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Abstract
For open quantum systems, a short-time evolution is usually well described by the effective 
non-Hermitian Hamiltonians, while long-time dynamics requires the Lindblad master 
equation,in which the Liouvillian superoperators characterize the time evolution. In this 
paper, we constructed an open system by adding suitable gain and loss operators to the 
Chen insulator to investigate the time evolution of quantum states at long times by 
numerical simulations. Finally, we also propose a topolectrical circuits to realize the 
dissipative system for experimental observation. It is found that the opening and closing of 
the Liouvillian gap leads to different damping behaviours of the system and that the 
presence of non-Hermitian skin effects leads to a phenomenon of chiral damping with sharp 
wavefronts. Our study deepens the understanding of quantum dynamics of dissipative 
system.
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Abstract: For open quantum systems, a short-time evolution is 
usually well described by the effective non-Hermitian 
Hamiltonians, while long-time dynamics requires the Lindblad 
master equation,in which the Liouvillian superoperators 
characterize the time evolution. In this paper, we constructed 
an open system by adding suitable gain and loss operators to 
the Chen insulator to investigate the time evolution of quantum 
states at long times by numerical simulations. Finally, we also 
propose a topolectrical circuits to realize the dissipative system 
for experimental observation. It is found that the opening and 
closing of the Liouvillian gap leads to different damping 
behaviours of the system and that the presence of non-
Hermitian skin effects leads to a phenomenon of chiral damping 
with sharp wavefronts. Our study deepens the understanding of 
quantum dynamics of dissipative system.

Key words:open quantum system, chiral damping, topolectrical 
circuits.

1. Introduction
With the laboratory advances in modulating dissipation and 
quantum coherence,the theory of open and nonequilibrium 
systems has received renewed attention [1,2]. Non-Hermitian 
Hamiltonians have been used to describe a large number of 
non-conservative systems, such as classical waves with gain and 
loss [3-8], solids with finite quasiparticles lifetimes [9-11], and 
open quantum systems[12-14]. The unique features of non-
Hermitian systems have been recognized in a variety of physical 
settings, in particular the non-Hermitian skin effect(NHSE) 
[15,16], where the eigenstates of the system are exponentially 
localized on the boundary. In recent years, the impact of NHSE 
has been extensively studied [17-29].

NHSE was also found in open quantum systems [30]. For open 
quantum systems, the non-Hermitian effective Hamiltonian 
describes the time evolution of the wavefunction under post-
selection conditions, while the time evolution of the density 
matrix (without post-selection) is driven by the Liouvillian 
superoperator in the master equation [2,31-33]. It has been 
found that the Liouvillian superoperator can also exhibit non-

Hermitian skin effects and that such effects can significantly 
affect the dynamical behaviour of the system at long times 
[30,34-43]. In a large class of open quantum systems, the 
quantum state in the long time limit converges to the steady 
state by algebraic damping under periodic boundary conditions 
and exponential damping under open boundary conditions [30].

In recent years, it has been discovered that topolectrical circuits 
can be used as platform to simulate the lattice systems, thus 
enabling the study of topological states in topolectrical circuits 
and gradually developing the field of topological circuitry [44-
46]. Some of the early experiments and theories were 
extensively studied in Hermitian systems [45,47]. Since the 
phenomena of non-Hermitian systems are more rich than that 
of Hermitian systems, increasing attentions are contributed into 
the non-Hermitian physics, and some interesting phenomena 
have also been realized by topolectrical circuits [48-52].

Previous studies on open quantum dynamics and topolectrical 
circuits have mainly focused on one-dimensional non-Hermitian 
models, and relatively few studies on higher-dimensional non-
Hermitian models. In this paper, we consider a two-dimensional 
open quantum system based on Chen insulators. Following the 
method developed in Ref. [30], we study the dynamics of this 
system in terms of the damping matrix derived from the 
Liouvillian superoperator, and give a model of topolectrical 
circuit realization of the damping matrix based on Kirchhoff’s 
theory. It is found that due to the NHSE of the damping matrix, 
the long-time dynamics of the system under open boundary 
conditions is significantly different from that under periodic 
boundary conditions.

