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Abstract
In smart city applications, electric vehicles (EVs) are rapidly gaining popularity due to their 
ability to help cut down on carbon emissions. Numerous environmental conditions, 
including terrain, traffic, driving style, temperature, and so on, affect the amount of energy 
an EV needs to operate. However, the burden on power grid infrastructure from widespread 
EV deployment is one of the biggest obstacles. Smart scheduling algorithms can be used to 
handle the rising public charging demand. Scheduling algorithms can be improved using 
data-driven tools and procedures to study EV charging behaviour. Predictions of behaviour, 
including temperature, departure time, and energy requirements, have been the focus of 
research on past charging data. Weather, traffic, and surrounding events are all factors that 
have been mostly ignored but which could improve representations and predictions. The 
DRA-Net, or Deep Residual Attention Network, was developed by the researchers and is 
used to recognize EV charging patterns. To minimize data loss, the Res-Attention 
component utilized tighter connections and smaller convolutional kernels (3 x 3). In 
addition, an Artificial Butterfly Optimisation Algorithm (BOA) model is used to fine-tune the 
DRA-Net's hyper-parameters. We highlight the significance of traffic and weather info for 
charging behaviour predictions, and the study's experimental forecasts show a considerable 
improvement over prior work on the same dataset. The future of electric vehicle (EV) 
research has been mapped out thanks to in-depth study, and as a result, EVs will soon 
significantly impact the auto industry.
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1. Introduction
Vehicle energy consumption is a subject that has been 
extensively studied and evaluated. The influence of driving 
styles, ITS technologies, and other intelligent systems on fuel 
usage was the primary focus of study until very recently [1]. The 
core of EV charging prediction involves analyzing historical data 
related to vehicle charging patterns, such as duration, 
frequency, and energy consumption, along with contextual 
factors like time of day, location, and even weather conditions. 
By applying sophisticated algorithms, these systems can predict 
peak charging times, suggest optimal charging schedules, and 
even recommend when additional resources might be needed 
to handle high demand. The benefits of accurate EV charging 
predictions extend beyond individual convenience to impact 
broader energy management systems. Utilities can use these 
predictions to balance loads more effectively, integrate more 
renewable energy sources, and reduce overall carbon 

footprints. For EV infrastructure providers, predictive analytics 
can guide the expansion of charging networks, ensuring that 
new stations are built where they will be needed most.

Recently, the energy consumption of electric vehicles (EVs) has 
been included in these analyses. The goals and methods used to 
calculate EV energy consumption studies fall into one of many 
categories. Research documents the creation of energy models 
for optimization [2], effect analysis on energy consumption [3], 
and worldwide energy consumption [4] as a consequence of the 
adoption of EVs or hybrids. Predictions of the (all-electric) range 
may sometimes be made using the energy model [5]. EV 
consumption from data [6] or test cycles or creating a vehicle 
model that simulates are the two methods used to determine 
energy consumption. To anticipate more accurate figures for 
energy consumption, real-world measurements are preferable 
[7], but this method depends on accessible data and statistical 
modelling and is typically decoupled behaviour. Instead, 
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modelling the vehicle's dynamics and drivetrain behaviour 
provides a direct relationship to these elements, making it 
easier to pinpoint the characteristics of the powertrain that have 
the greatest impact on fuel economy [8].

At least in the case of personal automobiles and other light 
transport vehicles, it is generally agreed that EVs are the future 
of environmentally responsible transportation [9]. This is 
because the cars have a feature called zero local emissions, 
which significantly aggregates [10]. However, EVs' battery 
charging and powering energy mix still have issues. This 
combination may result in a greater overall CO2 output due to 
the electricity generation process necessary for EV 
operation/use [11]. A growing number of manufacturers have 
adopted electric propulsion technology over the last few 
decades as a result of the many studies completed

However, progress in technology regarding the energy source 
of force for EVs is a long way from delivering sophisticated and 
energy-efficient technical and technological solutions, and 
certain pressing challenges must be addressed immediately in 
this area [12]:

Determining a battery knowledge that offers the best 
low charging time, high lifecycle,

operational safety decreased production prices;

Calculating well-to-wheel emissions due to the vigour 
mix used in the charging procedure;

Some of the real obstacles to EVs' widespread penetration of 
the automotive market are the ones stated above, but 
customers' perceptions and attitudes also play a crucial role. 
There has been several research on customer and user 
sentiment towards EV uptake and purchase [13].

Despite the intriguing potential, a few things could still be 
improved, such as the charging period and the necessity for 
public charging. Even while recharging times for EVs have been 
substantially faster in recent years, they are still much longer 
than those for fueling internal combustion engine cars [14]. 
Extremely fast and wireless charging are two potential 
examples of emerging technologies that must overcome several 
obstacles before they can be widely used. Because of the lack of 
private charging stations, most EV owners must make do with 
public ones, which burdens the electrical system because of the 
EVs' high power needs [15]. Uncoordinated charging behaviour 
should be avoided to prevent power grid deterioration and 
breakdowns. Managing charging station schedules more 
effectively is the best option. There is a wealth of literature on 
efficient scheduling with data-driven methods, such as 
optimization and metaheuristic strategies. Charging behaviour 
has also been analyzed using transaction data and interviews 
with EV drivers to account for the influence of psychological 
variables.

