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Abstract
The distribution of resistance coefficients of heat supply pipe networks is the key data 
guiding the hydraulic balance adjustment of heat networks. Since the heat supply pipe 
network is composed of many pipe segments and the resistance coefficient of each pipe 
segment is different during heat supply operation, the identification of the resistance 
coefficient of the heat supply pipe network is an optimization problem with multiple 
objective functions. In this paper, a high-dimensional multi-objective differential 
evolutionary algorithm based on global sorting is developed as a method to identify the 
resistance coefficients of the heat network and the multi-objective algorithm is applied to 
the resistance identification of the heat network, and the computational process of 
resistance identification is improved. The fuzzy mathematical method is applied to the 
process of resistance identification, and a set of optimal solution sets are generated 
through the identification of each pipe segment and the optimal solutions are selected from 
the optimal solution sets based on the fuzzy degree of subordination to solve the problem 
of determining the optimal solutions. The problem of determining the optimal solution is 
solved. The results show that compared with the single-objective algorithm, the high-
dimensional multi-objective differential evolutionary algorithm based on global sorting 
produces a uniform and concentrated optimal solution set, and the optimal solution 
accuracy is higher.
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1. Introduction
Heating systems are critical infrastructure for cities in northern 
China. With the rapid development of Internet of Things (IoT) 
technology, the urban centralized heat supply system is 
transforming into a new type of heat supply system that is 
jointly composed of a heat supply physical equipment network, 
heat supply IoT, and heat supply information management 
platform. In the new heating system, intelligent regulation 
devices with communication functions and heat metering 
instruments were installed at the heat inlets of heat consumers. 
The application of intelligent regulating devices allows heat 
users to actively adjust hot water flow according to their room 
temperature demand, realizing accurate heat supply. However, 
the independent adjustment of many heat users will lead to 
real-time changes in the resistance distribution of the pipeline 
network, which will also make the flow regulation of the heat 
station face greater difficulties. If the flow rate adjustment of 
the heat station can not adapt to the heating needs of the heat 
users, it will lead to system hydraulic imbalance, resulting in 
energy waste [1]. To realize the accurate flow regulation of the 
heat station, it is necessary to grasp the changes in the 
resistance distribution of the heat network in real time.

The continuous development of the heat metering system and 
the application of a large number of intelligent heat metering 
instruments make it possible to obtain real-time changes in the 
flow rate of each user through the heat supply information 
management platform, which provides a data basis for the real-
time identification of the resistance distribution of the heat 

network. Lin [2], Wang et al. [3] calculated the resistance 
coefficients of the pipe network based on the generalized 
inverse matrix theory by using multiple sets of hydraulic 
conditions. Bekibayev et al. [4] determined the resistance 
coefficients of the pipes by comparing the results of hydraulic 
calculations with the actual data from the SCADA system. 
Kaltenbacher et al. [5] proposed a method for identifying the 
resistance coefficients of individual pipes in a water supply 
network using the inverse of the steady-state hydraulic 
equations of the network. Zecchin et al. [6] used a particle 
swarm algorithm to identify the resistance of pipe networks. 
Dini and Tabesh [7] completed the identification of resistance 
coefficients of pipe networks using an ant colony optimization 
algorithm. Savic and Walters [8], Lingireddy and Ormsbee [9], 
Fan et al. [10], Liang [11] and Liu et al. [12] successfully applied 
genetic algorithms to the resistance identification of heating 
pipe network. Sherri et al. [13], Lv [14], Zhou et al. [15] used the 
improved genetic algorithm to improve the efficiency of 
resistance coefficient optimization identification of heat supply 
network.

In the above literature, the deviation between the measured 
value of each flow or pressure measurement point and the 
calculated value of the corresponding theoretical model is 
treated with the weighted sum of squares, and the weighted 
sum of squares is used as the objective function for the 
identification of the resistance distribution of the pipe network. 
When this method is used for optimization, there will be several 
sets of solutions that satisfy the objective function and the only 
solution cannot be determined [16,17,18,19]. To solve this 
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problem, Greco and Giudice [20] and Wang et al. [21] calculated 
the identification results that could meet the application 
requirements of hydraulic calculation by using the multi-
condition iterative identification algorithm. Xu et al. [22] used 
multiple hydraulic conditions to control the relative error of the 
impedance identification value. However, the above literature 
still uses genetic algorithms and other single-objective 
algorithms to solve the problem. The single-objective algorithm 
only considers the convergence of solutions, which makes the 
total objective function value lower than the convergence 
accuracy and fails to consider the uniformity of the distribution 
of solutions, resulting in an uneven distribution of solutions [23,
24]. In other words, when the convergence accuracy of the total 
objective function is satisfied, the solution is not distributed 
evenly. The calculated values of the theoretical model of some 
measuring points are close to the observed values, while the 
calculated values of the theoretical model of some measuring 
points are different from the observed values.

