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Abstract
In the contemporary epoch, bolstered by information technology, the quintessence of 
networks is ubiquitously manifested, with a plethora of network types—ranging from the 
Internet, vehicular traffic frameworks, electrical distribution systems, cellular 
communication matrices, to social interconnection webs—being intricately woven into the 
fabric of societal functionality and quotidian existence. The domain of complex networks 
has burgeoned into a fervently pursued research vector, magnetizing an eclectic cohort of 
investigators from disciplines as variegated as mathematics, biosciences, and engineering. 
Notably, fractional calculus has eclipsed its integer-order counterpart by offering enhanced 
precision in the depiction of real-world systems and phenomena. Consequently, the infusion 
of fractional calculus into the modeling of complex networks, to dissect their dynamic 
attributes and attendant control paradigms, has crystallized as a research nexus of 
burgeoning interest, eliciting scholarly discourse at both national and international 
echelons. [Purpose] This inquiry into the synchronization control of fractional-order complex 
networks, predicated on switching topology, endeavors to harness said topology as a 
scaffold for probing the synchronicity inherent within fractional-order complex networks. 
The objective is to augment the operational efficacy of these networks, broaden their 
sphere of applicability, and fortify the synchronal linkage amongst fractional-order complex 
networks and their counterparts. [Method] Predominantly, this exploration is underpinned 
by a synthesis of bibliographic scrutiny and analytical modeling, employing an extensive 
compendium of model equations to elucidate the subject matter. The spotlight is cast upon 
the Caputo fractional-order differential equation, with a focus on assaying the stability traits 
of its equilibrium junctures and formulating more expansive and pragmatic conditions for 
stability. In addition, to facilitate the precise estimation of elusive topologies within complex 
networks, a supplementary network—comprising isolated nodes and a regulatory 
protocol—is conceptualized. [Results] The findings posit that the investigation into 
synchronization control, anchored in switching topology, propels the advancement of 
fractional-order complex networks and holds substantive referential merit. It serves to 
substantiate, to a certain degree, the postulations of antecedent theorists and chart a 
trajectory for ensuing scholarly endeavors in cognate domains, thereby perpetually 
amplifying the pragmatic utility of fractional-order complex networks.
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1. Introduction
In the vanguard of the information epoch, the incursion of 
information technology into myriad sectors is irrefutable. 
Networks of diverse ilk—encompassing transportation, the 
Internet, and mobile communications—have burgeoned under 
its aegis. The enhancement of these networks’ utilitarian value 
stands as a scholarly conundrum, engaging academia and 
industry alike. Notably, the flexibility of distributed networks, 
enabled by switching topology, is commendable; nodes within 
these structures exhibit temporal dynamics. Moreover, 
fractional calculus, with its fidelity in characterizing entities 
bearing memory and hereditary attributes, offers a veracious 
lens for dynamic analysis. Ergo, the integration of fractional 
calculus into complex network studies is not merely 
advantageous but pivotal, encapsulating the mnemonic and 
genetic dynamics of nodal interactions. The investigation into 
the orchestration of fractional-order complex networks, through 
the prism of switching topology, is thus seminal. It lays the 
groundwork for comprehending network coordination, aspiring 
to amplify network adaptability and inter-network consonance.

