtain more accurate target localization.

3. Methodologies

In this section we describe in detail our proposed model 
SteelGuard-yolo for steel surface defect detection.Figure 3 
shows the structure of our proposed SteelGuard-yolo network. 
The original YOLOv5s model is not effective in detecting multi-
scale features due to the large variation of steel surface defects 
and the different proportions of different defects in the whole 
image. In addition, the downsampling multiplier of YOLOv5s is 
large, and it is difficult for the deeper feature maps to receive 
the feature information of steel surface defects. Therefore, it is 
especially critical to improve the detection accuracy and 
robustness of the original model.

First, in Backbone, we replace the original convolutional module 
C3 with an improved C2f with weight aggregation features, and 
add an attention mechanism Biformer in front of the Spatial 
pyramid pooling-based fusion (SPPF) module to enhance the 
ability of acquiring input features. Second, we design a module 
with both inverse convolution and bilinear interpolation 
upsampling in Neck, and we replace the original C3 module in 
Neck with an MSDA module to enhance the feature aggregation 
capability of the model. Next we add the attention mechanism 
Simam in front of the convolution module (conv) in Head to 
improve the detection accuracy and efficiency. Finally, we 
replace the loss function with EIOU to obtain more accurate 
target localization.

3.1. Backbone optimization

For each steel surface defect image, its high-frequency 
component constitutes the edges and contours of the steel 
surface defects and represents the fast image localization 
capability. Meanwhile, the low-frequency components represent 
regions with smooth changes in their intensity, mainly image 
patches with similar visual patterns. In steel surface defect 
images, the low-frequency modules of the images are basically 
the same, so we replace the original C3 module with the C2f 
module with weight aggregation, and incorporate an attention 

mechanism to improve the model's detection attention and 
accuracy for steel surface defects.

The detailed implementation of C2f with weight aggregation is 
shown in Fig. 3. When an image with height H, width W, and 
channels C enters the C2f module, it will be divided into two 
HW0.5C images. One is left unprocessed and the other is passed 
into bottleneck2 for feature fusion operation. For feature fusion, 
we have taken the feature fusion operation with weights as a 
way to highlight the features that need attention. The operation 
of Biformer is also shown in detail in Fig. 3. The relative position 
information is first implicitly encoded using a 3 × 3 convolution. 
Then, cross-positional relationship modeling and position-by-
position embedding are performed sequentially using the BRA 
module and a 2-layer MLP module with an expansion of e. The 
BRA module is used to model the relative positional 
information.

3.2. Neck Optimization

In Neck, we design a module with both inverse convolution and 
bilinear interpolation up-sampling, and we replace the original 
C3 module in Neck with MSDA module to enhance the feature 
aggregation capability of the model. Feature up-sampling is a 
very important part of deep learning and neural networks. 
Feature maps of different resolutions are matched based on 
high-resolution supervision. up-sampling in YOLOv5s uses the 
nearest neighbor interpolation algorithm by default, which fills 
new pixel positions by copying the nearest pixel values.This 
means that there are significant discontinuities in the gray 
values in the sampled image, resulting in a large loss of image 
quality. This can manifest itself in the form of noticeable mosaic 
and jaggedness . This method is overly concerned with the 
speed of the operation and ignores the accuracy and 
effectiveness of the up-sampling result. Our design with both 
inverse convolution and bilinear interpolation up-sampling 
module effectively remedies this shortcoming. Bilinear 
interpolation takes into account the weights of the four pixels 
around a pixel point, which can effectively compensate for 
mosaic and jaggedness. Inverse convolution enables the 
network to automatically learn the appropriate upsampling 
weights for a particular task. The combination of the two 
effectively improves the smoothness and accuracy of the 
upsampling results. The original YOLOv5s is not as good as the 
original YOLOv5s in detecting small targets, so we replace the 
C3 module in Neck with the MSDA module to enhance the 
feature aggregation ability of the model.The MSDA module 
improves the detection accuracy of small targets by generating 
larger scale feature maps to differentiate the fine features of 
small targets. Meanwhile, the MSDA module adopts sliding 
window feature extraction, which effectively reduces the 
computational requirements and the number of parameters. 
Finally, the MSDA module introduces a global attention 
mechanism that combines channel information with global 
information to create a weighted feature map. This helps to 
highlight the attributes of the object of interest while effectively 
ignoring irrelevant details.