The resistance identification of the heating network is a multi-
objective optimization problem, whose goal is to find a set of 
resistance coefficients that make the calculated flow value in the 
hydraulic model equal to the actual observed value. The 
resistance coefficient of each pipe section is the decision 
variable, and the sub-objective function is the error function 
between the measured value of the flow or pressure 
measurement point and the calculated value of the theoretical 
model. In summary, this paper proposes a high-dimensional 
multi-objective differential evolution algorithm based on global 
ranking for pipe network resistance identification. The high-
dimensional multi-objective differential evolution algorithm is 
applied to the resistance identification of the pipe network, 
which improves the uniformity of the distribution of the 
identification results and realizes the resistance identification 
with high convergence, high accuracy, and high stability. The 
optimal solution is obtained by the method based on fuzzy 
mathematics, which makes the calculated value of the 
theoretical model and the observed value of all the 
measurement points close to each other.

The rest of the paper is arranged as follows: Section 2 describes 
the mathematical description of the resistance identification of 
the heating system. In Section 3, the resistance identification of 
heating system is regarded as a multi-objective optimization 
problem, the process of multi-objective resistance identification 
is introduced and the calculation process of resistance 
identification is improved. The fuzzy mathematics method is 
applied to the resistance identification process, a group of 
optimal solution sets is generated by identifying each pipe 
section, and the optimal solution is selected from the optimal 
solution set according to the fuzzy membership degree, the 
problem of determining the optimal solution is solved. In 
Section 4, the multi-objective differential evolution algorithm 
based on global ranking is applied to practical engineering and 
compared with the single-objective differential evolution 
algorithm. The conclusions of this paper are discussed in 
Section 5.

2. Mathematical description of the drag 
coefficient optimization identification problem

In the identification process of the resistance coefficient of the 
pipe network, since the actual resistance coefficient in the pipe 
network cannot be obtained by measurement, it is impossible to 
compare the difference between the actual resistance value and 
the identification value to determine whether the identification 
is accurate. With the wide application of heat metering meters 
with remote communication functions in the heating pipe 
network, the flow at the heating inlet of each user in the heating 
pipe network can be measured in real-time. Therefore, after the 

resistance coefficient distribution of the pipe network is 
identified, the calculated flow at each user inlet of the heating 
network can be calculated by solving the hydraulic model [25] 
by the basic circuit method. Comparing the calculated flow with 
the measured flow, we can judge whether the identification 
result is accurate or not. According to this scheme, the heating 
pipe network resistance identification is based on the known 
pipe network topology, through the intelligent optimization 
algorithm, to find a set of appropriate resistance values to 
minimize the difference between the calculated flow value and 
the measured value of each measurement point, where the 
resistance coefficient s  of each pipe section is the decision 
variable, and the difference function of the calculated flow value 
and the measured value of each measurement point is the 
objective function. Since the number of measurement points in 
a heating pipe network is often less than the number of pipe 
segments, the identification of resistance in a heating pipe 
network involves n -dimensional decision variables and m
-dimensional objective functions, forming a multi-objective 
optimization problem as shown in Eq. (1):

min y = f (s ) = (f1(s ), f2(s ) . . . , fm (s )) (1)

where:

fm (s ) = ∣ GMm −GCm  ∣ , m = 1, 2, . . . , m (2)

s = (s1, s2, . . . , sn ) ∈ S (3)

sn ,min ≤ sn ≤ sn ,max (4)

y = (y1, y2, . . . , ym ) ∈ Y (5)

 In Eq. (2), GMm  is the calculated flow rate value of the m th 
measurement point, m3/h; GCm  is the measured flow rate value 
of the m th measurement point, m3/h. In Eq. (3), s  is the 
resistance coefficient of the recognized pipe section, Pa/(m3/h)2; 
S  is the n-dimensional decision space. In Eq. (4), sn ,min is the 
lower limit of the resistance coefficient of the pipe section, 
Pa/(m3/h)2; sn ,max is the upper limit of the resistance coefficient 
of the pipe section, Pa/(m3/h)2. In Eq. (5), y  is called the objective 
function, and Y  is the m-dimensional objective space [26].