Electric vehicles (EVs) are central to the global strategy for 
reducing carbon emissions and combatting climate change. As 
the adoption of EVs accelerates, efficient and effective charging 
infrastructure becomes increasingly critical. This paper aims to 
explore the challenges associated with EV charging behavior, 
which are significant for several reasons such as Grid 
Integration, Economic Impacts, Environmental Benefits and 
Technological Advancements. By addressing these challenges, 
this research aims to contribute to the development of more 
efficient, user-friendly, and sustainable charging infrastructure, 
thereby supporting the broader adoption of EVs. This is 
essential not only for environmental sustainability but also for 
the economic and social shifts toward cleaner transportation 
solutions.

We've devised a new method that helps remedy these 
drawbacks in three significant ways.

1. A redesigned DRA-Net was presented with a better 
mechanism to detect EVs' charging behaviour. This greatly 
enhances the model's accuracy, resilience, and localization 
capabilities.The new design of DRA-Net includes improved 
localization features that allow for more precise 
identification of the location of charging events. This is 
particularly important for spatial analysis of EV charging 
demands and infrastructure planning.

2. Second, unlike traditional models, DRA-Net recognizes 
targets against complicated backgrounds. Unlike traditional 
models which often struggle in cluttered environments, 
DRA-Net now employs sophisticated pattern recognition 
and machine learning algorithms that excel in 
distinguishing EVs and their charging status in complex 
scenes. This capability is vital for effective deployment in 
varied and unpredictable urban settings where 
backgrounds can significantly vary.

3. The classification accuracy is enhanced by the BOA 
model's optimal weight selection in the suggested perfect. 
This optimization is achieved through a novel algorithm 
that evaluates and adjusts weights dynamically based on 
real-time data, significantly enhancing the classification 
accuracy of the charging behavior.

The residue of the paper is laid out as shadows. In Part 2, you'll 
find the bibliography. The suggested model is explained in 
Section 3, the trial investigation is discussed in Section 4, and 
the conclusions are drawn in Section 5.

2. Related works
Ullah et al. [16] created a one-of-a-kind interpretable system to 
forecast where EVs would plug in. The study used two years of 
data on regular and fast charging events from 500 EVs in Japan. 
To predict customer preferences about charging stations, the 
XGBoost model achieved better than the other ML classifiers. 
Further, the recently developed SHAP approach was utilized to 
ascertain the importance of characteristics and the intricate 
nonlinear interaction effects of various station selection 
behaviours. Preliminary results from this study suggest that an 
interpretable ML model may be created by merging ML models 
with SHAP to predict EV drivers' preferences for charging 
stations.

Using the Variational-Bayesian Gaussian-mixture model and a 
dataset of more than 220,000 actual charging records, Cui et al. 
[17] demonstrate in-depth comprehension of fast-charging 
behaviour among EV users at public stations. The cluster model 
prioritizes charging-related elements such as charging energy 
and charging time, with an emphasis on the time spent in the 
home after charging, to enhance charge suggestion 
approaches and power distribution. Our proposed method for 
predicting charging behaviour is based on behavioural libraries 
using stacking regression technology, which was motivated by 
the potential future uses of the charging behaviour cluster 
shown in the research as mentioned earlier. The outcomes 
prove that the suggested paradigm can accurately anticipate 
and assess the relevance of charging behaviour.

To predict EV charging durations, Alshammari and Chabaan [18] 
utilized an Ant Colony Optimisation metaheuristic to fine-tune 
the parameters of an ensemble machine learning approach that 
XGBoost. The suggested Ensemble Machine Learning Ant 
Colony Optimisation (EML_ACO) method was shown to achieve 
training results of MAPE. The calculated values for R2 are 12.4 
per cent, MAE 13.3 per cent, RMSE 21.1 per cent, and MAPE 12.4 
per cent.
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Zhang et al. [19] analyzed the real-world travel and charge 
passenger vehicles in Beijing over three months to better 
predict future charging needs. We provide a "multi-level & multi-
dimension" framework for extracting travel and charging 
characteristic characteristics based on our analysis of more than 
60 such components spanning electric vehicle behaviour's time, 
space, and energy dimensions. Next, a two-stage GMM and K-
means-based clustering model will be provided to classify EV 
owners into six subgroups according to their shared and 
differentiated driving behaviours, preferences, and other 
factors. In addition, a trip-chain-demand forecast model is built 
to produce cars in a certain category, better reflecting real-
world conditions. We combined the results of individual charge 
prediction runs at a three-dimensional resolution of 0.46 km 
and a temporal resolution of 15 min to accurately demonstrate 
the proposed model's ability to forecast future charging needs 
in the real world. The findings may aid in studying charging 
behaviours' effect on grid demand and developing a more 
effective charging infrastructure.

