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Abstract
Based on the Pasternak two-parameter foundation model, this study establishes a dynamic 
model for analyzing the deflection of slabs under moving loads. The variational method and 
reciprocal equal work theorem are employed to obtain the deflection solution, while the 
Matlab program is utilized with practical examples to calculate the foundation response 
modulus considering transfer shear force, bending moment, and their combined effects. By 
fitting measured dynamic deflections with theoretical predictions using the least square 
method, the response modulus K of the foundation is determined, demonstrating that our 
proposed model effectively captures the realistic behavior of rigid pavements.
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1. Introduction
With the rapid development of China's civil aviation industry, 
higher performance and safety requirements for airport 
pavement are inevitable.Currently, the commonly used 
foundation models include the E.Winkler foundation model and 
the elastic half-space foundation model. Although the Winkler 
foundation model theory is simple and intuitive, requiring only 
one elastic parameter to express ideal elastic foundation 
characteristics and relating displacement of any point solely to 
applied stress at that point,it fails to consider soil-ground 
continuity. In contrast, the elastic half-space foundation model 
overemphasizes stress diffusion between soil and ground, 
making calculations more cumbersome and impractical for 
engineering applications. Consequently, mechanics experts 
have developed several more reasonable foundation calculation 
models through extensive experimentation. Zhang et al.  [1] and 
Chen and Liu [2] utilized the Kelvin viscoelastic model under 
moving load conditions to obtain a relatively accurate 
foundation reaction modulus. The viscoelastic Winkler dynamic 
model verified by Xing [3] better reflects actual airport 
operations. Patil et al. [4] employed Pasternak's two-parameter 
soil medium as a model to investigate material nonlinearity 
effects on pavement response in supporting soil medium. 
Kumar et al. [5] applied a novel finite element-based cyclic 
response model for rigid pavement design while establishing 
the period range of moving load within rigid pavement 
parameters. Airport pavements consist of multiple concrete 
panels working collectively. This paper selects the Pasternak 
two-parameter foundation model based on independent 
parameters:foundation reaction modulus K  and shear modulus 

G ; thereby establishing a dynamic rigid pavement model 
considering joint load transfer capacity.

2. The formulation of dual-panel motion 
equations

2.1 The formulation of the equation of motion

Based on the two-parameter foundation, a dynamic model of 
rigid thin plate pavement on the two-parameter foundation is 
established, considering boundary shear and bending under 
moving load [6], where Q  is the foundation reaction force. The 
dynamic equation of the two-parameter foundation 
incorporates two independent parameters: reaction modulus K  
and shear modulus G . Figure 1 illustrates the schematic 
diagram of the two-parameter foundation, while Figure 2 
depicts the forces acting on the shear layer [7].
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Figure 1. Schematic of a two-parameter foundation model

Figure 2. Forces on the shear layer

 According to the Kirchhoff thin plate theory [8] and the theory 
of elastic mechanics, we establish the motion equation for 
plates subjected to a two-parameter foundation under dynamic 
loading as follows:

D∇4w + M ∂2w
∂t2 + Kw − G∇2w = P (1)

D = Eh3

12(1 − μ2 )

where:

D  is the flexural stiffness of the plate,

μ , the Poisson's ratio

M = ρh , the areal density

∇2 = ∂2

∂x2 + ∂2

∂y2 , Laplace operator in two dimensions

K , foundation reaction modulus

G , foundation shear modulus, and

w  is the vertical deflection of the pavement panel.

The aforementioned equation represents the differential 
equation of motion for the track panel system subjected to a 
general moving load, denoted as P (x , y , t ) . In the context of 
the investigated form of moving load in this study, the equality 
P (x , y , t )  can be expressed as follows:

P (x , y , t ) = P0δ (x − vx t )δ (y − η ) (2)

 The function δ  is represented by δ (x ) , and the uniform gliding 
speed of the aircraft is denoted by vx .