Within the Chinese academic milieu, the exploration of 
switching topology and fractional-order complex networks has 
been undertaken from multifarious vantage points. Research by 
Wei et al [1] delved into the orchestration and encirclement 
tracking control of disparate unmanned entities within a cluster, 
leveraging switching topology. The common Lyapunov stability 
theorem was employed to substantiate the requisite conditions 
for the attainment of output formation and encirclement 
tracking within these heterogeneous assemblages. The 
proposed methodology's efficacy was corroborated via 
simulation, specifically within heterogeneous clusters 
comprising unmanned aerial and ground vehicles. In parallel, 
Chen et al. [2] probed the iterative learning control for 
consistency within a measurement-constrained multi-agent 
system, also under the purview of switching topology. A 
distributed protocol predicated on the followers' local data was 
formulated, furnishing two adequate conditions to surmount 
the challenges of output consistency. One stipulation facilitated 
the real-time acquisition of iterative learning gains by the 
followers, thereby obviating the dependency on global 
information for learning gain formulation and affirming the 
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algorithm's distributed execution. The algorithm's convergence 
was validated through the λ-norm theory and disc theorem, 
with simulations substantiating its effectiveness. Concurrently, 
Huang et al. [3] embarked on an inquiry into the bipartite 
synchronization within coupled complex-valued neural 
networks, again within the context of switching topology. Their 
focus was twofold: scenarios bereft of a directed spanning tree 
(FDST) and those where each sub-network possesses one 
(PDST). Utilizing an array of Lyapunov functions and the average 
dwelling time approach, they scrutinized the error system's 
convergence, with numerical simulations affirming the study's 
validity. Lastly, Wang and Wang [4] examined the adaptive 
neural network consistency in nonlinear multi-agent systems 
subject to switching topology. They addressed the systems' 
inherent uncertainties via neural network function 
approximation techniques and introduced an adaptive 
smoothing term to mitigate bounded perturbations and 
approximation errors. Subsequently, they authenticated the 
consistency of nonlinear multi-agent systems with 
indeterminate control coefficients within the framework of 
switching topology, ensuring the closed-loop system's 
boundedness. In the ambit of fractional-order complex network 
systems, Meng and Mao [5] have delineated two novel sliding 
mode synchronization methodologies. Predicated on the tenets 
of fractional-order stability theory, a duo of fractional-order 
controllers alongside corresponding sliding surfaces were 
conceptualized, culminating in the establishment of two robust 
conditions conducive to the system’s sliding mode 
synchronization. This research substantiates that, given 
optimally calibrated sliding surfaces and controllers, 
synchronization within fractional-order uncertain complex 
network systems is attainable.

Subsequently, Meng [6] extended this paradigm by probing the 
adaptive proportional-integral sliding mode synchronization 
within analogous systems. Harnessing the synergies of 
fractional-order stability theory and matrix theory, an adaptive 
synchronization schema was realized, with numerical 
simulations affirming the soundness of this approach. 
Concurrently, Yang et al. [7] embarked on an exploration of 
delay projection synchronization and parameter identification in 
two fractional-order complex networks, particularly those 
encumbered with coupling delays. Through meticulous analysis 
and numerical exemplification, they elucidated the efficacy of 
their proposed methodologies, addressing three distinct 
synchronization scenarios and dissecting the influence of 
coupling strength, temporal delays, and projection ratios.

In a similar vein, Ma et al. [8] ventured into the realm of 
topology identification for fractional-order complex networks, 
employing a strategy of variable substitution control. By 
devising a response network predicated on this control 
mechanism and a concurrent parameter update law, they 
derived a set of criteria for achieving both topology 
identification and network synchronization, with numerical 
simulations serving as a testament to the method’s validity. 
Collectively, these scholarly endeavors within the domains of 
switching topology and fractional-order complex networks not 
only enrich theoretical discourse but also chart a definitive 
course for empirical inquiry.

In the realm of global research on switching topology and 
fractional-order complex networks, Ding et al. [9] have probed 
the intricacies of complex modified projective synchronization 
(CMPS) and the parameter estimation within time-varying 
coupled fractional-order complex-valued dynamic networks 
(FOCDN). Their theoretical discourse posits that FOCDN, when 
faced with time-varying delays, can attain CMPS via adaptive 
controllers—a premise substantiated by two numerical 
exemplars within the complex-valued domain, thereby affirming 

the potency of the refined projection strategy for fractional-
order complex networks. Concurrently, Du et al. [10] have 
delved into the delay-dependent finite-time synchronization 
(FTS) criterion pertinent to a subset of fractional-order delay 
complex networks (FODCNs). By leveraging the Young inequality 
and the rules governing fractional-order derivatives of 
composite functions, they unveiled a novel delay-dependent 
fractional-order finite-time convergence principle (FOFTCP), 
wherein the stability duration is contingent upon the temporal 
delay. This newly minted FOFTCP, in concert with a meticulously 
crafted feedback controller, has yielded a fresh FTS criterion for 
FODCNs, the efficacy of which has been corroborated through 
two numerical demonstrations. In a parallel vein, Behinfaraz 
and Ghaemi [11] have embarked on an exploration of the 
identification and synchronization within fractional-order 
complex networks, characterized by switching topology and 
time-variant delays, through the lens of fuzzy methodologies. 
The dynamics of the network nodes, deemed chaotic, were 
instantiated via a circuit realization tailored to these time-delay 
fractional-order dynamics. Employing T-S fuzzy modeling, they 
introduced an innovative representational paradigm for 
fractional-order chaotic systems, with simulations and empirical 
outcomes underscoring the proposed method's performance. 
Selvaraj et al. [12] scrutinized the cluster synchronization and 
the mitigation of disturbances within fractional-order complex 
networks, beset by coupling delays, unknown uncertainties, and 
disturbances (UDs). A modified repetitive control (MRC) block 
was seamlessly integrated into a closed-loop feedback control 
circuit to tackle these challenges. Furthermore, they formulated 
a comprehensive suite of sufficient linear matrix inequality 
constraints to guarantee the system's cluster synchronization. 
The merits, practicability, and resilience of the MRC framework, 
predicated on UDE, were validated through two illustrative 
cases. This overview elucidates that international research 
endeavors in switching topology and fractional-order complex 
networks are markedly more focused than their domestic 
counterparts, thereby serving as a repository of valuable 
insights and benchmarks for domestic scholarly pursuits in 
these spheres.