Stochastic user equilibrium (SUE) is introduced by Liu and Liu 
[20] as a novel method for predicting the accurate spatial-
temporal load in sync with traffic events. Predicting EV charging 
loads using SUE and trip chains is proposed to describe how EVs 
perform under synchronized traffic situations better precisely. 
Then, the expanded logit-based SUE and a similar mathematical 
model are projected in order to achieve more accurate traffic 
conditions, such as junction delays. The accusing infrastructure 
is designed to be compatible with a wide range of EVs, and 
models are in place to ensure that the entire travel chain is 
practical. Using a hybrid approach based on the Dijkstra-based 
K-shortest routes algorithms, the suggested framework is 
solved repeatedly with steady convergence. The suggested 
method's capacity to type while retaining accessibility is 
demonstrated by its application to a realistic traffic network. In 
addition, it can accurately predict the overall charging loads and 
the prices of individual EV trips in scenarios with complicated 
synchronized traffic. In particular, even when there is a 
substantial EV penetration with larger consistency, with even 
more impressive forecast efficacy, hours.

The purpose of Li et al.'s [21] research is to provide an inclusive 
overview of the modelling of EV behaviour and its applications 
for developing algorithms for EV-grid integration. Several 
models have been developed to capture the complexities of 
adopting electric vehicles (EVs), charging decisions, and user 
acceptance of smart charging infrastructure. Specifically, this 
article explains the preexisting models, including temporal, 
geographical, and energy dimensions, and describes the 
numerous sub-models of charging preference and 
responsiveness to smart charging. The authors propose a novel 
EV behaviour modelling paradigm that may guide model 
selection for different application contexts by creating model 
portfolios for time, space, energy consumption, charging 
preference, and reactivity. As a result, we talk a lot about how to 
model EV behaviour to predict EV charging demands and 
schedule charging logically. Future research directions are 
discussed, and in-depth behavioural insights are offered that 
might be utilized to develop effective EV behaviour models that 
propel EV-grid integration.

Koohfar et al. [22] employ machine learning algorithms to 
predict EV charging demand, including RNNs, LSTMs, Bi-LSTMs, 
and modifiers. Data collected over five years from 25 public 
charging stations in the USA confirms the accuracy of this 
approach. Compared to other techniques, it performs better at 
predicting charging requirements, representing its value for 
time series forecasting glitches.

3. Methodology

The methodology for estimating charge patterns is described 
below. We define the issue, outline the dataset, emphasize data 
pretreatment, and go over training strategies for several 
learning models.

3.1 EV charging behaviour

Assuming tcon  depicts the charging behaviour during a session, 
where tjoin  represents the period, the car initially plugs in, tdiscon  
reflects the period the car unplugs, and e  indicates the total 
amount of energy supplied to the car. Bsession  as subsequent:

Bsession ≜ (icon ,Edison , e ) (1)

 Based on the overhead, we can express the length of accusing 
meeting or the session period, Sdur , as follows:

Sdur = tdiscon − tcon (2)

3.2 Dataset description

In order to forecast charging actions, we use data on events in 
addition to the charging information. We will provide a high-
level overview of the datasets we employed, focusing on their 
salient features.

The unpredictability of charging behaviour makes scheduling EV 
charging more important in public charging facilities, such as 
those seen in areas like shopping malls. One of the few publicly 
accessible datasets for commercial EV charging, the ACN [23] 
dataset will be used in this study. The collection includes 
charging statistics from two campus stations (JPL and Caltech). 
The JPL station will not be evaluated because it is restricted to 
JPL workers exclusively, unlike the Caltech station. By scanning a 
QR code with their mobile apps, registered users can 
information, such as their projected leaving time and desired 
energy. There is a web gateway and a python API available at 
[24] for accessing the dataset.

Caltech does have a tiny weather station [25], but we didn't use 
it because of missing results and uneven interval records for the 
wind variable. Furthermore, this record weather conditions that 
might have an effect on charging behaviour, such as 
precipitation and snowfall. Since the actual position of the 
charging station is dependent on the weather, we used NASA's) 
[26]. Satellite weather data have been compared to those from 
ground stations for accuracy in [27]. While it has been 
established that ground stations are better able to identify 
some weather aspects at a given place, for the sake of this work, 
we are not interested in pinpoint precision but rather a more 
holistic understanding of how weather affects charging 
behaviours. For instance, we want to see how different weather 
conditions, such as heavy rain vs. dryness, affect charging 
behaviour.

It might be difficult to track down reliable historical traffic 
information for certain routes and regions. Both invasive 
techniques like road tubes and piezoelectric sensors, and 
noninvasive ones like microwave radar and video image 
recognition are used in traditional methods of traffic data 
collecting [28]. Scalability is a problem with these methods, and 
in most situations, only certain highways are covered. For 
instance, Pasadena (the source of the charge data) has an open 
data site [29] that details the city's daily traffic volume. 
Nonetheless, it covers traffic count over some period of time for 
most routes in the city, rendering it useless as we need data 
collected at regular intervals. Furthermore, not all streets and 
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highways are protected. Therefore, we choose to utilize Google 
Maps traffic data, which has already been utilized in machine 
learning applications [30]. If commuters use the app and opt-in 
to sharing their location, the data is obtained by tracking the 
devices' precise whereabouts. To alleviate privacy concerns, 
gathered data is de-identified and aggregated before being 
made public [31]. The information may be retrieved using the 
Google Maps Distance Matrix API. The departure time and 
journey time between a specified set of coordinates for the 
origin and destination are calculated and returned. We 
gathered travel time data for the nine roads and streets closest 
to the charging station.