Affected by the system running time, the thermal user's self-
regulation and other factors, the actual resistance coefficient of 
the pipe section will deviate from the design resistance 
coefficient to a certain extent, so there are two situations in 
determining the search range of the resistance coefficient of 
each pipe section.

1) There is no variable resistance attachment on the pipe 
section. When there is no variable resistance attachment on the 
pipe section, the actual resistance coefficient of the pipe section 
will only deviate from the design resistance coefficient to a 
certain extent. The resistance search range in this case is 
calculated as shown in Eq. (6):

sn ,n =
8(λ ln

dn
+ ∑ξn )ρn

π2dn
4

(6)

0.8sn ,n ≤ ss ≤ 1.2sn ,n (7)

where sn ,n  is the design resistance coefficient of the pipe; λ  is 
the friction resistance coefficient of the pipe; dn  is the diameter 
of the pipe section, mm; ln  is the length of the pipe section, m; 
ξn  is the local resistance coefficient of the pipe; ρ  is the density 
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of the fluid in the pipe section, kg/m3; ss  is the resistance search 
range; 0.8, 1.2 for the search range coefficients, based on the 
practical experience of the project to determine.

2) There are attachments on the pipe section. When there are 
variable resistance accessories such as valves on the pipe 
section, the range of resistance coefficient of the pipe is 
calculated according to the method in case 1), and then the 
range of resistance variation of the valve is calculated according 
to the valve opening range. Finally, the total resistance system 
search range of the pipe section is determined by adding the 
two resistance coefficient ranges.

3. Resistance recognition process of high-
dimensional multi-objective differential 
evolutionary algorithm based on global sorting

The heating pipe network system is complex and the number of 
flow measurement points is large, so the number of objective 
functions is usually greater than four. According to the 
definition of a high-dimensional multi-objective optimization 
problem [27], the heating pipe network resistance identification 
problem is a high-dimensional multi-objective optimization 
problem.

Based on the multi-objective and high latitude characteristics of 
the resistance identification problem, the use of single-objective 
optimization algorithms for resistance identification is prone to 
problems such as poor convergence and low accuracy of 
results. In this paper, the high-dimensional multi-objective 
optimization algorithm is applied to the resistance identification 
problem of the heat supply pipe network, and a high-
dimensional multi-objective differential evolution (Global 
Ranking based Many-objective Differential Evolution (GR-
MODE)) algorithm based on Global Ranking is proposed to 
optimize the identification of resistance coefficients of the heat 
supply system. The GR-MODE algorithm is used to obtain the 
optimal solution set by identifying the resistance of the pipe 
network, and a fuzzy mathematical method based on the 
optimal solution set is used to select the solution with the 
highest degree of satisfaction as the optimal solution. The 
optimal solution is the final result of the resistance identification 
of the pipe network.

GR-MODE algorithm, which improves the evaluation method of 
individual fitness of single-objective algorithm, the evaluation 
criterion of optimizing populations for comparative ranking to 
adapt to high-dimensional multi-objective optimization 
problems, and adopts differential evolutionary algorithm as the 
evolutionary strategy of the algorithm, which improves the 
algorithm's global search ability and convergence. The 
resistance identification process based on the GR-MODE 
algorithm is shown in Figure 1.

3.1 Hydraulic calculation model

After determining and obtaining the resistance coefficient of the 
pipe network, the hydraulic calculation model is invoked to 
calculate the flow rate values at each measurement point and 
compare them with the observed values to determine whether 
the termination conditions are satisfied. Based on nodal 
pressure balance and loop pressure drop, the hydraulic 
mathematical model of the heating pipe network shown in Eq. 
(8) is obtained according to the principle of graph theory and 
Kirchhoff's law:

Figure 1. Flowchart for the optimization and identification of drag coefficient based 
on the GR-MODE algorithm

A ⋅ G = Q
B ⋅ H = OHS |G |G + Z − DH (8)

where A  is the basic association matrix of the pipe network; G  is 
the flow rate column vector of each branch pipe section of the 
pipe network of order b × 1; Q  is the node flow rate column 
vector of order n × 1; B  is the independent loop matrix of the 
pipe network; H  is the pressure drop column vector of each 
branch pipe section of the pipe network of order b × 1; S  is the 
diagonal matrix of resistance coefficients of order b × b ; |G |  is 
the absolute value of the flow rate of the pipe sections of order 
b × b  diagonal matrix; Z  is the potential energy difference 
between the two nodes of the branches of order b × 1; DH  is the 
pump head column vector of the b × 1.