2. Research content

2.1 Basic theory

In the discourse of distributed architectures, switching topology 
is characterized by its dynamic inter-nodal relationships, which, 
unlike their fixed counterparts, are subject to temporal 
fluctuations, thereby imbuing the system with enhanced 
flexibility, randomness, and variability.

Complex networks, when viewed through the prism of practical 
application, are construed as intricate tapestries woven by 
nonlinear dynamic interactions, with nodes interlinked in a 
multitude of configurations. These networks, often vast and 
convoluted in their nodal interconnections, serve as pragmatic 
mathematical models that mirror the intricacies of real-world 
networks and systems. Their study is of paramount theoretical 
and practical significance, offering insights that refine our 
comprehension of the world and inform societal progression.

The realm of synchronization control within fractional-order 
complex networks is primarily concerned with the 
harmonization of network behavior. Research in this field 
typically embodies a holistic and idealized ethos, with a 
pronounced emphasis on the multifaceted environmental 
variables that pervade the real world, acknowledged as pivotal 
influences on network dynamics and their modeling. This 
approach ensures that the networks and models under scrutiny 
possess profound emblematic and representational value. 
Contemporary investigations into network synchrony control 
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span a spectrum from the macroscopic to the microscopic and 
from the theoretical to the applied. Consequently, the taxonomy 
of synchrony control strategies encompasses a diverse array, 
including structural traction control, a gamut of design-centric 
control tactics (encompassing impulse, sampled, and model 
predictive control), robust control predicated on performance 
metrics, and cost-effective control methodologies, among 
others.

2.2 Research methodology

This investigation predominantly harnesses literature review 
and model analysis as methodological pillars. The former entails 
a systematic trawl through esteemed repositories such as CNKI, 
Wanfang, and CQVIP, to amass both domestic and international 
scholarly works germane to the focal theme. The collated 
corpus is meticulously curated to distill pivotal insights, thereby 
erecting the principal theoretical scaffold for this inquiry. 
Concurrently, the model analysis technique encompasses the 
formulation of a fractional-order complex network model, 
predicated on switching topology, to anchor the research into 
synchrony control. Furthermore, it posits an information 
storage mechanism control strategy as a conjectural approach, 
the viability of which is rigorously assessed, thus underpinning 
the study's scientific rigor and holistic integrity.

2.3 Design of models and controllers

First, in terms of model design, consider a Caputo fractional-order 
complex network with switching topology composed of multiple 
nodes. All communication topology can be designed as a 
finite set of undirected graphs, denoted as {G1 (V , ε1, ξ1 ) , . . . ,
Gn (V , εn , ξn ) } , where the first item in the set (V ) is a collection 
of all network nodes, expressed as V = v1, v2, v3, …, vn , εn  
represents the set of undirected edges for the n th topology, ζn  is 
the adjacency matrix for the n th topology graph, n  being a 
natural number. For clarity, Gn  be represented as Gn (V , εn , ζn ). 
Also, represent the nodes (vi , vj ) as the edges between nodes, 
and define the elements in the matrix ζn . The equation is as 
follows:

aij
n {cij , i ≠ j just (νi , νj ) ∈ εn

0, Other situations (1)

where cij  are positive numbers satisfying the relation cij = cij , i ,
j = 1, 2, . . . , n . This gives the Laplace matrix of the topology 
graph. Then, Gn (V , εn , ζn ) is represented as the union graph of 
the topology, with the matrix ζn  serving as the adjacency matrix 
of the topology graph. The matrix elements aij

∗  satisfy the 
relation. The equation is as follows:

aij
∗ = max

n ∈(1,2,3,...,n )
aij

n , i , j = 1, 2, 3, . . . , n (2)