Considering the location on the Caltech campus, we thought it 
would be interesting to examine whether or not the frequency 
with which campus activities occur influences charging patterns. 
Caltech's online calendar [32] was consulted to determine how 
many events occur per hour. To keep things simple, we rounded 
times to the nearest hour, so that something that began at 
10:20 a.m. would be recorded as having begun at 10 a.m.

3.3 Data preprocessing

To guarantee accurate predictions, it is essential to clean and 
preprocess the dataset. Among these is the elimination of 
anomalies and inaccurate data. Model performance may suffer 
if outliers are present. Boxplots are frequently used for this 
purpose. Figure 1 shows that there were outliers in the boxplots 
for both dependent variables. We see that the distribution of 
outlying values is not the same for both variables; in this case, 
there are much more extreme values for energy use than for 
session length. Some cars may have much higher energy 
consumption, even if the sitting time is not very long.

Figure 1. Session duration (right). Boxplots of energy consumption (left)

 For this reason, we elected to build an ensemble of trees using 
the isolation forest approach to conduct multivariate outlier 
identification. iTree cases with low average path lengths are the 
ones that stand out [33]. The observations are 'separated' by 
picking a variable at random and then choosing a split value 
among the variable's lowest and maximum. The comments are 
partitioned recursively until they are all isolated. Shorter path 
length data for certain places after partitioning are likely to be 
anomalies. With the axes normalized for both reply variables, 
the method of identifying the outlier of variables is depicted in 
Figure 1. Six hundred and ninety-seven anomalies, or 4% of all 
observations, were found.

We only examined 97% of the records for the charge data since 
they were registered charging records, i.e. they had user IDs. 
We utilized the pytz [34] module in Python to transform the 
weather data, which was originally recorded in universal time, 
to the same time zone as the billing records. Additionally, we 
performed a temperature conversion from kelvin to Celsius. We 
then calculated the average weather during the preceding 
seven hours and the following ten hours for each hour, both of 

which were confirmed experimentally to be accurate 
representations. In doing so, we may learn how the state of the 
weather, both before and after charging, affects the choice to 
charge. For instance, reduced charging duration can be 
explained by the preceding hours' heavy snowfall. For the traffic 
information, we also had to adjust the time zone from 
Coordinated Universal Period. We then added up the sum of 
vehicles on the nine thoroughfares and streets throughout the 
course of each hour. It's important to remember that we 
included in both the median and maximum travel times 
predicted by Google Maps. At last, we added up all the campus 
activities for each hour.

The pandas [35] package was used to transform the time-series 
fields into date-time objects, which allowed for easier data 
merging. We then saved the closest time belonged in order to 
acquire weather, traffic, and events for a convinced charge 
record. For instance, a connection time of 22:11 indicates that it 
is currently 10 p.m. Because of this, we can simply parse out the 
remaining data. We didn't just pick the volume of traffic at a 
particular hour; we picked the volume of traffic from the time 
we got there till the time we left. For example, if a car checked 
in at 2:00 p.m., we included that car's arrival as part of the day's 
total traffic count. This would teach the model how changes in 
traffic volume affect pricing. Similarly, we accounted for 
everything that happened from the time we landed to the close 
of the day.

3.4 Classification using deep learning networks

With the advent of deep residual networks, deep learning's 
capacity for characterization and learning has been 
substantially enhanced, making this area of study increasingly 
popular among categorization researchers. When performing 
feature extraction using a standard deep convolutional neural 
network, the deep residual network may take use of the 
residual construction to maximize the info loss induced by the 
convolution procedure. This significantly enhances the reliability 
of rice disease detection. In 2017, a deep residual model called 
DenseNet was suggested at CVPR as a new type of network 
model. To promote feature reuse, the model employs tightly 
coupled connectivity, wherein all levels have access to the 
feature maps of their previous layers. This directly contributes 
to the model becoming more condensed and robust against 
overfitting. It also enables implicit deep supervision by having 
the loss function directly supervise each layer through a 
shortcut path..

3.4.1 Dense connection
DenseNet is an alternative connection design to traditional 
networks that maximizes information transfer during picture 
recognition by employing dense connectivity. This indicates that 
in DenseNet, all of the layers above it are linked together. The 
goal is to maximize the transfer of knowledge between 
networks by having each successive layer use the feature maps 
it has obtained layer as input to the next layer.

xl = Hl ( [x0, x1, …, xl −1 ] ) (3)

where xl  is input to layer l , x0 finished x(l −1) are the layer l  from 
which layer l  receives input, (x0, x1, …, x(l −1)) are the chin maps 
output by the layers beforehand layer l  that are being 
combined, and Hl  is the compound purpose that gears the join 
features in the reckoning, including the batch layer. Figure 2 
depicts the overall DenseNet structure.