3.3. Detection head optimization

The original detection head of YOLOv5 has a large sensing field, 
and the detection head needs to separate each target 
accurately, and the detection ability of the model will be 
reduced when the target is small or dense. The defects on the 
steel surface are sometimes very dense and small, so YOLOv5 is 
not good at detecting these defects. Therefore, we introduced 
the SimAM attention mechanism in front of the original Conv 
module, which improves the efficiency of the model while 
keeping the parameters unchanged. SimAM attention 
mechanism can express the features more finely, so as to better 
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extract the key target information without introducing too many 
parameters. In complex contexts, SimAM can better extract 
target features, thus enhancing the model's ability to perceive 
the target.

3.4. Loss function optimization

The IoU loss function is the default loss function of YOLOv5. IoU 
loss can accurately measure the degree of overlap between the 
predicted and real frames, but there is no specific applicable 
scenario. It performs well in general, but it is not good enough 
for steel defect target detection, and the problem of missed 
detection and false detection often occurs. Therefore, we 
replace the IoU loss function with the EIoU loss function.The 
EIoU loss function can describe the target localization objectives 
more effectively by explicitly measuring the differences in three 
geometric factors of the bounding box (overlap area, center 
point, and edge length). This helps the model to converge 
faster. Also the EIoU loss function takes into account multiple 
geometric factors of the bounding box, which improves the 
accuracy of localization.

4. Experimental analysis and results

This section first describes the dataset used, adds more 
experimental details and evaluation metrics, and finally 
analyzes and evaluates the experimental results.

4.1. data sets
The use of high-quality and large-scale datasets is particularly 
important to improve the generalization ability of the model. In 
this experiment, the NEU surface defect database (NEU-DET) 
[20-22], which was established by He et al. in 2020, is used, 
which collects six typical surface defects of hot rolled strip steel, 
namely Rolled-in scale (RS), Patches (Pa), Crazing (Cr), Pitted 
surface (PS), Inclusions (In) and Pitted surface (Sc). The database 
consists of 1,800 grayscale images: 300 samples of each of the 
six different typical surface defects, while a single image may 
contain more than one defect, making the dataset suitable for 
use as a steel defect detection dataset.

Fig. 4.Data details of NEU-DET dataset.

The NEU-DET dataset is a public dataset for surface defect 
detection on steel plates and contains a total of 1800 images. 
The dataset covers six types of steel plate defects, namely 
'crazing', 'patches', 'inclusion', 'pitted_surface', 'rolled-in_scale' 
and 'scratches'. A visual representation and distribution of the 
various surface defects and the frequency of occurrence are 
shown.

4.2. Experimental parameters

The system used in this experiment is Windows and the GPU is 
NVIDIA GeForce GTX 1650. a cross-entropy loss function is used 
for training. The optimizer is AdaBound, the learning rate is set 
to 0.01, the weight decay parameter is 0.005, the mean values 
between the high and low importance groups are 0.249125 and 
0.230846 respectively, and the number of training rounds is 50.

4.3. Comparison with mainstream models

In order to verify the superiority of our model, we compare it 
with current mainstream models in both one-stage and two-
stage categories, which include ATSS, CASCADE-RCNN , FASTER-
RCNN , SSD300, Retinanet, and YOLOVX. Table 1 lists the 
comparison of our proposed SteelGuard-yolo with these 
mainstream algorithms. It can be seen that our algorithm 
outperforms most of the algorithms for comparison, with 
Map50 reaching 0.690, which is an improvement of 0.072 over 
the initial YOLOv5s. We made predictions using a one- and two-
stage typical model for target detection and our model, 
respectively, and Fig. 5 shows the visualization results, where (a) 
a one-stage typical model of YolovX is used, (b) a two-stage 
typical model of Faster-Rcnn, (c) is ssdlite, (d) is atss, and (e) is 
our proposed SteelGuard-yolo.

