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Abstract
In the present study, a novel approach to dynamic economic dispatch for power systems 
spanning multiple regions is introduced, utilizing the alternating direction multiplier 
method (ADMM) as its computational foundation. The proposed economic scheduling 
model is designed to optimize the operational costs of the system comprehensively, while 
adhering to a spectrum of operational constraints. Employing the ADMM, the study 
achieves a distributed resolution of the model by severing the inter-regional 
interconnections, thereby partitioning the overarching optimization challenge into 
manageable sub-problems specific to each region. This methodology facilitates the 
attainment of the system’s global optimum through the iterative resolution of these 
regional sub-problems. Furthermore, the algorithm obviates the necessity for a centralized 
data repository for multiplier updates, thereby endorsing a fully distributed scheduling 
paradigm. Concurrently, the study incorporates a multi-period optimization technique 
within the economic scheduling model to accommodate the inherent temporal 
dependencies of the power system. The culmination of this research is the empirical 
analysis of a tri-regional interconnected system, predicated on the IEEE standard test 
system, which substantiates the efficacy of the proposed economic dispatch strategy.

 OPEN ACCESS

Published: 13/05/2024

Accepted: 27/04/2024

Submitted: 19/03/2024

DOI: 
10.23967/j.rimni.2024.05.003

Keywords:
Microgrid; Distribution side 
power market; Intermediation; 
Supply function equilibrium; 
Distributed optimization

Revista Internacional de Métodos 
Numéricos para Cálculo y Diseño 
en Ingeniería

Correspondence: Shenjia He (hesshhj@163.com). This is an article distributed under the terms of the Creative 
Commons BY-NC-SA license 1

1. Introduction
Within the domain of power systems, Economic Dispatch (ED) is 
characterized as an optimization dilemma aimed at minimizing 
network losses or generation costs while conforming to the 
constraints of power flow and operational parameters [1-8]. The 
integration of renewable energy sources, notably photovoltaic 
and wind power, has introduced a heightened degree of 
intertemporal coupling in power systems. Such advancements 
have deemed static ED, reliant on single temporal analysis, 
insufficient for the complex scenarios of modern power 
systems, thereby necessitating a transition to dynamic ED. The 
burgeoning power market demands increased interconnectivity 
and more frequent power exchanges across regions, achievable 
through centralized dispatching by an authoritative cross-
regional center or via coordination among regional centers. 
Nevertheless, centralized scheduling (CS), which requires a 
central entity to collect detailed data and centrally determine 
operational strategies, faces numerous challenges. Scholars 
globally have explored centralized dispatching, utilizing classical 
optimization algorithms like the interior point method [9], 
Lambda iteration method [10], and Lagrange method [11], 
which are intrinsically centralized. Centralized scheduling 
algorithms eliminate iterative processes, facilitating direct 
global optimization. However, this method is impractical for 
large-scale scheduling due to the exponential increase in 
variable volume and complexity. Moreover, research 
intensification on the global energy Internet and the 
development of transnational regional UHV power grids aim to 
enhance power complementarity, load peak shifting, and 

support. China has achieved some power interconnection with 
neighboring countries, including Russia, Mongolia, Vietnam, 
Laos, and Myanmar, totaling an interconnection capacity of 
roughly 2.6 million kilowatts. Nonetheless, the reluctance of 
nations to share detailed power system information, for 
strategic confidentiality reasons, limits the viability of higher-
level dispatch centers with global authority.

In light of these challenges, the necessity for a distributed 
scheduling framework becomes critical, one that allocates 
scheduling responsibilities to regional dispatching centers. This 
paradigm shift paves the way for globally optimal power 
scheduling based on a distributed architecture that minimizes 
the need for extensive inter-regional information sharing. 
Consequently, Distributed Dynamic Scheduling (DDS) has 
attracted increasing academic attention, emerging from 
research on Distributed Optimal Power Flow (DOPF) 
optimization approaches.