 From Eq. (2), the Laplace matrix of the topology graph is given, 
and a function is used to represent the corresponding switching 
signal. It is assumed that the network's communication 
topology will switch at time ts , and when t ∈ [ts , ts +1], the 
function will be equal to a certain number in the set. The 
mathematical model of the considered switching network is 
then given. The equation is as follows:

t0
C Dt

α xi (t ) = f (xi (t ) ) + ∑
j =1,j ≠i

n

aij
σ (t )[xj (t ) − xi (t ) ] + ui (t ) (3)

where σ (t ) is a function; t0is the initial moment; α  is in the 

interval 0 − 1, and ≠ 0, 1, xi (t ) is the state vector of the node; f  is 
a continuously differentiable nonlinear vector function; ui (t ) is 
the node control output. To satisfy the design of this model, the 
following assumptions are made:

Assumption 1: It is assumed that for the function f (x ), there 
exists a non-negative constant such that for any sets u  and v , 
an inequality exists, represented as:

∥ f (u ) − f (ν ) ∥ ≤ η ∥ u − ν ∥ (4)

Assumption 2: Since at the switching moments, each individual 
time interval corresponding to a single switching moment 
shows a non-degenerate state, at the same time, lim

n →∞
tn = ∞.

Assumption 3: There exists a positive number such that for any 
given moment, the network communication topology is jointly 
connected in that time range. That is, if the moment t  is greater 
than the initial moment t0 +  a positive number, then within that 
time interval, the union graph of all communication topology 
will appear, and the union graph of this union with the∪ 
function σ (t ) is in a connected state.

In the architectural conception of controllers, the potentiality for 
topology switching warrants meticulous consideration. Such 
switching may precipitate the severance of connections or the 
forfeiture of linkages with proximate nodes. Under these 
circumstances, the impacted nodes are precluded from 
accessing a spectrum of state information from their adjacent 
counterparts, engendering impediments to the attainment of 
efficacious synchronicity control. To augment the orchestration 
of the control apparatus within complex networks and to 
attenuate the adverse ramifications of disconnections, a 
controller has been devised. This apparatus empowers network 
nodes to archive state information procured from neighboring 
nodes amid communication exchanges. Should a node find 
itself estranged from its neighbors and incapable of 
contemporaneous state recording, the repository of antecedent 
state data is rendered accessible. This historical data is then 
assimilated into the control schema, serving as a dynamic 
compensatory mechanism, thus enabling the regulation of 
nodal behavior. Ergo, a controller, endowed with an information 
storage mechanism strategy, has been engineered for the 
network model, encapsulated by the ensuing equation:

ui (t ) = ∑
j =1,j ≠i

n

gij (t )[xj (τij (t )) − xi (τij (t ))] (5)

where i  is a natural number i = 1, 2, 3, . . . , n ; τij  (t  is the 
communication time closest to the current moment from the 
initial moment between two nodes); if t ≠ τij (t ), it indicates that 
the edge between two nodes is disconnected at the current 
moment t , and the relationship between the initial moment t0, 
the current moment t , and the nearest communication time 
τij (t ). The equation is represented as:

t0 ≤ τij (t ) ≤ t (6)

 Furthermore, according to the definition of gij (t ) in Eq. (5), it is 
known that when disconnection occurs between two nodes, the 
controller will transmit the saved historical state information 
between the nodes to the network node. However, according to 
the definition of gij (t ), the controller only transmits the most 
recently saved state information between nodes, rather than 
transmitting all saved historical state information. Therefore, 
past saved node history state information can be considered as 
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not having reference or application value.

3. Results and discussion

3.1 Theoretical results
First, regarding boundedness control of complex networks 
based on topology switching: Initially, all nodes in the network 
are set to a mean state, and a corresponding dynamical 
equation is given. The equation is as follows:

x̄ ( t ) = 1
n ∑

i =1

n

xi ( t ) (7)

 Then, the synchronization error between the network node vi  
and the node state xi (t ) is defined as:

ei (t ) = xi (t ) − x̄ (t ) (8)

 Based on Eqs. (3) and (7), the specific form of the error system is 
given as:

t0
c Dt

α xi ( t ) = f (xi ( t ) ) − 1
n ∑

j =1

n

f (xj ( t ) ) + ∑
j =1,j ≠i

n

aij
σ (t ) [ej ( t ) −

ei ( t ) ] + ∑
j =1,j ≠i

n

gij ( t ) [ej (τij ( t ) ) − ei (τij ( t ) ]

(9)