3.2 Evaluation method based on global sorting 
of individual fitness
Due to the heating pipe network resistance identification 
problem having the characteristics of multi-objective high 
latitude, using the single-objective algorithm of the fitness 
evaluation method is prone to cause the uniformity of the 
distribution of the population to be poor to produce the 
phenomenon of non-convergence or fall into the local optimum, 
GR-MODE algorithm adopts the calculation method of individual 
fitness to take into account the convergence and distribution of 
the individual indicators within the population, the value of its 
global fitness (Si ) is shown in Eq. (9):

fitness (Si ) = w1GR (Si ) − w2HD (Si ) (9)

where w1 and w2 are weight coefficients to harmonize the 
weights of convergence and distribution, which are taken here 
to be 1.5 and 0.5, respectively; GR (Si ) is the global ranking 
value, defined as the sum of the differences between each Si  in 
the population and the corresponding target values of other 
individuals on all targets. The specific calculation can be done as 
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Eq. (10):

GR (Si ) = ∑
Sj ∈POP

Sj ≠Si

∑
n =1

N

max (fn (Si ) − fn (Sj ), 0)

(10)

Among them:

fn (Si ) = |GMn (Si ) − GCn |, n = 1, 2, ⋯, N (11)

where n  is the target dimension; Sj  is any individual in the 
population different from Si ; fn  is the value of the individual's 
function on the n th target; HD (Si ) is the Harmonic average 
distance of each Si  in the population [27] whose role is to 
estimate the global density of individuals in the population so 
that the approximate optimal solution set can have better 
distribution in the target space, assuming that the Euclidean 
distance of the k  closest individuals in the target space [28] is 
di ,1, di ,2, di ,3, ⋯, di ,k . The Harmonic mean distance Hd (Si ) of 
individual Si  is shown in Eq. (12):

Hd (Xi ) = k
1

di ,1
+ 1

di ,2
+ … + 1

di ,k

(12)

In Eq. (12), k  takes the value NP − 1, where NP  is the number of 
individuals in the population; that is, the density of an individual 
Si  is estimated to cover the effects of all other individuals except 
itself.

3.3 Evolutionary strategy selection for 
populations

At present, intelligent optimization algorithms such as genetic 
algorithms, particle swarm optimization algorithms, cuckoo 
search algorithms, and differential evolution algorithms are all 
used as evolutionary strategies for high-dimensional multi-
objective optimization algorithms. However, the resistance 
identification problem of the heating pipe network requires an 
evolutionary strategy with strong global search ability due to its 
high dimension and large population. The differential evolution 
algorithm is considered to be the best evolutionary strategy 
with its strong global search ability [29]. Therefore, the 
differential evolution algorithm is adopted in this paper as the 
evolutionary strategy of the high-dimensional multi-objective 
evolutionary algorithm to improve the computational 
performance of the high-dimensional multi-objective 
evolutionary algorithm. To ensure the excellent performance of 
the algorithm, it is necessary to set the parameters and 
strategies of the differential evolution algorithm reasonably 
according to the actual situation.

The main parameters of the algorithm include the population 
size NP  (taking the value of 5N − 10N , N  is the individual 
dimension), the variation operator F  (taking the value between 
0 − 1), and the crossover operator CR  (taking the value between 
0.3 − 0.9). To select suitable parameters, each parameter is 
combined and several cases are selected for trial calculations to 
obtain the parameter settings that optimize the performance of 
the algorithm. Through the trial calculations, the NP  value of 
5N , F  value of 0.5, CR  value of 0.9, variation strategy of 
DE /rand /1, and crossover strategy of binomial crossover are 
set for the secondary heating network having 40 to 80 pipe 
segments.