2.2 Boundary conditions (shear and bending)

The plate dimensions are defined as length a  and width b , with 
simultaneous transfer of shear force and bending moment 
between the plates in the actual working state. The boundary 
shear force is generated by the spring support force, where the 
elastic support rigidity coefficient k1  represents the boundary 
condition parameter. Similarly, the bending moment is 
generated by the spring-supporting moment, with the elastic 
supporting rigidity coefficient k2 representing another 
boundary condition parameter. Assuming that Y = 0, b  
corresponds to the side where the seam is located, we can 
express its general formula for boundary conditions as follows:

Vy =0,b = D [ ∂3w
∂y3 + (2 − μ )∂3w

∂x2∂y ]y =0,b
= − k1 [w ]y =0,b

My |y =0,b = D ( ∂2w
∂y2 + μ ∂2w

∂x2 ) |y = 0, b = − k2| ∂w
∂y |y =0,b

(3)

3. The solution to the equation of motion

3.1 Solving time factors

The variational formulation of Eq. (1) for plate motion is as 
follows:

∫
0

a ∫
0

b

{D∇4w + M ∂2w
∂t2 + Kw − G∇2w − P }δwdxdy = 0 (4)

The lateral load concentration stands out among them. P =
P (x , y , t ) , w = w (x , y , t ) .

Select a function in the specified format as the solution for the 
variational equation mentioned above

{ w (x , y , t ) = T (t )W (x , y )

P (x , y , t ) = B (t )W (x , y )
(5)

 The mode function of the plate is represented by W (x , y ) , and 
the coefficients of the deflection function w (x , y , t )  and load 
P (x , y , t )  are denoted as T ( t )  and B ( t ) , respectively. The 
variation corresponding to the deflection function w (x , y , t )  is 
as follows:

δw = W (x , y )T ( t ) (6)

Substituting Eqs. (5) and (6) into (4) gives:

( t ) + wmn
2T ( t ) = 1

M B ( t ) (7)

where
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wmn
2 = 1

M
I1
I2

I1 = ∫
0

a ∫
0

b

[D∇4W (x , y ) + KW (x , y ) − G∇2W (x , y ) ]W (x ,

y )dxdy

I2 = ∫
0

a ∫
0

b

W2 (x , y )dxdy

The computable expression for T (t ) is as follows:

T ( t ) = (c1cos wmn t + c2sin wmn t ) +

1
Mwmn

∫
0

t

B (τ )sin wmn ( t − τ )dτ
(8)

where, wmn  represents the natural frequency of undamped free 
vibration for a thin plate. The first term in Eq. (8) denotes the 
thin plate's free vibration, while the second term represents its 
forced vibration.

Among them, c1 and c2 are constants that depend on the initial 
conditions of motion, while B (t ) is dependent on the load 
characteristics. In this study, the load is considered as a 
concentrated load P0, neglecting its mass. Consequently, B (t ) 
can be expressed as follows:

B ( t ) = P0W (vx t , η )

∫
0

a ∫
0

b

W2 (x , y )dxdy
(9)

According to Eqs. (8) and (9), the dynamic deflection of the plate 
under the influence of a moving concentrated load P, with zero 
initial conditions (c1 = c2), can be determined as follows:

w (x , y , t ) = ∑
m =1

∞

∑
n =1

∞

W (x , y )

Mwmn ∫
0

a ∫
0

b

W2 (x , y )dxdy

∫
0

t

P0W (vx τ , η )sin wmn ( t − τ )dτ

(10)

3.2 Solving coordinate factors

In order to address the analytical solution for the bending 
behavior of diverse boundary plates subjected to moving loads, 
a four-sided simply supported rectangular plate with 
dimensions, geometry, and material properties that precisely 
match those of the actual system is considered as the 
fundamental model [9], as depicted in Figure 3.

 The plate is subjected to a unit concentration force at the flow 
coordinate (ζ , η ) , and the displacement is solved using a 
trigonometric series

w1 = 4
abD

∑
m =1

∞

∑
n =1

∞

sin km ζsin kn η
(km

2 + kn
2)2 sin km xsin kn y (11)

where, km = mπ
a , kn = nπ

b
.