In the scholarly discourse on power systems, the concept of 
virtual nodes has been introduced as a means to balance power 
flow post-decoupling within subregions, thus enabling the 
formulation of a multi-regional decomposition algorithm. 
Significantly, Kim and Baldick [12] endorse a parallel Distributed 
Optimal Power Flow (DOPF) model, designed for extensive 
regional interconnection systems, validated through 
simulations on systems of moderate size. Further, Kim and 
Baldick [13] mathematically implement the proposed 
distributed framework by amalgamating two distinct 
decomposition methods: the Predictor-Corrector Proximal 
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Multiplier (PCPM) and the Alternating Direction Method (ADM). 
Additionally, Cheng et al. [14] addresse the distributed 
processing of the multi-objective reactive power optimization 
issue within large-scale power systems, effectively resolving the 
centralized reactive power optimization challenge.

Furthermore, Conejo and Aguado [15] incorporate network loss 
into the foundational DOPF model using cosine approximation. 
The Auxiliary Problem Principle (APP) is employed in literature 
[16-18] to manage regional coupling constraints, leading to the 
development of the DOPF algorithm. The Alternating Direction 
Multiplier Method (ADMM), thoroughly examined in literature 
[19-23], has been extensively refined for deployment within the 
Distributed Dynamic Scheduling (DDS) sphere. Notably, 
Dall'Anese et al. [19] convert the optimal power flow problem 
within microgrids into a convex issue via semi-definite 
programming relaxation techniques, thereafter seeking a 
distributed solution through the ADMM. Sulc et al. [20] utilize 
the ADMM, predicated on consistency, for the distributed 
optimal control of reactive power in power systems, 
demonstrating its superiority to the dual-ascent method.

This research articulates a fully distributed algorithm to address 
the centralized dynamic scheduling issue within power systems 
featuring a multi-regional interconnection structure. Based on 
the inherent characteristics of power systems and employing 
the ADMM for the decoupling of inter-regional connections, this 
approach decomposes the central issue into individual sub-
optimization tasks for each region. Simultaneously, the 
traditional role of the data center, responsible for multiplier 
updates, becomes redundant, resulting in a completely 
distributed scheduling framework. The achievement of an 
optimal system-wide solution is accomplished through the 
iterative resolution of economic scheduling sub-problems 
specific to each region. An illustrative analysis, utilizing a multi-
regional interconnected system modeled on the IEEE standard 
test system, affirms the effectiveness and precision of the 
proposed model in managing the intricacies of multi-regional 
distributed dynamic scheduling in power systems.

2. Multi-region dynamic scheduling model

The multi-regional power scheduling model, as depicted in 
Figure 1, encapsulates the intricate scheduling dynamics extant 
among various regions within a power system. It is constituted 
by an array of generator sets and loads, each interlinked via 
transmission lines. The transfer of power and information is 
facilitated through contact lines bridging regions, thereby 
enabling their interconnectivity. Owing to the autonomous 
dispatching attributes inherent to each region, the real-time 
sharing of comprehensive power dispatching data presents a 
formidable challenge. Consequently, the adoption of a 
distributed scheduling approach is necessitated, one that 
eschews the traditional dispatching center, and through 
iterative processes, converges upon the globally optimal power 
scheduling, all while minimizing the exchange of information 
between regions.

2.1 Traditional centralized scheduling model

The traditional centralized power dispatching model can be 
established as follows:

1) Objective function

The objective function is to minimize the total operating cost of 
the system. Among them, the main consideration of the 
operating cost of the generator set. The expression of the 
objective function is as follows:

Figure 1. Multi-region economic dispatch model

F = ∑
t =1

T

∑
n =1

N

(an Pn ,t
2 + bn Pn ,t + cn ) (1)

where F  is the total operating cost of the system; t  is the 
number of each scheduling period; T  represents the total 
number of scheduling periods; n  and nB are the number of the 
generator set and the system node respectively; N  and NB are 
the total number of generator sets and system nodes 
respectively; Pn ,t  represents the actual output of generator set 
n  during the period t ; an , bn  and cn  are the coefficient of output 
characteristic of generator set n .