Our paper is organized as follows. In section II，we briefly 
review the general framework on how to convert Liouvillian 
operators with linear jumps to non-Hermitian damping matrix. 
In sections III and IV, we compute and numerically simulate the 
long-time evolution of the model. In section V we give the circuit 
model of the non-Hermitian damping matrix . Finally, we 
conclude in section VI.
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2. General formalism of damping matrix

An open quantum system undergoing Markovian damping 
satisfies the Lindblad master equation

dρ
dt

= − i [H , ρ ] + ∑ (2Lμ ρLμ
† − {Lμ

† Lμ , ρ}) , (1)

 where ρ  is the density matrix of the system, H  is the 
Hamiltonian that represents unitary evolution of the system, 
and Lμ  are Lindblad dissipation operators describing the 
quantum jumps induced by the coupling to the environment. 

The above equation can be abbreviated as dρ
dt

= Lρ  , where L  is 
called the Liouvillian superoperator.By regarding the density 
matrix ρ  as a vector that consists of matrix elements ρi ,j  , L  is 
represented as a matrix whose elements are given by[53]

Lij ,kl = ∑
μ

2Lμ ;i ,k Lμ ;l ,j
† − i (H − i∑

μ
Lμ

† Lμ )i ,k
δl ,j +

i (H + i∑
μ

Lμ
† Lμ )l ,j

δik .

(2)

 These representations enable one to treat the Lindblad 
equation as a linear equation. In other words, the dynamics of 
the system can be understood in terms of the eigenvalue 
problem of the Liouvillian matrix: Lρ(i ) = λi ρ

(i ) .  The Hamiltonian 
and dissipators can be expressed in terms of 2n Majorana 
fermions[54]

H = ∑
i ,j =1

2n

γi Hij
M γj , Lμ = ∑

i =1

2n

lμ ,i
M γi

(3)

 where γi  are Majorana fermions satisfying {γi , γj } = 2δij  . The 

matrix HM  is chosen to be an antisymmetric matrix, (HM )T = −

HM  . Defining Mij = ∑μ lμ ,i
∗ lμ ,j ,  Mij

M = ∑μ ( lμ ,i
M )∗lμ ,j

M  , we have 

MM = 1
4 M ⊗ (1 + σy ) . Under the third quantization[54,55], the 

Liouvillian superoperator is expressed as a quadratic form of 
the 2n complex fermions (4n Majorana fermions)

L= 2
i (c† c ) ( − ZT Y

0 Z ) ( c

c†) , (4)

 where Z = HM + iRe (MM )T , Y = 2Im (MM )T ,  and c = (c1, c2, . . . ,
c2n ) are third quantized complex fermions. Through the above 
expression,we can obtain the Liouvillian eigenspectrum[54,55]

λ = ∑
i
Ei vi

(5)

 with vi ∈ {0, 1} ，where {Ei }  is the eigenspectrum of 4iZ  . Here 
λ  contains valuable information of the full density-matrix 
dynamics, and it can be easily obtained from the damping 

matrix X with Xij = ihji − ∑μ lμ ,j
∗ lμ ,i  [36].Rewriting M as M =

Mr + iMi  ,where Mr , Mi  are real matrices,we have MM = 1
4 (Mr +

iMi ) ⊗ (1 + σy ) . Z  can be further written as

Z = 1
4 (hr ⊗ σy + ihi ⊗ 1) + i 1

4 (Mr
T ⊗ 1 − iMi

T ⊗ σy )

= 1
4 (hr + Mi

T ) ⊗ σy + i 1
4 (hi + Mr

T ) ⊗ 1
(6)

 Therefore,

det (4iZ − λE ) = det ( − (hi + Mr
T ) − λ hr + Mi

T

− (hr + Mi
T ) − (hi + Mr

T ) − λ )
= det (X − λE )det (X∗ − λE )

(7)

 The eigenvalue of 4iZ  are the union of the eigenvalues of X  and 
X∗ ,which gives the Liouvillian eigenspectrum.