The solution w1 is referred to as the fundamental solution 
corresponding to the rectangular plate system.

The boundary condition can be simplified as a simply supported 

Figure 3. Basic system of board

boundary by incorporating the corresponding support 
settlement and constraint moment under actual boundary 
conditions. The additional support settlement is assumed to be:

Wx 0 = ∑
n =1

∞

An sin kn y , Wxa = ∑
n =1

∞

Bn sin kn y ,

Wy 0 = ∑
m =1

∞

Cm sin km x , Wyb = ∑
m =1

∞

Dm sin km x .

(12)

The additional constraint torque shall be determined as follows:

Mx 0 = ∑
n =1

∞

En sin kn y , Mxa = ∑
n =1

∞

Fn sin kn y ,

My 0 = ∑
m =1

∞

Gm sin km x , Myb = ∑
m =1

∞

Hm sin km x .

(13)

The reciprocal theorem of work between the fundamental 
system and the real system can be utilized to derive:

W (ξ , η ) = ∫
0

a ∫
0

b

[ (Mwmn
2 − K )W (x , y ) + G∇2W (x , y ) ]w1dxdy

+ ∫
0

a

Wy 0Vy 0dx + ∫
0

b

Wx 0Vx 0dy − ∫
0

a

Wyb Vyb dx − ∫
0

b

Wxa Vxa dy

+ ∫
0

a

My 0
∂w1
∂y |y = 0dx ∫

0

b

Mx 0
∂w1
∂x |x = 0dy

− ∫
0

a

Myb
∂w1
∂y |y = bdx − ∫

0

b

Mxa
∂w1
∂x |x = ady

(14)

Set:

W (x , y ) = ∑
m =1

∞

∑
n =1

∞

Amn sin km xsin kn y (15)

Substituting Eqs. (12), (13) and (15) into (14) yields:
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Amn =
2
a km {D [km

2 + (2 − μ )kn
2 ] (An − Bn cos mπ ) + (En − Fn cos mπ ) }

D (km
2 + kn

2 )2 − [Mwmn
2 − K − G (km

2 + kn
2 ) ]

+
2
b

kn {D [kn
2 + (2 − μ )km

2 ] (Cm − Dm cos nπ ) + (Gm − Hm cos nπ ) }

D (km
2 + kn

2 )2 − [Mwmn
2 − K − G (km

2 + kn
2 ) ]

(16)

Substituting Amn  into W (x , y )  can obtain the mode function 
expression of the triangular series type:

W (x , y ) =

∑
m =1

∞

∑
n =1

∞
An [km

2 + (2 − μ )kn
2 ] 2

a km D

D (km
2 + kn

2 )2 − [Mwmn
2 − K − G (km

2 + kn
2 ) ]

sin km xsin kn y

 +

∑
m =1

∞

∑
n =1

∞
−Bn cos mπ [km

2 + (2 − μ )kn
2 ] 2

a km D

D (km
2 + kn

2 )2 − [Mwmn
2 − K − G (km

2 + kn
2 ) ]

sin km xsin kn y

 +

∑
m =1

∞

∑
n =1

∞
Cm [km

2 + (2 − μ )kn
2 ] 2

b
kn D

D (km
2 + kn

2 )2 − [Mwmn
2 − K − G (km

2 + kn
2 ) ]

sin km xsin kn y

 +

∑
m =1

∞

∑
n =1

∞
−Dm cos nπ [kn

2 + (2 − μ )km
2 ] 2

b
kn D

D (km
2 + kn

2 )2 − [Mwmn
2 − K − G (km

2 + kn
2 ) ]

sin km xsin kn y

 +

∑
m =1

∞

∑
n =1

∞
En

2
a km

D (km
2 + kn

2 )2 − [Mwmn
2 − K − G (km

2 + kn
2 ) ]

