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ABSTRACT

The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet
of Vehicles (IoV) technology. The functional advantages of IoV include online communication services, accident
prevention, cost reduction, and enhanced traffic regularity. Despite these benefits, IoV technology is susceptible
to cyber-attacks, which can exploit vulnerabilities in the vehicle network, leading to perturbations, disturbances,
non-recognition of traffic signs, accidents, and vehicle immobilization. This paper reviews the state-of-the-art
achievements and developments in applying Deep Transfer Learning (DTL) models for Intrusion Detection
Systems in the Internet of Vehicles (IDS-IoV) based on anomaly detection. IDS-IoV leverages anomaly detection
through machine learning and DTL techniques to mitigate the risks posed by cyber-attacks. These systems can
autonomously create specific models based on network data to differentiate between regular traffic and cyber-
attacks. Among these techniques, transfer learning models are particularly promising due to their efficacy with
tagged data, reduced training time, lower memory usage, and decreased computational complexity. We evaluate
DTL models against criteria including the ability to transfer knowledge, detection rate, accurate analysis of
complex data, and stability. This review highlights the significant progress made in the field, showcasing
how DTL models enhance the performance and reliability of IDS-IoV systems. By examining recent advancements,
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we provide insights into how DTL can effectively address cyber-attack challenges in IoV environments, ensuring
safer and more efficient transportation networks.
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1 Introduction

The rapid expansion of smart devices in real life has led to the increasing use of the smallest
common smart object to the largest specialised smart object. This rapid expansion is unprecedented,
estimated to be 38.6 billion by 2025 and 50 billion by 2030 [1]. Its important area is the transportation
network, which is not only for the transportation of commercial goods but also a vital need for the
development and improvement of the smart city, which is the comfort and satisfaction of the main
users. A large part of the transportation network is included in the Internet of Vehicles (IoV), derived
from smart transportation. It includes modern technologies such as sensors and actuators connected
to the environment and its surroundings. This connection includes connecting to other cars, city
networks, etc. The IoV has a direct impact due to intelligent transportation, increasing the driving
experience and providing acceptable services according to the user’s wishes. From this point of view,
the main goal of the IoV is to increase the level of intelligence and capacity of vehicle manufacturing
and create new forms of transportation services [1,2]. According to the World Automobile Industry
Organization (OICA) statistics, global vehicle ownership in 2015 was nearly 1.3 billion and 92 million
cars were produced in 2019 [3]. According to the Statista 2021 report, self-driving cars in the USA
alone by 2030 will be between 20.8 and 146 million [4,5]. With this rapid expansion of the connection of
vehicles with heterogeneous communications, the challenges in the security system of the IoV network
increased. Millions of cars face various security risk. Also, the high interaction of humans creates
safety issues and involves human lives. These problems are directly related to the architecture of the
automotive electronics system, which by not taking into account monitoring technologies, detection,
etc., causes the loss of human lives, so the attackers have taken advantage of these gaps and put the car
system under their control. Malicious attackers can control the entire automotive electronic system
by accessing in-vehicle networks such as Controller Area Networks (CAN), thus requiring a more
technical process than an electronic unit (ECU) controller, as the system wants an effective and fast
diagnostic system that can detect various types of attacks. Due to the security protection of cars,
the intrusion detection system (IDS) is considered the most efficient and effective method that has
attracted the attention of most researchers [6–8]. This system can detect different types of attacks
with constant monitoring of data exchange in the network and reacts according to the pre-defined
model through machine learning techniques. The authors in [9] proposed an extended lattice model for
controlling traffic flow in connected vehicle environments under cyber-attacks, integrating continuous
delay feedback control signals. They demonstrate that integrating continuous traffic information and
the controller helps mitigate traffic congestion, enhancing the stability as shown by Bode plots of
transfer functions. The most efficient machine learning technique in the detection of cyber-attacks in
the field of IoV is transfer learning, which is fast and compatible with the intrusion detection system
and distinguishes malicious data from normal data. Transfer learning is a machine learning technique
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in which a model trained for a specific task can be used in a related task [4]. Works of the IDS-IoV
using machine and deep learning algorithms are summarised in Table 1.

Table 1: Popular ML & DL algorithms used along with the standard datasets and their performances
observed from recent IoV literature

Ref. Year ML & DL
algorithms

Datasets Performance
(Accuracy)

Data for
train

Data for test

[10] 2022 CNN Private dataset 99% 60% Validation =
20%, Test =
20%

[11] 2022 TL and
CNN

CICIDS2017 99.25% N/A N/A

[12] 2022 CNN-LSTM KDD-CUP99,
UNSW-NB15

99.70% N/A N/A

[13] 2022 CNN ToN-IoT 98.33% N/A N/A
[14] 2021 CNN-GRU Private dataset 94% 75% Validation =