Then we outline the general form of the Lindblad damping 
matrix in open quantum systems[30].We consider tight-binding 
models whose Hamiltonian can generally be written as H =

∑ ij hij ci
†cj  ,where ci

†, ci  are the creation and annihilation 
operators on lattice site i  , and hij = hij

∗  is the hopping amplitude 
between the lattice points of the system ( i ≠ j  ) or onsite 
potential ( i = j  ). It is convenient to define the single-particle 
correlation function Δij (t ) = Tr [ci

†cj ρ (t )] to observe the time 
evolution of the density matrix. Each cell is coupled to the 

environment through the gain jump operator Lμ
g = ∑ i Dμi

g ci
† and 

loss jump operator Lμ
l = ∑ i Dμj

l ci  . Substituting the Lindblad 
quantum master equation into the time evolution of the single-
particle correlation function,we can obtained

dΔ(t)
dt

= XΔ(t) + Δ(t)X† + 2Mg , (8)

 where X = ihT − (Ml
T + Mg ) is the damping matrix with (Mg )i j =

∑μ Dμi
g ∗Dμj

g  and (Ml )i j = ∑μ Dμi
l ∗ Dμj

l  .The steady state correlation 
Δs = Δ(∞) , to which the long-time evolution of any initial state 
converges, is determined by dΔs /dt = 0 or XΔs + Δs X† + 2Mg = 0 . 
Focusing on the deviation towards the steady state Δ~(t ) = Δ(t ) −
Δs  , whose time evolution is dΔ~(t )/dt = XΔ~(t ) + Δ~(t )X†,  we can 
integrate it with Eq. (1) to obtain

Δ~(t) = eXt Δ~(0)eX †t . (9)

 Therefore, the dynamical behaviour of the system can be 
characterized by the damping matrix.

3. Model
In this paper, we consider the Chen insulator model with the 
Hamiltonian in momentum space as

h (k ) = lx sinkx σx + ly sinky σy + ϵk σz , (10)

 where ϵk = m + tx coskx + ty cosky  .Let each unit cell contain a 
single loss and gain

dissipator,

Lx
l =

2γ

2 (e
− π

4 i
cxA + e

π
4 i

cxB )

Lx
g =

2γ

2 (e
π
4 i

cxA
† + e

− π
4 i

cxB ),

(11)
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 where x  denotes the lattice site, A , B  refer to the sublattice. The 
Fourier transformation of X  is X (k ) = ihT ( − k ) − Ml

T ( − k ) −
Mg (k ) . The gain and loss dissipators are intra-cell, so these 

M (k ) matrices are independent of k  , Ml (k ) =
2

2 λ + 1
2 σx −

1
2 σy , Mg (k ) =

2
2 λ + 1

2 σx + 1
2 σy  . Then, the damping matrix in 

momentum space is

X (k ) = i [lx sinkx σx + ly sinky σy + ϵk σz + i [λσx + λσy ] −
2λ . (12)

 It can be written in the form of left and right eigenvectors,

X = ∑
n

λn |uRn ⟩⟨uLn |, (13)

 where X† |uLn ⟩ = λn
∗ |uLn ⟩, X |uRn ⟩ = λn |uRn ⟩ .  It is worth noting 

that our Ml  and Mg  satisfy Ml
T + Mg = 2Mg  , guaranteeing that 

ΔS = 1
2 I2L ×2L  is a steady state solution , where L = Nx × Ny  , L is 

the system size, and Nx , Ny  are the size in x,y direction 
respectively. We assume that the initial state of the system is 
the completely filled state, i.e., Δ(0) is an identity matrix. 
Therefore, Eq.(9) can be re-expressed as

Δ~(t) = 1
2 ∑

n ,n′,l

exp[(λn + λn′
∗ )t ]uR

~ (i , n )uL
~ (l , n )uL

∗~ (l , n′)uR
∗~ (j , n′)

= 1
2 ∑

n ,n′

∑
l

exp[(λn + λn′
∗ )t ]uR (i , n )uL (l , n )uL

∗ (l , n′)uR
∗ (j , n′)

∑
k

uR (k , n )uL (k , n )∑
m

uL
∗ (m , n′)uR

∗ (m , n′)

(14)

 According to the dissipative property, Re{λn } ≤ 0 always holds. 
The Liouvillian gap Λ = min [2Re ( − λn )] plays a decisive role in 
long-time dynamics. The opening gap ( Λ ≠ 0 ) implies an 
exponential rate of convergence to the steady state, while the 
closing gap( Λ = 0 ) implies algebraic convergence [34].