2) Constraints

a) System power balance constraint, that is, the total generator 
output at any time is equal to the load demand:

∑
n =1

N

Pn ,t = ∑
nB=1

NB

DnB,t (2)

where DnB,t  is the load demand of node n  during the period t .

b) Constraints on the upper and lower limits of generator set 
output:

Pn
min ⩽ Pn ,t ⩽ Pn

max (3)

where Pn
min and Pn

max are, respectively, the lower limit and upper 
limit of output of generator set n  in any period.

c) The upper and lower limits of the generator set climbing:

ΔPn
min ⩽ Pn ,t − Pn ,t −1 ⩽ ΔPn

max (4)

where ΔPn
min and ΔPn

max indicate the minimum climb rate (i.e. 
maximum downward climb rate) and maximum climb rate (i.e. 
maximum upward climb rate) of generator set n , respectively.

d) The power constraint of the generator set contract, that is, 
the total power generation of the generator set within a given 
period of time must comply with the agreed contract:

∑
t =1

T
Pn ,t = En , n ∈ ϕ (5)

https://www.scipedia.com/public/File:Draft_He_943252806-image1.jpeg
https://www.scipedia.com/public/File:Draft_He_943252806-image1.jpeg


https://www.scipedia.com/public/He_et_al_2024a 3

S. He, W. Cai, H. Zhang, T. Wang and X. Qiao, A fully distributed algorithm for dynamic economic dispatch of cross 
regional power systems based on alternating direction multiplier method, Rev. int. métodos numér. cálc. diseño ing. 
(2024). Vol. 40, (2), 18

where En  is the contracted electricity quantity of generator set 
n  in a given period of time; ϕ  is the set of generator sets for 
which the contracted electricity quantity is agreed.

e) The contract unit can be decomposed value deviation 
constraint, that is, the contract electricity decomposed to the 
day needs to be within a certain deviation range:

En
day,min ⩽ En ,d

day ⩽ En
day,max (6)

where d  is the number of the dispatch date; En ,d
day is the 

generation capacity of generator set n  in date d ; En
day,min and 

En
day,max are the planned allowable minimum and maximum of 

the energy decomposition value of the generator set n , 
respectively.

f) Transmission line maximum capacity constraints:

− Pl
max ⩽ Pl ,t ⩽ Pl

max (7)

where Pl ,t  is the transmission power of line l  in the time period 
t ; Pl

max is the maximum transmission power of line l . The 
maximum capacity of the two-way transmission of the line is 
equal.

g) Maximum capacity constraint of regional liaison line:

− Tij
max ⩽ Tij ,t ⩽ Tij

max (8)

 Among them: Tij ,t  is a vector variable, representing the 
transmission power of each contact line between region i  and 
region j  in the time period t ; Tij

max is a vector constant that 
represents the maximum transmission power of the contact 
lines between region i  and region j . This paper assumes that 
the maximum two-way transmission capacity of each link line is 
equal.

h) Constraint on the power of the regional contact line 
transaction, that is, the power of the contact line transaction 
within a given period must comply with the agreement between 
regions:

∑
t =1

T
1TTij ,t = Eij , ij ∈ Γ (9)

where 1 = (1 ⋅ ⋅ ⋅ 1)T; Eij  is the total amount of agreed 
transaction power between region i  and region j  in a given 
period of time; Γ is the set of region pairs for the agreed 
transaction of electricity.

i) Regional liaison line switching power plan constraints, that is, 
the regional liaison line switching power of each period should 
be within the allowable range of assessment deviation:

Tij
kh ,min ⩽ 1TTij ,t ⩽ Tij

kh ,max (10)

where Tij
kh ,min and Tij

kh ,max are the minimum and maximum value 
allowed by the switching power plan between region i  and 
region j  during the t  period, respectively.