3.4 Determination of the optimal solution

When the global fitness function value of the algorithm is less 
than 0.001, it terminates and outputs an optimal solution set. 
The purpose of resistance identification of the heating pipe 
network is to find a set of resistance values to guide the 
hydraulic calculation of the heating pipe network, so it is 
necessary to select the optimal solution from the optimal 
solution set to achieve the optimal solution for as many sub-
targets as possible. Therefore, this paper adopts a method 
based on fuzzy mathematics to find the optimal solution set and 
select the solution with the highest satisfaction. The process is 
as follows:

1) Calculation of fuzzy sets

The fuzzy set is determined by the affiliation function shown in 
Eq. (13):

δi = { 0, ei ≥ ei ,max

ei ,max − ei
ei ,max − ei ,min

, ei ,min ≤ ei ≤ ei ,max
1, ei ≤ ei ,min

(13)

where ei ,max is the maximum value of the absolute value of the 
difference between the i th calculated flow rate and the 
observed flow rate in the optimal solution set; ei ,min is the 
minimum value of the absolute value of the difference between 
the i th calculated flow rate and the observed flow rate in the 
optimal solution set.

2) Calculate the fuzzy affiliation degree

For the j th solution in the set of optimally identified solutions, 
its normalized fuzzy affiliation degree δj  can be calculated by Eq. 
(14):

δj =

∑
i =1

NG

δi ,j

∑
j =1

NP

∑
i =1

NG

δi ,j

(14)

The compromise solution is the solution corresponding to the 
maximum value in the set {δj } and NG  is the number of flow 
measurement points.

4. Application ase

A community in Luoyang City, China, is selected as a real case to 
identify the resistance coefficients of its heat network using the 
GR-MODE algorithm and the single-objective algorithm, 
respectively, in order to test the feasibility of this study in real 
engineering and the superior performance of the GR-MODE 
algorithm.

Differential evolution algorithm (DE) is an efficient optimization 
algorithm proposed by Kenneth Price et al. after improving 
evolutionary algorithms such as genetic algorithm. Due to its 
advantages of fewer control parameters and high operating 
efficiency, DE has been widely used in optimization processes 
such as resistance identification of heat supply networks [30]. 
Therefore, this paper chooses the DE algorithm as a comparison 
algorithm to show the performance superiority of the GR-MODE 
algorithm.
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4.1 Case overview
The heating network in this case has been running for about 10 
years since it was put into use, and the heat inlet is equipped 
with self-operated pressure differential valve, remote heat 
meter, and temperature control valve in the household. The 
flow observation data of each household are collected through 
the heat meter and uploaded to the heating monitoring 
platform. Figure 2 shows the heat inlet device diagram of the 
case plot, Figure 3 shows the plan view of the heat supply pipe 
network of the case plot, and Figure 4 shows the topology of 
the heat supply system of the case plot, containing 1 heat 
exchange station and 14 heat inlets. To simplify the 
identification process, this paper simplifies the pipe section after 
the heat inlet into a pipe segment for identification, the solid 
line represents the water supply pipe segment, the dotted line 
represents the return pipe segment, and the dotted line 
represents the heat exchange station or the heating system in 
the building.

Figure 2. Schematic diagram of thermal inlet device

Figure 3. Plan view schematic of district heating network

Figure 4. Spatial topological structure of district heating network

4.2 Analysis of results

To verify the feasibility and good performance of the GR-MODE 
algorithm in practical engineering, GR-MODE algorithm and the 
DE algorithm are respectively used to identify the resistance of 
the case pipe network. In order to avoid the chance of 
identifying results, the pump frequency needs to be changed to 
create different hydraulic conditions for identification. However, 
the actual project cannot arbitrarily change the pump 
frequency, so this paper selects four times of 2:00, 8:00, 14:00 
and 20:00 on February 1, 2023 in the case community as the 
test conditions, and the pump operating frequency is 30Hz and 
runs at a fixed frequency, the corresponding water pump 
pressure difference is 82000 Pa. The temperature difference 
between day and night is large and the thermal demand of 
users at the four selected times is quite different, and the heat 
user engaged in self-regulating behavior so different hydraulic 
conditions can be created to test the applicability of the GR-
MODE algorithm.

In order to simplify the identification of the object, it is assumed 
that the supply and return pipe networks of the heating system 
are mirror symmetrical, that is, the resistance coefficient of the 
water supply section and the return section are considered to 
be the same. The information of pipe diameter and the search 
range of resistance coefficient of each pipe section is shown in 
Table 1.