Table 1 displays the DenseNet-121 net topology.
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Figure 2. DenseNet's data architecture is optimized for high throughput in visual 
recognition tasks

Table 1. DenseNet-121 network construction

Kernel Size Stride Output Network Layer
- - (3D-tensors,128,56,56) Transition (1)
- - (3D-tensors,512,56,56) Dense Block (2)
- - (3D-tensors,3,224,224) Input
7 2 (3D-tensors,64,112,112) Conv2d
- - (3D-tensors,256,112,112) Dense Block (1)
- - (3D-tensors,256,28,28) Transition (2)
- - (3D-tensors,1024,28,28) Dense Block (3)
- - (3D-tensors,512,14,14) Transition (3)
- - (3D-tensors,1024,14,14) Dense Block (4)
1 1 (3D-tensors,1024,1,1) AvgPool
- - (1024, class_num) Classification

3.4.2 Transition
In DenseNet, downsampling operations are handled by the 
transition module. For the model to be beaten to lower the sum 
of channels dense module, the changeover module primarily 
conducts two operations: pooling, with an layer of (2 2).

3.4.3 Attentional mechanisms
When processing an image, network to focus on the parts of the 
duplicate that will have the most impact on the final result. The 
convolutional neural network may dynamically modify its focus 
thanks to the attention mechanism. natural language 
processing have both benefited from the application of 
attention methods. Recurrent neural networks with have found 
widespread use in sequential models. There are two main 
categories of attention mechanisms: channel attention and 
spatial attention. Both CBAM models were employed in this 
work, where the structure is mentioned in Figure 3.

Figure 3. CBAM module architecture in feedforward convolutional neural networks 
allows for the incorporation
 of both spatial and channel attention processes

 Assigning attention weights successively along follows the 
provision of an intermediate feature map of the procedure. The 
adaptive adjustment is then calculated by multiplying the 
original feature map by the weights. Figure 4 depicts the CBAM 
module's two sub-modules, the spatial.

(b)

Figure 4. CBAM module's structure, including the roles played by the spatial care 
module and the module,
 allows for the dynamic modification of ear maps

3.4.4 The channel attention mechanism unit

The channel care apparatus first receipts the map F ∈ RC ×H ×W  
and permits it through global maximum regular pooling to get 
two (C × 1 × 1) maps MS ∈ RC ×1×1. A two-layer multilayer with 
C /r  in the first layer C  neurons in the second layer (where C  is 
the original number of neurons) is then applied to the 
generated feature maps in a shared network. After then, the 
instrument MC (F ) adds up the individual features from the 
shared network's output to produce the final, full feature vector. 
Equation (4) depicts the formula for the channel attention 
apparatus

MC (F ) = σ (MLP (AvgPool (F ) ) +
MLP (MaxPool (F ) ) ) = σ (W1 (W0 (Favg

C ) ) +
W1(W0(Fmax

C )) )
(4)

where σ  function; W0 ∈ RC /r ×C , W1 ∈ RC /r ×C , and the MLP  
weights W0 and W1 inputs; and W0 is after the ReLU purpose.

3.4.5 Spatial attention mechanism module

The feature vectors generated by the channel care apparatus 
module are used as inputs to the spatial attention mechanism. 
Two feature vectors are generated from the feature vector by 
first using a maximum pooling process and then an process. 
Fmax

S ∈ R1×H ×W  and Favg
S ∈ R1×H ×W , respectively. Once the 

maximum and average pooled characteristics have been 
summed, a channel splicing operation is performed on them. 
After that, a convolutional convolution operation (7 × 7) is 
performed on the feature vectors to collapse them down to a 
single dimension. The feature vector is derived after a sigmoid 
function is applied, MS (F ) ∈ RH ×W

MS (F ) = σ ( f7×7[AvgPool (F ) ; MaxPool (F )] ) =
σ (f7×7( [Favg

S ; Fmax
S ] ))

(5)

where σ  symbolizes the sigmoid purpose and f7×7 signifies the 
process with a difficulty kernel of size (7 × 7).
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3.4.6 Res-attention
In this research, we built upon the CBAM module to create a 
novel attention mechanism we name the Res-Attention module. 
The module was developed to improve gearbox reliability by 
including a residual structure. When the feature map is sent into 
the model in the Attention component, some of the information 
is remembered. When the model is linked after the model, the 
info produced from the module is combined with the info that 
was previously preserved. The module then sends out the 
combined feature data. Figure 5 depicts the Res-Attention 
module's internal construction.

Figure 5. Construction of the module for plummeting info loss during broadcast

3.4.7 DRA-net
In this research, we examined and built the DRA-Net network 
perfect by integrating the unit into the perfect to better predict 
charging behaviour. The DRA-Net architecture is made up of a 
set of interconnected and layered modules called Dense Blocks, 
Res-Attention Modules, and Transition Layers. The study 
attached the module to the Transition module after positioning 
module. A transition module linked the first three modules 
together, whereas the fourth ResAttention module was linked 
straight to the classification layer. Lastly, we adjusted the 
Classification Layer's output characteristics.

The Dense Block's feature maps are sent straight to the module 
in the DRA-Net network model, where they are processed by the 
Perfect and the Spatial Attention Model. Figure 6 depicts the 
overall layout of the DRA-Net system.