 Assuming the three assumptions mentioned earlier are valid, 
the synchronization error will exhibit a bounded final state and 
will approach the interior of the set asymptotically over time. 
This proves the related inequality to be true. A Lyapunov 
function is then established, and its fractional derivative is 
taken, ensuring the inequality t ≥ t0 holds. Through the 
derivation process, two inequalities are initially set, and their 
correctness is proved using mathematical induction:

ε ( t ) ≤ μ , t ≥ t0

V ( t ) ≤ V ( t0 ) +
2(1 − ξ ) λ~ ς [V ( t0 ) + μ

2η ] + μ

2( (1 − ξ ) ) λ~ − η
, t ≥ t0

(10)

 The proof process is as follows:

If the condition t ∈ [t0, t1) holds, then according to Eq. (5), when 
t ∈ [t0, t1), gij (t ) = 0, i , j ∈ {1, 2, 3, . . . , n}. According to the 
definition of function ε (t ), we get:：

ε (t ) = 0 ≤ μ , t ∈ [t0, t1) (11)

Then, based on the assumption t ∈ [t0, t1), two possible 
scenarios are discussed:

t1 ≤ t0 + ϖt1 ≥ t0 + ϖ (12)

 Assuming the inequalities hold for t ∈ [t0, tp ) (where p  is a 
positive integer), the case for t ∈ [t0, tp +1) needs to be 
considered. This case also presents two scenarios, each 
discussed separately:

tp +1 ≤ t0 + ϖtp +1 > t0 + ϖ (13)

 By discussing the two scenarios of inequalities (12) and (13), the 

validity of Eq. (10) is proven, showing that the synchronization 
error is bounded for t ≥ t0. Ultimately, it is understood that as 
the variable time t  approaches infinity, the synchronization 
error gradually approaches the set.

Next, regarding synchronization control of complex networks 
based on topology switching: In the discussion of 
synchronization control for complex networks based on 
topology switching, the special case of α = 1 in Eq. (3) is 
considered, i.e., the control of integer-order topology-switching 
complex networks. Equation (3) is then adapted to the special 
case of α = 1, transforming it as follows:

ẋ i ( t ) = f (xi ( t ) ) + ∑
j =1,j ≠i

n

aij
σ (t )[xj ( t ) − xi ( t ) ] + ui ( t ) (14)

 Equation (9) is similarly transformed:

ė i (t ) = f (xi (t )) − 1
n ∑

j =1

n

f (xj (t )) + ∑
j =1,j ≠i

n

aij
σ (t ) [ej (t ) − ei (t ) ] +

∑
j =1,j ≠i

n

gij (t ) [ej (τij (t ) ) − ei (τij (t ) ) ]

(15)

 Assuming the three assumptions for the model design are valid, 
then under the action of Eq. (5), Eq. (14) will achieve a 
synchronized state, i.e., lim

t →∞
∥ e (t ) ∥ = 0. A Lyapunov function is 

established as:

V (t ) = 1
2 ∑

i =1

n

ei
T (t )ei (t ) (16)

 Similar derivations of related inequalities are performed, 
leading to a series of differential inequalities. Using 
mathematical induction, the correctness of the two set 
inequalities is proven:

ε (t ) ≤ γeT (t )e (t ), t ≥ t0 (17)

 Following the definition of function gij (t ), assume for t ∈ [t0, t1), 
according to Eq. (17), we get: ε (t ) = 0 ≤ γeT (t )e (t ), t ≥ t0. Next, 
assuming the inequalities hold for t ∈ [t0, tp ) (where p  is a 
positive integer), the case for t ∈ [t0, tp +1) is considered. This 
case also presents two scenarios, each discussed separately:

tp +1 ≤ t0 + ϖtp +1 > t0 + ϖ (18)

 Finally, based on the inequality derivations from Eqs. (17) and 
(18), as well as mathematical induction, ε (t ) ≤ γeT (t )e (t ),
t ∈ [ t0, tp ] , the validity of Eq. (17) is proven. Furthermore, 
using the established Lyapunov function stability theorem, the 
validity of the formula lim

t →∞
∥ e (t ) ∥ = 0 can be demonstrated.

3.2 Numerical simulation
To validate the correctness and effectiveness of the theoretical 
results proposed in this study, numerical simulations are 
conducted using two numerical examples. The details are as 
follows:

From the theoretical results, it is known that a one-dimensional 
fractional-order switching complex network formed by three 
nodes is considered. Assuming the initial moment t0 is set to 0, 
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α  is set to 0.8, and the function f  is set to 0.3. It is also assumed 
that the network has three communication topologies, which 
are labeled and presented graphically as shown in Figure 1.