Table 1. Nature of pipe section and resistance search range

Pipe segment 
number Tube length

 (m)
Pipe diameter

 (mm)

Resistance search 
lower

 limit (Pa/(t/h)2)

Resistance search 
high

 limit (Pa/(t/h)2)
E1 4 DN200 0.019 0.03
E2 54.2 DN80 31.712 49.502
E3 17.9 DN200 0.085 0.133
E4 23.3 DN80 13.658 21.32
E5 14.1 DN200 0.067 0.105
E6 46.3 DN80 27.117 42.328
E7 21.5 DN200 0.103 0.16
E8 109 DN100 19.776 30.87
E9 61.6 DN80 36.076 56.313

E10 20.3 DN80 11.902 18.579
E11 47.4 DN200 0.226 0.353
E12 37.3 DN80 21.813 34.05
E13 61 DN200 0.291 0.454
E14 21.5 DN125 1.21 1.888
E15 41.7 DN100 7.558 11.798
E16 37.8 DN80 22.147 34.572
E17 22.1 DN80 12.926 20.177
E18 23.9 DN80 13.985 21.831
E19 7.7 DN150 0.167 0.26
E20 47.1 DN80 27.577 43.047
E21 45.7 DN150 0.985 1.538
E22 38.8 DN100 7.04 10.99
E23 44.2 DN80 25.847 40.347
E24 21 DN80 12.271 19.154
E25 32.1 DN100 5.828 9.098
E26 24.2 DN80 14.167 22.114
E27 52.4 DN80 30.694 47.912
u1 185.179 2311.437
u2 187.904 2485.103
u3 176.291 5190.842
u4 193.432 2673.524
u5 180.213 4238.581
u6 167.218 5205.427
u7 184.869 2530.211
u8 197.56 5001.832
u9 197.786 4795.671

u10 189.219 1771.339
u11 197.604 2662.436
u12 173.837 3727.313
u13 188.283 2799.541
u14 185.472 7157.587

 In order to better evaluate the performance of the algorithm, 
the convergence of the algorithm and the distribution of the 
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results are evaluated by using Generational Distance (GD) and 
Spread Performance (SP) [26]. GD is a convergence evaluation 
metric used to evaluate the degree to which the near-optimal 
solution set obtained by the algorithm approximates the 
desired optimal solution set, and SP is a distributional 
evaluation metric to assess the uniformity of the obtained near-
optimal solution set.

(1) Generational distance is calculated as shown in Eq. (15):

GD = 1
NP ∑

i =1

NP

di
2 (15)

where NP  is the size of the near-optimal solution set; di  is the 
Euclidean distance between the i th solution in the near-optimal 
solution set and the ideal optimal solution set.

(2) The spatial measure is calculated as shown in Eq. (16)

SP = [ 1
NP − 1 ∑

i =1

NP

( d̄ − di )
2]

1
2

(16)

where di  is the minimum Euclidean distance from the i th 
individual in the solution set to the other individuals in the 
solution set.

For the solution sets generated by the algorithm runs, the 
smaller the GD value of the solution set indicates that the near-
optimal solution set obtained by the algorithm is closer to the 
ideal optimal solution set, and the smaller the SP value nearly 
indicates that the near-optimal solution set is more uniform. 
The statistics of GD and SP corresponding to the optimal 
solution set obtained by the GR-MODE algorithm and the same 
number of solution sets obtained by the DE algorithm in 
multiple runs are shown in Table 2. The results show that the 
distribution uniformity of the near-optimal solution sets 
obtained by the GR-MODE algorithm as well as the degree of 
approximation to the ideal optimal solution set are better than 
that of the DE algorithm.

Table 2. Statistics of GD and SP results

Norm Arithmetic Working 
condition 1

Working 
condition 2

Working 
condition 3

Working 
condition 4

GD
DE 8.28987×10−4 7.68482×10−4 8.29759×10−4 7.1242×10−4

MODE 1.52189×10−4 1.06751×10−4 1.23806×10−4 9.82749×10−5

SP
DE 1.001×10−2 1.06×10−2 9.94×10−3 9.13×10−3

MODE 1.92×10−3 1.8×10−3 2×10−3 1.6×10−3

 The performance of the optimal solutions obtained by the GR-
MODE algorithm and the DE algorithm is compared in terms of 
the minimum value and distribution of the relative error 
obtained for the flow rate. The solutions with maximum and 
minimum fuzzy affiliation are selected from the set of optimal 
solutions for the cases generated by the algorithms and 
analyzed with the help of box plots for visual comparison. In 
Figure 5, DE (high) and DE (low) represent the solutions with the 
largest and smallest fuzzy affiliation in the set of optimal 
solutions generated by DE algorithm in several runs, and GR-
MODE (high) and GR-MODE (low) represent the solutions with 
the largest and smallest fuzzy affiliation in the set of optimal 
solutions generated by GR-MODE algorithm in many runs, 
respectively. As can be seen from the figure, the distribution of 
the relative error of the flow obtained by the GR-MODE 
algorithm in the case is more concentrated than that of the DE 
algorithm, and the GR-MODE algorithm is capable of obtaining 
relatively better identification results for each subgoal as far as 

possible.