The power transmission distribution factor (PTDF) matrix can be 
used to obtain the power transmission lines. The PTDF matrix 
directly links the net injected power of each node to the power 
transmission of each branch, and its main advantage is that it 
avoids introducing redundant voltage phase angle variables, 

and only depends on the grid structure and line parameters, 
and is independent of the variation of the injected power of 
each node, that is, for a given network, only one PTDF matrix is 
needed to be reused. The basic format of its application is:

Pflow = HPinj (11)

where Pflow is the vector composed of the power of each branch; 
H  is the corresponding PTDF matrix; Pinj  is the vector composed 
of the net injected power of each node.

For this centralized scheduling problem:

Pl ,t = H (CPn ,t + CwWnw,t + CsSns,t − DnB,t ) (12)

where C  is the sorting matrix, the generator sets are 
rearranged in the order of node numbers.

2.2 Distributed scheduling model

In the discourse of distributed scheduling (DS), the concept is 
predicated on the decoupling of inter-regional connections, 
thereby enabling the segmentation of the aggregate power 
scheduling optimization quandary into distinct regional sub-
problems. These sub-problems are iteratively addressed until a 
pre-defined error threshold is attained. Within the mathematical 
frameworks employed for DS, Lagrange relaxation (LR) is 
commonly invoked. This method mitigates the constraints, 
amalgamates them into the objective function, and iteratively 
refines the Lagrange multipliers until the cessation criteria of 
the iteration are fulfilled. Nonetheless, the LR method grapples 
with the challenge of selecting an appropriate step size for 
updating the multipliers, which impinges upon convergence 
rates.

To surmount this impediment, the present study introduces the 
augmented Lagrangian relaxation method (ALR), which 
incorporates a quadratic penalty term for the relaxed 
constraints within the objective function and adheres to a fixed 
step length for multiplier updates, thereby enhancing 
convergence. However, this incorporation of a quadratic penalty 
term compromises the factorability of the optimization 
problem, representing a significant limitation of the ALR 
approach. Two prevalent resolutions are the auxiliary problem 
principle method (APP) [24-27] and the alternating direction 
multiplier method (ADMM) [28-32]. Each methodology exhibits 
its own merits and demerits: the APP method facilitates parallel 
solutions albeit with moderate convergence velocity, whereas 
the ADMM approach necessitates serial resolution but boasts 
rapid convergence rates. Given the relatively modest number of 
regions within the extant power system architecture, the ADMM 
method is selected for resolving the multi-regional distributed 
power dispatching conundrum.

1) Traditional ADMM method

Consider the following optimization problems:

min f (x ) + g (x ) (13)

s . t . Ax + Bz = c (14)

 Applying augmented Lagrange relaxation to equality 
constraints, the unconstrained optimization problem is

minf (x ) + g (z ) + λT(Ax + Bz − c ) + ρ
2 Ax + Bz − c2

2 (15)



https://www.scipedia.com/public/He_et_al_2024a 4

S. He, W. Cai, H. Zhang, T. Wang and X. Qiao, A fully distributed algorithm for dynamic economic dispatch of cross 
regional power systems based on alternating direction multiplier method, Rev. int. métodos numér. cálc. diseño ing. 
(2024). Vol. 40, (2), 18

where λ  is the Lagrange multiplier and ρ  is the positive 
quadratic penalty term coefficient.