sin km xsin kn y

 +

∑
m =1

∞

∑
n =1

∞
−Fn

2
a km cos mπ

D (km
2 + kn

2 )2 − [Mwmn
2 − K − G (km

2 + kn
2 ) ]

sin km xsin kn y

 +

∑
m =1

∞

∑
n =1

∞
Gm

2
b

kn

D (km
2 + kn

2 )2 − [Mwmn
2 − K − G (km

2 + kn
2 ) ]

sin km xsin kn y

 +

∑
m =1

∞

∑
n =1

∞
−Hm

2
b

kn cos nπ

D (km
2 + kn

2 )2 − [Mwmn
2 − K − G (km

2 + kn
2 ) ]

sin km xsin kn y

(17)

 Set:

W (x , y ) = w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8

The mode function of the triangular series can only satisfy the 
condition that the boundary deflection is zero while ensuring 
homogeneity in the corresponding boundary shear force and 
bending moment. Therefore, w1, w2, w3 and w4 undergo 
hyperbolic transformations in one of the following directions. 
Similarly, w5, w6, w7 and w8 are transformed accordingly. We 
can get:

w1 = ∑
n =1

∞

An

(αn
2 − βn

2 ) { [ αn
2shαn (a − x )

shαn a
− βn

2shβn (a − x )
shβn a ]

 + (2 − μ )kn
2[ − shαn (a − x )

shαn a
+ shβn (a − x )

shβn a ] }sin kn y .

w2 = ∑
n =1

∞

Bn

(αn
2 − βn

2 ) { [ αn
2shαn x

shαn a
− βn

2shβn x
shβn a ]

 + (2 − μ )kn
2[ − shαn x

shαn a
+ shβn x

shβn a ] }sin kn y .

w3 = ∑
m =1

∞

Cm

(αm
2 − βm

2 ) { [ αm
2shαm (b − y )

shαm b
− βm

2shβm (b − y )
shβm b ]

 + (2 − μ )km
2[ − shαm (b − y )

shαm b
+ shβm (b − y )

shβm b ] }sin km x .

w4 = ∑
m =1

∞

Dm

(αm
2 − βm

2 ) { [ αm
2shαm y

shαm b
− βm

2shβm y
shβm b ]

 + (2 − μ )km
2[ − shαm y

shαm b
+ shβm y

shβm b ] }sin km x .

w5 = ∑
n =1

∞

En

D (αn
2 − βn

2 ) [ − shαn (a − x )
shαn a

+ shβn (a − x )
shβn a ]sin kn y .

w6 = ∑
n =1

∞

Fn

D (αn
2 − βn

2 ) [ − shαn x
shαn a

+ shβn x
shβn a ]sin kn y .

w7 = ∑
m =1

∞

Gm

D (αm
2 − βm

2 ) [ − shαm (b − y )
shαm b

+ shβm (b − y )
shβm b ]sin km x .

w8 = ∑
m =1

∞

Hm

D (αm
2 − βm

2 ) [ − shαm y
shαm b

+ shβm y
shβm b ]sin km x .

(18)

The coordinate factor after the aforementioned transformation 
not only satisfies the condition of zero boundary deflection but 
also fulfills equations (12) and (13). In this scenario, the actual 
system must adhere to boundary conditions (3). The 
substitution of Bn , Cm , Dm , En , Fn , Gm  and Hm  into Eq. (3) yields 
eight equations, the solutions of which provide the 
corresponding values. Substituting these values into Eq. (17) 
determines the coordinate factor W (x , y ) .