Figure 5. Flow rate error statistics

 After obtaining the optimal solution set, the optimal solution is 
found in the optimal solution set by fuzzy mathematical 
methods, and in order to improve the reliability of the results, 
multiple working conditions are used for calculation, and the 
average value is taken as the final calculation result. The more 
the number of conditions used in the identification process, the 
more reliable the results of resistance identification will be, but 
the time required for identification will also increase. In order to 
make full use of the number of working conditions to identify 
the resistance coefficient of the pipe section within a limited 
time, a restriction is added to the number of working 
conditions: when the relative change between the average 
value of the identification result under the current working 
condition and the average value of the identification result 
under the previous working condition of any pipe section is less 
than 1%, the optimal identification of the resistance coefficient 
of the pipe section is stopped, and the average value of which is 
taken as the final identification result. The scatter point in each 
column in Figure 6 corresponds to the error between the 
average value of the resistance under the current working 
condition and the average value of the resistance under the 
previous working condition of the pipe section, as shown in the 
figure the case in the 20th working condition stops the 
identification, and the figure outputs the identification results 
as shown in Table 3.

Table 3. Identification results

Serial 
number

Resistance 
coefficient
 (Pa/(t/h)2)

Serial 
number

Resistance 
coefficient
 (Pa/(t/h)2)

Serial 
number

Resistance 
coefficient
 (Pa/(t/h)2)

E1 0.024 E15 9.599 U2 501.091
E2 40.507 E16 28.307 U3 864.900
E3 0.106 E17 16.527 U4 529.917
E4 17.510 E18 17.863 U5 1068.557
E5 0.085 E19 0.213 U6 821.867
E6 34.618 E20 35.093 U7 246.768
E7 0.129 E21 1.254 U8 295.601
E8 24.720 E22 8.967 U9 396.599
E9 45.968 E23 33.167 U10 412.076

E10 15.257 E24 15.687 U11 872.400
E11 0.283 E25 7.414
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Figure 6. Scatter plot of relative errors by generation for operating conditions

E12 27.828 E26 18.176
E13 0.365 E27 39.254
E14 1.548 U1 438.436

 The optimal solutions obtained by the GR-MODE algorithm and 
the solutions obtained by the DE algorithm, which are brought 
into the hydraulic model, are shown in Figure 7 for the errors 
between the calculated and measured values of the theoretical 
model of the flow measurement points. From the figure, it can 
be seen that the errors of the GR-MODE algorithm are less than 
1%, with a maximum error of 0.98%. The errors of the DE 
algorithm are mostly between 1% and 5%, with a maximum 
error of 6.25%, which indicates that the optimal solution 
obtained by the GR-MODE algorithm has a higher accuracy.

Figure 7. Discrepancy between theoretical model calculations and measured values

5. Conclusions
For the problem of multi-objective identification of pipe network 
resistance, this paper applies a high-dimensional multi-objective 
differential evolutionary algorithm based on global sorting to 
the problem of identifying resistance coefficients of heat supply 
pipe network to achieve high-precision and high-convergence 
resistance identification and uses fuzzy mathematical methods 
to find the optimal solution of resistance coefficients in the 
optimal solution set, which solves the problem of single-
objective algorithms being unable to determine the optimal 

solution of the same pipe section for multiple identifications so 
that the identification of the resistance coefficient can better 
guide the operation and regulation of the pipe network. The 
following conclusions are obtained through the verification of 
actual cases:

1. The resistance identification of a high-dimensional multi-
objective differential evolution algorithm based on global 
sorting has high accuracy and good convergence 
performance.

2. The distribution of the solutions in the solution set 
obtained by the high-dimensional multi-objective 
differential evolutionary algorithm based on global sorting 
is very uniform, and it has excellent performance in heat 
supply pipe network resistance identification, and the 
optimal solution found in the optimal solution set by the 
method of fuzzy mathematics is very high in accuracy, and 
it can be applied in practical engineering.
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