The quintessence of the Alternating Direction Method of 
Multipliers (ADMM) approach resides in the premise that, 
during the resolution of a variable, concomitant variables are 
held constant, utilizing the outcomes from the antecedent 
iteration. This stratagem effectively “decouples” the inter-
variable nexus, thereby adroitly circumventing the complexities 
associated with the quadratic penalty term. The fundamental 
iterative schema of ADMM unfolds in the ensuing manner:

xk +1 := arg min
x

Lρ (x , zk , λk ) (16)

zk +1 := arg min
z

Lρ (xk +1, z , λk ) (17)

λk +1 = λk + ρ (Axk +1 + Bzk +1 − c ) (18)

 This iterates over and over again until the iteration termination 
condition is met.

2) Multi-region distributed power scheduling based on 
traditional ADMM method

A multi-region distributed power dispatching model is derived 
from the centralized dispatching model by applying the 
conventional ADMM method. The main process is as follows: 
The centralized scheduling model reveals that the coupling 
constraint between regions is manifested in the constraint 
related to the liaison line, that is, the maximum capacity 
constraint of the regional liaison line − Tij

max ⩽ Tij ,t ⩽ Tij
max . 

However, the Tij ,t  variable is correlated with both region i  and 
region j . If the constraint is directly relaxed, the decoupling in 
the true sense cannot be achieved. Therefore, the constraint 
should be first rewritten as follows:

Tij ,t
i = Tij ,t

j (19)

− Tij
max ⩽ Tij ,t

i ⩽ Tij
max (20)

− Tij
max ⩽ Tij ,t

j ⩽ Tij
max (21)

 Among them: Tij ,t
i  represents the transmission power of the 

contact lines between region i  and region j  in the time period t  
when solving the sub-problem of region i ; Tij ,t

j  represents the 
transmission power of the contact lines between region i  and 
region j  in the time period t  when solving the subproblem of 
region j . Figure 2 illustrates this process by treating the contact 
lines between region i  and region j  as two, each belonging to 
its own region and satisfying the same maximum capacity 
constraint, and finally ensuring that the power of the two 
contact lines is equal at all times. After processing, the 
relationship between the two regions is clearly reflected in the 
constraint Tij ,t

i = Tij ,t
j .

 For constraint Tij ,t
i = Tij ,t

j , applying augmented Lagrange 
relaxation, the objective function is:

FL = ∑
t =1

T

∑
n =1

N

(an Pn ,t
2 + bn Pn ,t + cn ) + ∑

j ∈i ,j ≠i

λij ,t
T (Tij ,t

i − Tij ,t
j ) +

∑
j ∈i ,j ≠i

ρ ∥ Tij ,t
i − Tij ,t

j ∥2
2

(22)

Figure 2. Schematic diagram of constraint rewriting of the contact line

where λij ,t
T  is the Lagrangian vector multiplier of the relaxed 

constraint Tij ,t
i = Tij ,t

j ; ρ  is the positive coefficient of the 
corresponding quadratic penalty term. Notice that the quadratic 

penalty term ∑j ∈i ,j ≠i ρ ∥ Tij ,t
i − Tij ,t

j ∥2
2 destroyed the 

decomposability of the problem, so the ADMM method was 
applied for distributed solution, that is, each region was solved 
separately, and the variables of other regions were regarded as 
constants in each solution, and the latest iteration results were 
used. The k-th iteration optimization problem for region i  can be 
given as follows:

min FL
i (k ) = ∑

t =1

T

∑
n ∈Ai

(an Pn ,t
2 + bn Pn ,t + cn ) +

∑
j ∈i ,j ≠i

λij ,t
(k −1)T Tij ,t

i + ∑
j ∈i ,j ≠i

ρ ∥ Tij ,t
i − Tij ,t

j (newest) ∥2
2

(23)

s . t . ∑
n ∈Ai

Pn ,t + ∑
j ∈i ,j ≠i

1TTij ,t
i = ∑

nB∈Ai

DnB,t (24)

Pn
min ⩽ Pn ,t ⩽ Pn

max, n ∈ Ai (25)

ΔPn
min ⩽ Pn ,t − Pn ,t −1 ⩽ ΔPn

max, n ∈ Ai (26)