Figure 6. Structure of DRA-Net network perfect for documentation

3.4.8 Hyper-parameter tuning using Artificial 
Butterfly Algorithm

Exploring the effects of life history optimization on lifetime 
speculation in violent conduct [36] may be done with countless 
success using system. You can get some great ideas for a new 
optimization technique from spotted trees. We introduced the 
Artificial Butterfly Optimisation (ABO) technique, which is 
inspired by the mating behaviour of speckled woodlands. Table 
2 displays the ABO algorithm's pseudo code. The ABO 
procedure follows a set of criteria that idealize the way 
butterflies locate a partner:

1. If a male butterfly wants to increase his chances of 

mating with a female, he will fly to a better location known 
as a sunspot.

2. Each sunspot butterfly is perpetually on the lookout for a 
new home in a neighbouring sunspot.

3. Every canopy butterfly aggressively pursues every 
sunspot butterfly in a never-ending battle for dominance.

Table 2. Pseudo code of ABO algorithm

1. Initialize the locations of butterfly population

2. Evaluate the fitness of every butterfly

3. While not meet the terminal condition

4. Sort all butterflies by their fitness

5. Select some butterflies with better fitness to form sunspot butterflies,

the rest
form canopy butterflies

6. For each sunspot butterfly, fly to one new location according to the sunspot flight mode

Evaluate the fitness of the new sunspot

and apply greedy selection on the original location and the new one

End for

7. For each canopy butterfly

Fly to one randomly selected sunspot butterfly according to canopy flight mode

Evaluate the fitness

8. If better fitness

Apply greedy selection on the original location and the new one

9. else

Fly to new location according to free flight mode

End if

Table 2 shows that the initial populace of butterflies was split in 
half along fitness lines. Each squad is given its own unique plan 
of action for the flight. At this stage, there are some parallels to 
niching strategies. In order to professionally locate numerous 
optimum solutions, a niching approach is typically employed to 
change the behaviour of a classical procedure to preserve 
different groups in the selected populace component. There are 
three distinct flying modes: sunspot, canopy, and free flight. 
Various flight techniques are obtainable for these modes. That 
modes is given a diverse flying policy, ABO can produce a new-
fangled algorithm.

Here, we outline three distinct ways a digital butterfly may take 
to the air. In this study, the position of a digital butterfly is 
characterized by a vector of D dimensions. According to Eq. (6), 
each butterfly travels in the way of a neighbour chosen at 
accidental. This tactic is implemented in the mode

Xi ,j
t +1 = Xi ,j

t + (Xi ,j
t − Xk ,j

t ) . rand () (6)

where i  is the butterfly, j  is a arbitrarily designated breadth 
index among [1, D ], t  is the number of iterations, rand () makes 
a accidental sum among [ − 1, 1], and k  is a randomly 
designated butterfly. Here, k  is diverse from i .

Each butterfly flies in the way of a neighbour chosen at 
accidental using Eq. (7). This tactic is applied in the ABO 
procedure's sunspot flying mode

Xi
t +1 = Xi

t +
Xk

t − Xi
t

∥ Xk
t − Xi

t ∥
. (Ub − Lb ) . step . rand () (7)

where i  is the i th computer-generated butterfly, t  is the sum of 
iterations, Xi

t +1 is the novel site of the ith computer-generated 
butterfly, step  is coldness, rand () produces a accidental sum 
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between (0, 1) and k  is a arbitrarily designated butterfly. Here, 
k  is diverse from i , Lb  is the lower butterfly, and Ub  is the flying 
variety of the ith, Lb  and Ub  are pertinent to a specific problem.

According to Eq. (8), each butterfly travels in the way of a 
randomly chosen neighbour. In the exploration phase, the 
same method has been used to look for a new place. The ABO 
algorithm employs this tactic during its free-flight phase

Xi
t +1 = Xk

t − 2.a . rand ( ) − a . D (8)

where i  is the computer-generated butterfly, Xi
t +1 is the novel 

linearly reduced from 2 to 0 course of repetition and rand () 
produces a accidental sum among (0, 1). k  is a arbitrarily 
designated butterfly. D  is a arbitrarily shaped value subsequent 
Eq. (9)

D = |2.rand ( ) . Xk
t − Xi

t | (9)

where i  characterizes the question and k  characterizes a 
butterfly selected at chance, and rand () foodstuffs a accidental 
number among 0 and 1.

In Eq. (7), the value of the parameter step is arbitrary. Methods 
for reducing are implemented in accordance with Eq. (10). Over 
time, step will progressively diversity may be attained in the first 
phases with a greater phase value. In the final phase, better 
convergence is achieved with smaller step values since massive 
leaping is avoided

step = 1 − (1 − stepe ) . E
max E (10)

where E  is present assessments count and max E  is the max 
assessments count.

4. Results and discussion
To guarantee that we account for seasonal effects during 
training, we only used ACN dataset that occurred in the year 
2019. We used 80% of the data for model training and 20% for 
assessing its performance. As part of the training process, we 
used validation, in which the procedures are trained a total of K 
periods, with a subset of 1/K  training instances used for 
evaluation each time. As a K  value, we went with the standard 
10. Models for session length are described in Table 3.