Fig. 5. Comparison of the detection effectiveness of the 
mainstream algorithms in phase I and II and SteelGuard-yolo on 
the NEU-DET dataset Example. (a) YolovX (b).Faster-Rcnn (c) 
ssdlite (d) atss (e) SteelGuard-yolo. the actual detection accuracy 
of our proposed SteelGuard-yolo in the figure outperforms the 
other algorithms from (a) to (d).
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Table 1. Comparison of SteelGuard-yolo's detection effect with 
mainstream models on NEU-DET dataset

Models Map50 Crazing
Inclusio

ns
Patches

Pitted 

surface

Rolled-in 

scale

Scratch

es

ATSS 0.458 0.312 0.256 0.712 0.648 0.563 0.258

FASTER-RCN

N
0.745 0.968 0.415 0.909 0.998 0.909 0.273

SSD300 0.973 0.945 0.982 1.000 0.981 1.000 0.930

Retinanet 0.193 0.204 0.029 0.627 0.057 0.221 0.020

YOLOVX 0.397 0.314 0.226 0.611 0.478 0.511 0.242

YOLOV5s 0.618 0.269 0.739 0.839 0.681 0.475 0.704

SteelGuard-y

olo
0.690 0.408 0.765 0.847 0.761 0.584 0.772

4.4. Ablation experiments

To further validate the effectiveness of our proposed module, 
we conduct extensive ablation experiments for NEU-DET. 
Following the same experimental protocol, we take YOLOv5s 
without pre-trained weights as the baseline model, and then 
add components at each position on top of it. As can be seen 
from Table 2, compared to the original YOLOv5s model, our 
proposed SteelGuard-yolo improves the APs in all categories, 
among which Crazing,Pitted surface,Rolled-in scale, and 
Scratches are significantly improved, with 13.9%, 8%, 10.9%, and 
6.8% respectively.

Table 2. Comparison of detection accuracy of different 
structures.Backbone denotes the improvement done in 
Backbone part, Neck denotes the improvement done in Neck 
part, Head denotes the improvement done in Head part and 
EIOU denotes the replacement of the loss function with EIOU.

Models Map50 Crazing
Inclus

ions
Patches

Pitted 

surface

Rolled-in 

scale

Scrat

ches

YOLOV5s 0.618 0.269 0.739 0.839 0.681 0.475 0.704

YOLOV5s-Backbone-EI

OU
0.669 0.330 0.774 0.882 0.755 0.485 0.784

YOLOV5s-Head-EIOU 0.679 0.335 0.786 0.889 0.783 0.481 0.799

YOLOV5s-Backbone-N

eck-Head
0.676 0.322 0.753 0.864 0.787 0.521 0.809

YOLOV5s-Backbone-N

eck-EIOU
0.667 0.330 0.713 0.660 0.764 0.516 0.814

YOLOV5s-Backbone-H

ead-EIOU
0.687 0.358 0.768 0.853 0.817 0.533 0.793

YOLOV5s-Neck-Head-E

IOU
0.686 0.361 0.773 0.881 0.790 0.528 0.785

YOLOV5s-Backbone-N

eck-Head-EIOU
0.690 0.408 0.765 0.847 0.761 0.584 0.772

5. Conclusion
In this paper, an algorithm for detecting defects on steel 
surfaces is proposed. By replacing the original C3 module in 
Backbone with an improved C2f module with weight 
aggregation, and introducing the BiFormer attention 
mechanism in front of the SPFF module to enhance the 
perceptual ability of the model, the accuracy and robustness of 
target detection are improved. In Neck, the up-sampling 
method is designed to combine the parallelism of bilinear 
interpolation and inverse convolution, which realizes the more 
accurate mutual fusion of different scale features. The C3 
module of Neck is replaced by the MSDA module, which 
suppresses the background information and emphasizes the 
perceptual region. The Simam attention mechanism is 
introduced in front of the Conv module of the detection head to 
better extract the key target information without introducing 

too many parameters. Finally, the original loss function is 
replaced with EIOU to improve the localization accuracy. In our 
future work, we will further develop the lightweight backbone 
feature extraction network and new feature fusion methods to 
simplify the network structure architecture and achieve an 
effective balance between high speed and high accuracy.
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