∑
t =1

T

Pn ,t = En , n ∈ Φ, n ∈ Ai (27)

− Pl
max ⩽ Pl ,t ⩽ Pl

max, l ∈ Ai (28)

− Tij
max ⩽ Tij ,t ⩽ Tij

max, j ∈ i , j ≠ i (29)

∑
t =1

T

x1TTij ,t = Eij , ij ∈ Γ, j ∈ i , j ≠ i (30)

where Ai  represents the set of all elements in region i ; Tij ,t
j (newest) 

is the value of the latest iteration of Tij ,t
j :
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Tij ,t
j (newest) = { Tij ,t

j (k ), j < i

Tij ,t
j (k −1), j > i

(31)

 After each iteration, the update process of the multiplier is:

λij ,t
(k ) = λij ,t

(k −1) + ρ (Tij ,t
i (k ) − Tij ,t

j (k )) (32)

 The PTDF matrix can still be used to calculate the power 
transmission of the lines in region i . However, the whole 
network PTDF matrix derived from the centralized scheduling 
requires the information of all nodes, which obviously cannot be 
directly applied to the problem solving of region i . Therefore, 
the corresponding PTDF matrix needs to be found, which can 
utilize the information of region i  and the information of the 
contact lines between region i  and other regions to obtain the 
power transmission of the lines in region i .

Figure 3 illustrates the solution method of the target PTDF 
matrix. First, all regions connected to region i  (i.e., regions j1 
and j2 in the figure) are equivalent to nodes outside region i , 
whose injected power is the corresponding power transmitted 
by the liaison line. Then, the PTDF matrix is computed for this 
equivalent network. Using the PTDF matrix, the power 
transmission of the lines in region i  can be acquired by using 
the information of region i  and the information of the contact 
lines between region i  and other regions. Its formula is as 
follows (all variables belong to region i ):

Pl ,t = Hi ⋅ [(CPn ,t + CwWnw,t + CsSns,t − DnB,t ), Tij ,t
i , Ti −j +1,t

i ] (33)

Figure 3. Schematic diagram of PTDF matrix construction corresponding to region i

 Similarly, the corresponding PTDF matrix can be solved for 
other regions. The PTDF for all regions still only needs to be 
solved once and can be used in all iterations with great 
convenience.

3) Multi-region distributed power dispatching with fully 
distributed ADMM method

A limitation of traditional ADMM is that it still requires an upper 
level data center to collect data from each contact line, and 
perform the calculation and distribution of multipliers. Although 
each region does not need to share its own key power 
information, such upper-level data centers still have a certain 
authority in practical applications, which is hard to achieve. As 
shown in Table 1, the only relaxed constraint in the whole 
iteration process of the traditional ADMM method is the contact 
line constraint, and the information on each contact line is only 
generated and used by the two areas of the contact, and is 
irrelevant to other areas.

Hence, by exploiting the feature that the contact line is not a 
global constraint, the update process of the corresponding 
multiplier for each contact line can be completed between the 
two interconnection areas, without uploading to the data 
center. Thus, the multiplier calculation and assignment of each 
contact line can be done by the relevant subareas, and the 
upper data center can be eliminated, resulting in a fully 
distributed ADMM method. It should be noted that the 
mathematical formulas for solving subproblems and updating 
multipliers for each region are unchanged, so the method has 
the same mathematical properties as the traditional ADMM 
method.