Table 3. Test notches for session duration

Model Precision (%) Recall (%) Accuracy (%) F1 Score
ResNet-101 97.67 97.82 97.63 97.7

DenseNet-121 97.87 97.87 97.86 97.8
AlexNet 91.65 92.62 90.37 91.16
Vgg-19 93.67 93.30 93.36 93.04

MobileNet 95.07 94.57 94.65 94.8
BOA-DRA-Net 99.72 99.70 99.71 99.06

 In Table 3 characterize that the test notches for session 
duration. In the analysis of AlexNet model attained the accuracy 
range of 90.37 then the exactness as 91.65 and also the recall 
range as 92.62 and lastly the F1-score as 91.16 correspondingly. 
Then the Vgg-19 model accomplished the accuracy range of 
93.36 and the exactness as 93.67 and also the recall range as 
93.30 and lastly the F1-score as 93.04 correspondingly. Then, 
the MobileNet model accomplished an accuracy range of 94.65, 
a precision of 95.07, a recall range of 94.57, and lastly, an F1-
score of 94.8. Then, the ResNet-101 model attained an accuracy 
range of 97.63, a precision of 97.67, a recall range of 97.82, and 
an F1-score of 97.7. Then, the DenseNet-121 model attained an 
accuracy range of 97.86, a precision of 97.87, a recall range of 
97.87, and an F1-score of 97.8. Then, the BOA-DRA-Net model 

attained an accuracy range of 99.71, an exactness of 99.72, a 
recall range of 99.70, and an F1-score of 99.06 correspondingly. 
Figure 7 graphically presents the comparison of various models.

Figure 7. Analysis on session duration

Table 4 signifies that the Test scores for energy consumption. In 
the investigation of the AlexNet model, the accuracy rate was 
83.88, the precision rate was 87.87, the recall range was 85.95, 
and lastly, the F1 score was 86.18. At that moment, the Vgg-19 
model accomplished an accuracy rate of 84.20, and then the 
precision rate of 85.57, and then the recall range of 83.57 , and 
lastly F1-score of 84.55 correspondingly. At that moment, the 
MobileNet model attained an accuracy rate of 85.49, a precision 
rate of 87.90 , a recall range of 85.67, and a score of 86.67. At 
that moment, the ResNet-101 model accomplished an accuracy 
rate of 90.10, and then the precision rate of 90.82, and then the 
recall range of 90.25, and lastly F1-score of 90.15 
correspondingly. At that moment, the DenseNet-121 model 
accomplished an accuracy rate of 92.52, a precision rate of 
92.75, a recall range of 92.82 , and lastly -a score of 92.7. At that 
moment, the BOA-DRA-Net model accomplished an accuracy 
rate of 97.86, a precision rate of 97.95, a recall range of 97.87, 
and lastly, the F1-score of 97.49 correspondingly. Figure 8 
presents the graphical description for energy consumption.

Table 4. Test scores for energy consumption

Model Precision (%) Recall (%) Accuracy (%) F1 Score
AlexNet 87.87 85.95 83.88 86.18

ResNet-101 90.82 90.25 90.10 90.15
DenseNet-121 92.75 92.82 92.52 92.7

Vgg-19 85.57 83.57 84.20 84.55
MobileNet 87.90 85.67 85.49 86.67

BOA-DRA-Net 97.95 97.87 97.86 97.49

Figure 8. Comparison of numerous models for energy consumption
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 In Table 5 characterize that the diverse optimization procedures 
and learning rates in terms of accuracy. In the analysis of BOA 
Optimization Algorithm in lr = 0.01 as accuracy of 98.11 and 0.05 
learning rate accuracy of 98.90 and also, the 0.01 learning rate 
accuracy of 99.80 and learning rate of 0.005, the accuracy as 
99.56 and 0.001 learning rate accuracy as 99.88 
correspondingly. At that instant ZFO Optimization Algorithm in 
lr = 0.01 as accuracy of 97.97 and 0.05 learning rate correctness 
of 98.85 and learning rate of 0.005, the accuracy as99.53 and 
learning rate of 0.005, the accuracy as 98.55 and 0.001 learning 
rate accuracy as 97.66 correspondingly. At that instant GWO 
Optimization Algorithm in lr = 0.01 as accuracy of 95.25 and 0.05 
learning rate accuracy of 97.26 and learning rate of 0.005, the 
correctness as 99.71 and learning rate of 0.005, the accuracy as 
97.68 and 0.001 learning rate accuracy as 95.21 
correspondingly. At that instant ACO Optimization Algorithm in 
lr = 0.01 as accuracy of 85.44 and 0.05 learning rate accuracy of 
87.82 and learning degree of 0.001, the accuracy as 99.65 and 
learning degree of 0.005, the exactness as 85.32 and 0.001 
learning rate accuracy as 90.56 correspondingly. Figure 9 
provides the graphical description for the learning rate of 
various models.

Table 5. Diverse optimization procedures and learning rates in terms of accuracy

Optimization Algorithm lr = 0.1 lr = 0.05 lr = 0.01 lr = 0.005 lr = 0.001
GO 95.25 97.26 99.71 97.68 95.21

ACO 85.44 87.82 99.65 85.32 90.56
BOA 98.11 98.90 99.80 99.56 99.88
AFO 97.97 98.85 99.53 98.55 97.66

Figure 9. Accuracy Analysis for various optimization models

Table 6 signifies that the Comparison of diverse convolution 
kernel sizes. In the analysis of (3 × 3) kernel size, the accuracy as 
99.71 and exactness as 99.72 and the recall rate as 99.70 and 
lastly the F1- as 99.06 correspondingly. In next the (7 × 7) kernel 
size, the correctness as 99.49 and exactness as 99.51 and the 
memory rate as 99.47 and lastly the F1- as 99.14 
correspondingly. The graphical representation of kernel size 
variations on proposed model is mentioned in Figure 10.