4. chiraldamping

For simplicity, the parameters of our model are taken as lx =
ly = 1, tx = ty = − 1. We first study the dynamical behaviour 
under the periodic boundary conditions. Diagonalizing X (k ) , we 
obtain the energy spectrum as shown in Fig. 1. It is found that 
the Liouvillian gap vanishes at m = 1.5 , while the gap opens at 
m = 2.5 . So we expect the damping rate to be algebraic and 
exponential in each case, respectively.

FIG. 1. The eigenvalues of the damping matrix X. Blue: periodic 
boundary; Red: open boundary . The Liouvillian gap under 
periodic boundary condition vanishes for (a) and (b) while it is 
nonzero for (c) and (d). Under open boundary condition, the 
Liouvillian gap is nonzero in all four cases. This significant 
difference between open and periodic boundary comes from 
the NHSE of X. (a) λ = 0.1, m = 1.5 ;(b) λ = 0.5, m = 1.5 ; (c) λ =
0.1, m = 2.5 ; (d) λ = 0.5,  m = 2.5 .

To verify this, we define the site-averaged fermion number 

deviation from the steady state R (t ) = 1
NX NY

∑
x

Rx (t )
2

=

1
NX NY

∑
x

( nx (t ) − nx (t − δt )
δt )

2
,  where Rx (t ) = nx (t ) − nx (∞),  

nx (t ) = ΔxA ,xA (t ) + ΔxB ,xB (t ) . The numerical results are shown in 
Fig. 2. As anticipated, it is observed that the damping of R(t) is 
algebraic for cases black and red lines with m=1.5 while 
exponential for blue and green lines with m=2.5 under the 
periodic boundary condition.

FIG. 2. The damping of site-averaged fermion number towards 
the steady state under periodic boundary condition with size 
L = 30 × 30 . m = 1.5 (black and red) exhibits a slow algebraic 
damping while m = 2.5 (blue and green) is an exponential 
damping. The initial state is the completely filled state.

Next we turn to the open boundary conditions. Since the 
damping matrix X has NHSE, its energy spectrum is no longer 
that of the periodic boundary conditions. At this point all the 
energy spectrums have a non-zero energy gap (red part of Fig. 
1) ,therefore, we expect an exponential long-time damping of 
Δ~(t ) . The numerical simulation in Fig. 3 confirms this 
exponential behaviour with R(t) having a period of algebraic 
damping before entering into the exponential damping. The 
time of the algebraic damping increases with the size L[Fig.3(a)]. 
To better understand this feature, we plot the damping in 
several unit cells in the same x dimension (ix = 1), as shown in 
Fig. 3(b). It can be seen that the left end ( iy = 1) enters the 
exponential damping immediately, and the other sites enter the 
exponential damping in turn according to their different 
distances to the left end.Due to a process of algebraic damping 
that occurs before entering the exponential stage,,there is a 
"damping wavefront" from left ( ix = 1, iy = 1 ) to right ( ix = 1,
iy = Ny  ). This phenomenon is known as "chiral damping".

https://www.scipedia.com/public/File:Draft_Zhong_847600978-image84.png
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FIG. 3. (a) The site-averaged particle number damping under 
periodic boundary conditions (solid line) and open boundary 
conditions (dashed line) for several sizes L. The long-time 
damping of R(t) follows a power law under periodic boundary 
condition, while the damping follows an exponential law after 
an initial power law stage under open boundary condition. (b) 
The particle number damping on several sites. The system size 
is 30×30, and the left end ( ix = 1, iy = 1 ) enters the exponential 
phase from the beginning, followed by the other sites in turn. 
For (a) and (b), the initial state is completely filled state. m = 1.5,
λ = 0.1 .

The phenomenon of chiral damping can be observed more 
intuitively as shown in Fig. 4(a) where the colour shades indicate 
the value of R(t). Under the periodic boundary condition, the 
time evolution follows a slow power law while under the open 
boundary condition, a wavefront moving to the upper right is 
observed. This can be intuitively linked to the phenomenon that 
all eigenstates of X are localized in the upper right corner, which 
arises from the non-Hermitian skin effect of the damping matrix 
X. If the matrix X does not have NHSE under the open boundary 
condition, the fermion number of the system should have a 
similar behaviour of damping under different boundary 
conditions. Therefore, the non-Hermitian skin effect plays an 
important role in open quantum systems and significantly 
affects the dynamical behaviour of open quantum systems.