Table 1. Comparison of relaxation constraints in ADMM methods

Relax constraints Global constraints Contact line constraints
Multiplier update 
features

Information for all 
regions is required Only contact area information is required

Multiplier 
assignment features

Assignment to all regions 
is required

Only need to be assigned to the contact 
area

Upper-tier data 
center Need No, the corresponding work can be 

transferred to the liaison area

Figure 4 illustrates the transformation from traditional ADMM 
method to fully distributed ADMM method. The solid line 
denotes the power connection line, and the dashed line denotes 
the information connection line. The traditional ADMM method 
performs power transmission between regions, and each region 
transmits information to the upper data center. The fully 
distributed ADMM method eliminates the upper layer data 
center, and accomplishes the transmission of power and 
information directly between regions. The specific process is as 
follows: in the k -th iteration, the problem of region i  is solved 
sequentially, and the corresponding power result of the tie line 
is obtained. Region i  sends this result to region i + 1 and 
participates in the problem solving of region i + 1, as the latest 
iteration result. After solving the problem for region i + 1, 
region i + 1 already has the necessary information to update the 
line multiplier between region i  and region i + 1, namely Ti −j +1,t

i (k )  

and Ti −j +1,t
i +1(k ) , so the update of the corresponding multiplier can 

be done directly in the region i + 1. Before the k + 1 iteration, 
region i + 1 passes the updated multiplier back to region i , 
starting the next iteration. Similarly, region i + 2 can update the 
multipliers of region i  with region i + 2 and region i + 1 with 
region i + 2. Ultimately, all multiplier updates are done by the 
regions, without the involvement of the upper data center. In 
addition, the stop condition of the iteration can also be 
determined by each region. The region responsible for 
updating the multiplier can further calculate the corresponding 
relaxed constrained error and compare it with the given error 
tolerance.

Figure 4. Schematic diagram of transformation from traditional ADMM method to 
fully distributed ADMM method

 If the conditions are not met, this signal can be transmitted to 
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each area through the entire information network, and the 
iteration continues. The solution steps of multi-region 
distributed power scheduling with fully distributed ADMM 
method are as follows:

 Step 1: Give the initial values of all variables and parameters 
(number of iterations k = 0, area number i = 1).

Step 2: Solve the subproblem of region i  based on the ADMM 
method.

Step 3: Compare the number of area i  and the interconnection 
area. If i  is greater than the number of any interconnect zone, 
zone i  is responsible for updating the corresponding multiplier 
and transmitting the result to the corresponding interconnect 
zone.

Step 4: i = i + 1. If i  is greater than the maximum area number, 
go to Step 5. Otherwise, go to Step 2.

Step 5: Compare the maximum error bound by the tie line with 
the specified allowable error. If the error requirement is met, 
the iteration ends and the result is output. Otherwise, k = k + 1, 
i = 1, go to Step 2.

3. Simulation result analysis

In this investigation, the efficacy of the proposed methodology 
was substantiated through the development of a tripartite 
interconnection test case, predicated on the IEEE 30-node, 39-
node, and 57-node benchmark test systems. The schematic 
representation of the interconnected system’s architecture is 
illustrated in Figure 5. Pertaining to each subsystem, the 
network’s topology and ancillary parameters were preserved in 
congruence with the original configuration, with modifications 
confined solely to the corresponding numerals to fulfill the 
prerequisites of the interconnected framework. In alignment 
with the archetypal diurnal load fluctuation pattern, 
characterized by “two peaks and one trough” [33], a 24-hour 
load dataset was synthesized. Subsequently, generators 
situated at nodes 13, 23, 61, 68, 72, and 81 were designated as 
contractual power entities, with the stipulated power being 
allocated at a quantum equating to half of the maximal power 
output. The tie line’s maximal capacity threshold was 
established at 500 MW, while the transactional power 
interlinking the 30-node and 39-node systems was ascertained 
at 2 GWh, and the exchange power schedule was constrained 
within a bandwidth spanning from −50 MW to 400 MW. 
Employing a parameterization of ρ = 0.1 and a maximal tie line 
constraint deviation of 0.1 MW, the model underwent resolution 
via both the centralized approach and the fully distributed 
ADMM technique, with the outcomes delineated in Table 2.