Table 6. Assessment of diverse difficulty kernel dimensions

Kernel Size Precision Recall Accuracy F1 Score
(3×3) 99.72 99.70 99.71 99.06
(7×7) 99.51 99.47 99.49 99.14

Table 7 shows the contrast between computational complexity. 
The FLOPs/GB Computational Complexity and Parameters/MB 
values in the AlexNet model were respectively 0.71 and 61.10. 
The Vgg-19 model then achieved the corresponding FLOPs/GB 
Computational Complexity of 19.63 and Parameters/MB of 

Figure 10. Graphical Representation for kernel size variations

143.67. In the subsequent stage, the MobileNet model achieved 
FLOPs/GB Computational Complexity of 0.33 and 
Parameters/MB of 3.50, respectively. In the subsequent stage, 
the ResNet-101 model achieved FLOPs/GB Computational 
Complexity of 7.87 and Parameters/MB of 44.55, respectively. 
The DenseNet-121 model then achieved FLOPs/GB 
Computational Complexity of 2.90 and Parameters/MB of 7.98, 
respectively. The BOA-DRA-Net model then achieved FLOPs/GB 
Computational Complexity of 2.90 and Parameters/MB of 7.56 
in that order.

Table 7. Contrast of computational complexity

Model Parameters/MB FLOPs/GB
AlexNet 61.10 0.71

ResNet-101 44.55 7.87
DenseNet-121 7.98 2.90

Vgg-19 143.67 19.63
MobileNet 3.50 0.33

BOA-DRA-Net 7.56 2.90

4.1 Discussion on neural networks for EV 
charging prediction

The prediction of electric vehicle (EV) charging behavior is 
crucial for optimizing charging infrastructure and balancing 
energy demands on the grid. Various deep learning models, 
including AlexNet, ResNet-101, DenseNet-121, VGG-19, 
MobileNet, and the proposed BOA-DRA-Net, have been 
employed to tackle this problem. Each of these models brings 
distinct features and strengths to the challenge.

AlexNet can provide a solid baseline for performance in EV 
detection tasks. However, its simpler architecture may lack the 
depth required for capturing the complex patterns in spatial 
and temporal data related to EV charging behaviors. ResNet-
101 introduces residual learning to facilitate training deeper 
networks. For EV charging prediction, its deep architecture 
allows it to learn highly abstract features of the data, which can 
be crucial for understanding complex scenarios like varying 
charging rates and user behavior patterns over time. DenseNet-
121 utilizes dense connections between layers, ensuring 
maximum information flow between layers in the network. This 
feature makes it particularly effective for feature retention, 
which is advantageous in learning from the multi-dimensional 
data typically involved in EV charging patterns. VGG-19 Known 
for its simplicity and depth, VGG-19 is particularly useful for 
extracting features from image data, which can be applied to 
detecting EVs and analyzing their interaction with charging 
stations. However, it is generally more computationally 
intensive, potentially limiting its use in real-time applications. 
MobileNet designed for mobile applications, uses depthwise 
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separable convolutions to provide lightweight deep neural 
networks. Its efficient processing capabilities make it suitable 
for deployment in edge devices, which can be used for real-time 
EV charging prediction directly at charging stations. The BOA-
DRA-Net combines the Behavioral Optimization Algorithm (BOA) 
with the DRA-Net architecture, optimizing the network for 
specific tasks related to EV charging prediction. This model is 
designed to improve the accuracy and efficiency of predictions 
by dynamically adjusting its parameters based on real-time 
data. It aims to address complex backgrounds and variable 
scenarios more effectively than standard models.

5. Conclusion and future work
In this broadside, we projected a methodology for the forecast 
of EV session time and energy usage, two of the most relevant 
charging behaviours with respect to scheduling. In contrast to 
other efforts, we also made use of data on traffic, events, and 
the weather in addition to the historical billing information. To 
improve the residual connections and make them better suited 
for the identification process, the researchers in this study 
developed BOA-DRA-Net, which combined the Res-Attention 
unit with the deep network to generate DRA-Net. The acquired 
findings outperform those of prior research in terms of 
prediction presentation. The research has also shown the 
possibility of using traffic and weather info in charging 
behaviour prediction, and it has significantly improved charging 
behaviour forecast on the ACN dataset. From the experimental 
analysis, it is clearly proves that the proposed model achieved 
nearly 98% to 99% of accuracy, precision, recall and F-score, 
when compared with existing techniques. The key drawback of 
the study was the limited scope of the dataset, which prevented 
rigorous model comparisons. The validity and applicability of 
the consequences might be compromised as a result of this. 
This may necessitate further investigation in the form of data 
collection in the near future. The dataset might be made larger 
and more representative by investigating data augmentation 
methods. Using less resource-intensive algorithms may also 
help lessen the need for massive amounts of data.
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