FIG. 4. The evolution of R(t) at each lattice site under open 
boundary conditions (a) and periodic boundary conditions (b).

5.Experiment realized

Next we give the scheme of topolectrical circuits to simulate the 
damping matrix. Based on the similarity between the Kirchhoff 
equation and the Schrödinger equation, it is possible to 
simulate the Hamiltonian of the system using different circuit 
components, and the different parameters in the Hamiltonian 
can be adjusted independently by various components. The 
circuit Laplacian corresponding to the Hamiltonian can be 
written as

J = D − C + W , (15)

 where W and D are diagonal matrices containing the total 
conductance from each node to the ground and to the rest of 
the circuit, respectively. C is the adjacency matrix of 
conductances [44].

FIG. 5. The structure of topolectrical circuit to realize damping 
matrix under periodic boundary conditions. (a) Connection 
relations between the nodes. The blue solid line box containing 
two “sublattice” nodes A (red) and B (blue) simulates a unit cell 
of X. The black(grey) solid line indicates the coupling between 
nodes in the x(y)-direction. (b)The circuit element structure is 
detailed for the green dashed framed rectangle in (a). (c) 
Internal circuit diagram of the INIC element, consisting of an 
operational amplifier and impedances Z± . The impedance Z  is 
the target element, and different conductance in different 
directions of Vi ,r  can be achieved by connecting the INIC in 
series. Z± satisfies Z+ = Z− . (d) Grounding module of the nodes. 
The resistances RA ,RB  and capacitance C are used to simulate 
the onsite potential, and inductance L allows the Laplacian 
eigenvalue spectrum to be shifted uniformly as desired.

Considering the periodic boundary conditions first, the 
topolectrical circuit for realizing the damping matrix X is 
illustrated in Fig.5. Fig. 5(a) depicts the schematic diagram of 
the overall circuit structure, which gives the connection 
relationship between the nodes. Fig. 5(b) shows the detailed 
circuit component of the unit which is the green dashed box in 
Fig. 5(a). The blue box in Fig. 5(a) represents a unit cell in the 
system, and the two nodes inside it correspond to sublattices A 
(red) and B (blue). The circuit connections in the x and y 
directions are distinguished by black and gray. From Fig. 5(b) we 
can obtain the matrices C and D in Eq. (9), so that

D − C = −

iω ( − i 2
ωR2

coskx − i 2
ωR4

cosky − C1 − i 1
ωR0

i2C2sinkx + 2
ωR6

sinky − i 1
ωR1

+ C1

i2C2sinkx + 2
ωR5

sinky + i 1
ωR1

+ C1 − i 2
ωR3

coskx − i 2
ωR7

cosky − C1 + i 1
ωR0

),

 

(16)

 with C1 = − λ , C2 = lx /2, 1
R0

= 1
R1

− 2( 1
R3

+ 1
R4

), R1 = − 1/ (ωλ ) ,

R2 = − R3 = − 2/tx ,  R4 = − R7 = − 2/ty  ， R5 = − R6 = − 2/ly .

Comparing it with the damping matrix, we need to add 
grounding elements to match the onsite potential. The 
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grounding elements of nodes A and B are shown in Fig. 5(d), 
where the resistors RA ,RB  and capacitors C  simulate the lattice 
potential , and RA ,RB  satisfies RA = − RB  . So the diagonal matrix 
W is

W = ( iωC + 1
RA

+ 1
iωL

iωC + 1
RB

+ 1
iωL ) . (17)

 From Eq. (10) we get the conductance matrix of the circuit of 
Fig. 5(a) at ω  frequency

J (ω ) = −

iω ( − i 2
ωR2

coskx − i 2
ωR4

cosky − (C + C1) − i ( 1
ωR0

+ 1
ωRA

) i2C2sinkx + 2
ωR6

sinky − i 1
ωR1

+ C1

i2C2sinkx + 2
ωR5

sinky + i 1
ωR1

+ C1 − i 2
ωR3

coskx − i 2
ωR7

cosky − (C + C1) + i ( 1
ωR0

+ 1
ωRA

)) +

1
iωL

ϵ

= − iωJP + 1
iωL

ϵ ,

(18)

 where C = (1 − 2)λ  ， 1
RA

= − 1
RB

= − ωm − 1
R0

.  Comparing 

this Laplacian matrix with the damping matrix, the mapping 
relationship can be established by JP ⇔ X  .