By substituting the coordinate factor W (x , y )  into Eq. (10), one 
can derive the expression for W (x , y , t )  and obtain an 
analytical formula for the deflection of the pavement panel

W (x , y , t ) =

∑
m =1

∞

∑
n =1

∞

W (x , y )

Mwmn ∫
0

a ∫
0

b

W2 (x , y )dxdy

∫
0

t

P0W (vx τ ,

η )sin wmn ( t − τ )dτ

(19)

4. The identification of foundation modulus
According to the analytical expression of deflection, the 
deflection value of the plate can be determined when the 
reaction modulus K  of the foundation is fixed. Conversely, if the 
measured deflection at each measuring point is known, a fitting 
process can be conducted by establishing an objective function 
to compare and match the measured dynamic deflection with 
theoretical dynamic deflection. The program [10] is 
implemented using Matlab for identifying the response 
modulus of the foundation. During parameter optimization, an 
objective function is formulated based on the least squares 
criterion:
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min ϵ (K ) = min 1
n ∑

i =1

n

(wi − wi¯ )2

 Among them, min ϵ (K ), for the objective function, wi  and wi¯  
represent the theoretically calculated and measured deflection 
values of the measurement points, respectively, and n  
represents the number of measurement points on the 
pavement. Adjust K  one by one to minimize the objective 
function, and the K  value at this point is the identified 
foundation response modulus.

5. Verification of the case
The model and inversion recognition method presented in this 
paper were utilized to compute the pavement surface of an 
airport located in Nanjing, with geometric dimensions of a = 6
m, b = 4m, elastic modulus E = 3.5 × 104 MPa, Poisson ratio μ =
0.167, density ρ = 2500 kN

m2 , thickness h = 15.75mm. 

Additionally, considered were foundation shear modulus G =
35.17 N

cm3 , rigidity coefficients k1 = 1.5706 × 104 kN
m , k2 =

1.5830 × 104 kN
m  as well as loading equipment for aircraft (P0 =

215000N).

When the velocity reaches 2.59 m/s and y = 1.1m, Table 1 
presents both the measured and theoretical deflection values, 
while Figure 4 illustrates the fitting curve.

Table 1. Inversion results of foundation modulus (velocity = 2.59 m/s and y =1.1m)

Coordinate 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Measured deflection(mm) 0.395 0.365 0.335 0.270 0.195 0.115 0.050
Theoretical deflectio(mm) 0.402 0.388 0.349 0.285 0.201 0.104 0.073
Deviation value(mm) -0.007 -0.023 -0.014 -0.015 -0.006 0.011 -0.023
K(N/cm3) 58.33

Figure 4. Comparison curve between theoretical deflection and measured 
deflection

 When the velocity reaches 2.79 m/s and y = 0.68m, Table 2 
presents both the measured and theoretical deflection values, 
while Figure 5 illustrates the corresponding fitting curve.

Table 2. Inversion results of foundation modulus (velocity = 2.79 m/s and y =0.68m)

Coordinate 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Measured deflection(mm) 0.5 0.47 0.397 0.315 0.225 0.145 0.071
Theoretical deflection(mm) 0.485 0.469 0.420 0.343 0.242 0.127 0.060

Deviation value(mm) 0.015 0.001 -0.023 -0.028 -0.017 0.018 0.011
K(N/cm3) 58.40

Figure 5. Comparison curve between theoretical deflection and measured 
deflection

 According to Tables 1 and 2, as well as Figures 4 and 5, it is 
evident that the theoretical deflection values align closely with 
the measured deflection values. This demonstrates that the 
dynamic model established in this paper accurately reflects real-
world conditions. Furthermore, the stability and convergence of 
the parameter inversion method used have been proven.

6. Conclusions
(1) This study established a more accurate dynamic model for 
airport pavement systems, taking into account reasonable 
assumptions and simplifications of the foundation, loads, 
boundary conditions, and pavement panels. The model is a rigid 
thin plate pavement dynamic model that considers boundary 
shear and bending dual parameter foundation under moving 
loads. It accurately reflects the actual working state of rigid 
pavement and can be applied to the design of asphalt and 
overlay thickness on aircraft rigid pavement;

(2) The methods of variational method and reciprocal work 
theorem were used in this study to solve the differential 
equations of motion of the built dynamic system. An analytical 
solution for deflection was obtained, and an inversion 
calculation program based on the principle of least squares was 
compiled. Structural parameters of the rigid pavement panel 
were inverted and identified based on measured dynamic 
deflection. The stability, accuracy, and reliability of the 
identification method were verified through examples.
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