Figure 5. Schematic diagram of the three-system interconnection example

 As delineated in Table 2, the methodology articulated herein is 
corroborated to engender precise solution outcomes, with the 
iteration count remaining well within an acceptable ambit. In 
pragmatic deployment, this approach is adept at navigating the 

complexities of inter-regional interconnected power dispatching 
quandaries, particularly in scenarios where centralized 
coordination proves to be infeasible.

Table 2. Comparison of solution results between centralized method and distributed 
method model

Scheduling method P21,1/MW 1T T30−39,1/ MW F /106 yuan Number of iterations

Centralized 314.8780 −131.0152 1.8167 —

Distributed 314.9792 −130.8220 1.8167 23

 The exhibit delineates the fluctuation in the iteration count 
consequent to the selection of disparate regional iteration 
sequences within the distributed modality, given the parameter 
ρ = 0.1. It is discernible that the sequential order of iterations 
across the various regions exerts a negligible influence on the 
iteration quantity (Table 3). This implies that, within the 
distributed resolution framework, the iteration of each region 
may proceed in an arbitrary sequence, yet still achieve 
expeditious convergence. The determination of the parameter 
ρ  is subjected to additional scrutiny in the ensuing discourse.

Table 3. Influences of regional iteration order on iteration times

Region iteration sequence 30–39–57 30–57–39 39–30–57
Number of iterations 23 24 21
Region iteration sequence 39–57–30 57–30–39 57–39–30
Number of iterations 20 23 24

Table 4 elucidates the variability of solution outcomes 
contingent upon the selection of divergent values for the 
parameter ρ . It is observed that the objective function’s value, 
derived from varying ρ  parameters, manifests with 
commendable precision. However, the iteration frequency 
exhibits discernible disparities: an excessively augmented or 
diminished ρ value precipitates an escalation in iteration 
quantity. Additionally, the error trajectory corresponding to ρ =
0.01 and ρ = 2 is graphically represented in Figures 6 and 7, 
respectively.

Table 4. Influence of the selection of parameter ρ  on the solution results

ρ 0.01 0.05 0.1 0.5 2

F /106 yuan 1.8168 1.8166 1.8167 1.8167 1.8172

Number of iterations 79 21 23 24 34

Figure 6. Iterative error curve of parameter ρ =0.01

Figures 6 and 7 elucidate the trajectory of iterative errors, 
revealing that with ρ = 0.01, the error curve is characterized by 
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Figure 7. Iterative error curve of parameter ρ =2

a smooth yet gradual decline, necessitating an increased 
number of iterations. Conversely, when ρ = 2 is employed, the 
error curve exhibits a precipitous descent accompanied by 
notable fluctuations, resulting in a heightened iteration count. 
Consequently, the parameter ρ  serves a dual function: it not 
only modulates the multiplier correction step within the iterative 
sequence but also impacts the oscillatory nature of the process. 
These dual roles exert antithetical effects on the rate of 
convergence. In practical scenarios, the optimal relative value of 
ρ  can be ascertained through empirical experimentation.

4. Conclusion
The current investigation addresses the dynamic economic 
dispatch (DED) dilemma within a trans-regional power system 
context, advancing a model that leverages the alternating 
direction multiplier method (ADMM). This model innovatively 
obviates the traditional requirement for a superior data center 
to perform multiplier updates, thus fostering a fully distributed 
dynamic economic scheduling (DDES) framework. The model’s 
validation was conducted through simulation tests on a set of 
interconnected systems, based on the IEEE standard test 
system. The results from these simulations substantiate the 
model’s ability to generate highly precise solutions across a 
prudent range of iterations. The valuation strategy for the 
parameter ρ  was scrutinized, revealing its significant impact on 
the iteration count. It was observed that an overly large or small 
ρ  value could either amplify fluctuations in the iteration process 
or slow down the multiplier’s update speed, both of which are 
counterproductive to rapid iterative convergence. In practical 
scenarios, optimizing the parameter ρ  can be achieved through 
iterative experimental adjustments.
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