FIG. 6. Negative impedance module [22]. (a) A single-port circuit 
to ground. The input impedance is Zg = − Z  ; (b) Free-port 
circuit. Its input impedance at both ends is Zij = Zji = − Z  . The 
markings on the ideal amplifier indicate the output voltage 
versus the input voltage.

Notice that the circuit requires a negative component,which is 
implemented as shown in Fig.6. Fig.6(a) and (b) show the 
equivalent negative impedance modules for a single port to 
ground and a free two-terminal port, respectively. They achieve 
the equivalent negative impedance through an amplifier. 
According to Kirchhoff's law, the input impedance of the single-
port circuit to ground [Fig. 6(a)] can be obtained as

Zg =
Vg

Ig
=

Vg

(Vg − 2Vg )/Z
= − Z . (19)

 The input impedance at both ends of the free port circuit [Fig. 
6(b)] are

Zij =
Vi − Vj

Ii
=

Vi − Vj

[Vi − 2(Vi − Vj )]/Z
= − Z ,

Zji =
Vj − Vi

Ij
=

Vj − Vi

[Vj − 2(Vj − Vi )]/Z
= − Z .

(20)

 That is Zij = Zji = − Z  .

Under the open boundary condition, the hopping amplitude of 
the cells located at the boundary weakens, leading to fewer 
branches connected to the boundary nodes in the circuit model, 
as shown in Fig.7(a). Fig.7(a) gives the connection relationship 
between the nodes of the circuit under the open boundary 
condition, and the circuit nodes can be classified into body 
nodes (in the black dashed box), edge nodes (in yellow) and 
corner nodes (in green). Changes in the branch circuit of the 
nodes at the boundary will cause variations of the matrices C 
and D. The matrix C corresponds to the hopping amplitude 
between the lattice points, which is allowed to change. Whereas 
the change of D is not desired due to the same onsite potential 
under different boundary condition.

Therefore, we need to design specific grounding elements to 
eliminate the effects of variations in D. Owing to the asymmetry 
of the coupling strengths under periodic boundary condition, 
the types of the edge and corner nodes are different for each of 
the four orientations, so there are a total of 16 different 
grounding modules, as shown in Fig. 7(b). The additional 
grounding elements keep the diagonal matrix D+W unchanged, 
i.e., the onsite potential is unchanged, which achieves the 
mapping of the circuit Laplacian in Fig. 7 to the damping matrix 
X under the open boundary condition.

FIG. 7. Schematic diagram of the circuit of the damping matrix X 
under open boundary conditions. (a) Schematic diagram of the 
connection relations among the nodes. The black, yellow and 
green dashed boxes correspond to the body, edge and corner 
nodes, respectively. The circuit connections of the body node 
are the same as those of the periodic boundary, while the edge 
and corner nodes require additional grounding elements to 
regulate the onsite potential. (b) Grounding modules for edge 
and corner nodes . The grounding elements for the edge and 
corner nodes are different for each of the four orientations, 
where the negative impedance elements can be realized by 
Fig.6(a). Note that in addition to these grounding elements, all 
nodes need to be connected to the elements in Fig. 5(d).

6. Conclusion
In summary, we study the dynamical properties of a two-
dimensional open system. The open quantum system is 
constructed by introducing appropriate gain and loss to the 
Chen insulator, and then using the damping matrix derived 
from the Liouvillian superoperator explore its long-time 
evolution. It is found that the site-averaged fermion number 
deviation from the steady state under periodic boundary 
conditions shows a slow algebraic damping when the energy 
gap closes and an exponential damping when the energy gap 
opens. Under open boundary conditions, due to the non-
Hermitian skin effect of the damping matrix, the system exhibits 
the phenomenon of chiral damping that the fermion number at 
each site undergoes a period of algebraic damping before 
entering an exponential damping, and the transition time that is 
proportional to the distance from that site to the boundary. 
Finally, we map the damping matrix in terms of the circuit 
Laplacian to give a model diagram of the topolectrical circuit 

https://www.scipedia.com/public/File:Draft_Zhong_847600978-image123-c.png
https://www.scipedia.com/public/File:Draft_Zhong_847600978-image123-c.png
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implementation of the system.
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