Figure 1. Schematic of the three communication topologies

 The adjacency matrices for the three communication topologies 
are given, with their elements defined as:

aij
n = {1, i ≠ j just (νi , νj ) ∈ εn

0, Other situations (19)

 Here, n  is a natural number equal to 1, 2, 3. Assuming the 
switching moments are tk = k , the sequence of switching 
among the three communication topology is represented as 
1 → 2 → 3 → 1 → . . . . Thus, it can be seen that in this section's 
assumption, the joint connectivity adjustment between nodes is 
feasible. Selecting the initial conditions from the model design, 
numerical verification can be performed as shown in Figures 2 
and 3.

Figure 2. Time course change of synchronization error under an uncontrolled state

 As seen in Figure 2, without the addition of a controller in the 
network design model, the change in synchronization error 
tends to diverge as time extends.

 As depicted in Figure 3, the integration of a controller into the 
network design paradigm ensures that the trajectory of 
synchronization error remains confined and converges within a 
predetermined bounded domain. This empirical evidence, 
derived from numerical simulations, corroborates the efficacy of 
the dual strategies employed: the boundedness control and the 
synchronization control within complex networks, predicated on 
the dynamics of topology switching.

Additionally, based on the theoretical results, a one-dimensional 
switching complex network formed by three nodes is 
considered. Assuming the initial moment t0 is set to 0 and f  is 
set to 0.92sin, it is also assumed that the network has three 

Figure 3. Time course change of synchronization error under the influence of a 
controller

communication topologies. These are labeled and graphically 
represented as shown in Figure 4.

Figure 4. Schematic of the three communication topologies

 The adjacency matrices for the three communication topologies 
are defined as follows:

aij
k = {1, i ≠ j just(νi , νj ) ∈ εk

0, Other situations
(20)

where k  is a natural number equal to 1, 2, 3. Assuming the 
switching moments are tk = 1.5k, the sequence of switching 
among the three communication topologies is represented as 
1 → 2 → 3 → 2 → 1 → . . . . This shows that the joint connectivity 
adjustment between nodes is feasible within the assumptions of 
this section. Numerical verification is then conducted based on 
the initial conditions set in Eq. (14), as illustrated in Figures 5 
and 6.

Figure 5. Time course change of synchronization error in an uncontrolled state

 As seen in Figure 5, without control in Eq. (14), the network is 
unable to achieve synchronization.

 According to Figure 6, the network in Eq. (14), under the 
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Figure 6. Time course change of synchronization error under the influence of a 
controller

influence of the controller, can achieve synchronization. This 
numerical verification thus proves the validity of the three 
assumptions made in the model design.

4. Conclusions
This scholarly endeavor commences with a meticulous literature 
review, canvassing both domestic and international sources to 
scaffold the theoretical underpinnings and discern the 
contemporary landscape of research in fractional-order 
complex networks. The exposition progresses to delineate the 
employed research methodologies, models, and controller 
architectures, thereby accentuating the pivotal themes under 
investigation. Culminating in a synthesis and discourse of the 
findings, the study arrives at several salient conclusions:

(1) Given the profound research implications and expansive 
application vistas of fractional-order and complex network 
theories, this inquiry is anchored in the study of fractional-order 
complex networks, with a focus on elucidating topology 
identification and synchronization control mechanisms within 
such networks.

(2) The design ethos of network models and topology switchers, 
coupled with the integration of state information preservation 
strategies, is aimed at mitigating potential adversities during 
synchronization control processes. In instances of node 
disconnection resultant from topology shifts, the repository of 
historical state data is leveraged for dynamic behavioral 
compensation, facilitating seamless transitions.

(3) The investigation predominantly revolves around the 
stability of fractional-order differential equations, bifurcated 
into two distinct segments. The initial segment engages with 
Caputo fractional-order differential equations, applying 
Lyapunov’s direct method to probe the stability characteristics 
of equilibrium points, thereby forging more encompassing and 
applicable stability conditions.

(4) The research hypothesis is substantiated through the 
deployment of two numerical exemplars, affirming the 
research’s foundational premises.

(5) Notwithstanding, the study acknowledges its constraints, 
notably the simplicity of the numerical simulations and the 
absence of an exhaustive dialogue. Future research trajectories 
will encompass a spectrum of simulation scenarios, varying 
parameters to dissect the outcomes under diverse conditions, 
thus rendering the conclusions more holistic and robust.
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