15%, Test =
10%

[15] 2017 RNN Real-time
generating data

86.90% N/A N/A

[16] 2022 VGG16
XGBoost

HCRL, Hacking 97.80%,
99.99%

80% 20%

[17] 2023 MTD,
VGGNET-
16

VGGNet-16 97.20% N/A N/A

[18] 2022 STC-IDS,
RLS

CAN dataset 99.96% 80% 20%

[19] 2021 P-LeNet
model

Combined dataset 98.10% 80% 20%

[20] 2022 CNN-LSTM CAV datasets 97.30% 70% 30%
[21] 2022 LSTM GRU DDoS and a

car-hacking
dataset

99.50% 80% 20%

[22] 2018 CNN Image Net &
Private Dataset

97.20% 1264 samples 1770 samples

[23] 2022 DCNN CAN 100% 80% 20%

The researchers and practitioners today have been focusing on dealing with the intrusion chal-
lenges in IoV independently through deep learning techniques. The last motivates and calls for
developing robust and reliable deep learning frameworks for IDS-IoV. In addition, different machine
learning and deep transfer learning must be appropriately tailored and optimised to meet the real-
time requirements of in-vehicle network IDS, providing promising solutions for IDS-IoV. The main
contribution of the study is summarised as follows:
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• introducing the current cyber threats faced by IoVs and the relevant background of existing
IDS to address their threats.

• review state-of-the-art machine learning and deep learning techniques to address the issues
involved in IDS-IoV.

• summarising how to address the attacks on IDS-IoV, with the solutions pointed through ML
and DL techniques.

• emphasising the necessity of using deep transfer learning techniques for IDS-IoV issues.
• discussing open research challenges and future research directions for using AI techniques in

IDS-IoV.

The rest of the paper is organised as follows. Section 2 provides the survey methodology and
the strategy followed for framing the contents of this work. This section also presents sufficient
background on the IoV and IDS and the need of the hour for integrating them. Subsequently, Section 3
includes an elaborate discussion on IoV and IDS accumulated from recent literature. Section 4 presents
the open research challenges that could drive new research in this domain. Following this, Section 5
summarises the future directions in using modern AI tools and services for addressing the issues in
IDS-IoV. Finally, we conclude the paper in Section 6 with the key findings found in this study.

2 Survey Methodology

The analysis in this survey was performed using the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) methodology. The study was initiated through a careful
exploration of recent literature and certain relevant summaries were considered for inclusion and
exclusion of non-relevant articles was performed. Based on the summarised data from the literature
and the statistical procedures followed for analysis, effective outcomes on the deep transfer learning
for IDS-IoV are presented.

The literature sources were identified from the electronic databases, including IEEE, Elsevier,
Springer, MDPI, and other leading publishers. The literature was collected from Google Scholar and
the publisher mentioned above. The articles were searched with the use of keywords such as “IoV” and
“IDS” or “IoV-IDS” and “deep learning” or “transfer learning”. The articles considered were without
any date restriction till December 2023. Searchers were also done on recent thesis works, and technical
reports to seek additional advancements in the IoV and IDS. Additionally, an exploration of the list of
popular references cited in the chosen standards articles was also considered, which were not screened
during the original search.

In the choice of literature considered for the study, there was a classification on the geographic
location, and the nativity of the authors was applied. For the meta-analysis, editorial reports, letters,
and commentaries were excluded from the search. The detailed strategy followed for shortlisting the
core articles for this study is shown in Fig. 1. The inclusion criteria for the literature review were
considered the most famous works on IoV, IDS, and the combination of both as main players for
the analysis. Further from the abstracts and titles, articles with the key terms on deep learning and
transfer learning were considered for this meta-analysis. We screened and classified independently the
key characteristics from all abstracts. Further, the articles with inconsistent information content were
excluded from the study.
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Figure 1: PRISMA flow chart representation of the literature review and the article selection process



6 CMC, 2024

2.1 Background

This section starts with a brief introduction to IoV technology. Following that, it explains the
implications of IDS over IoV networks. The appealing characteristics of IDS are also discussed, along
with its association with the deep learning approach. This section introduces readers to the IoV and
IDS-IoV technology and its key principles.

Concerning the recent statistics reported by Allied Market Research, the global market of
IoV is anticipated to cross over $200 billion by the end of 2024 [24]. Further, several automobile
manufacturers, including BMW, have started developing platforms to integrate IoV services like
smart parking, route management, and other infotainment services. Subsequently, vendors from
the Information Technology (IT) industry, such as Google, IBM, Apple, Intel, Cisco, etc., are also
engaging actively with the governing organisations and manufacturers to help them build robust IoV
platforms for this generation.

As most cities are being transformed to be smarter and more connected, it is expected nearly that
connected vehicles will be revolutionised as autonomous ones. This could not be realised without an
advanced and more sophisticated backbone network. In this regard, IoV is intended to establish a
distributed means of the network that integrates the data accumulated from the connected vehicles
in vehicular ad hoc networks (VANETs) [25]. Further, a primary goal of IoV is to allow vehicles to
communicate with human drivers in real time. Moreover, it is also provisioned with utilising the IoV
infrastructure for pedestrians, roadside smart units, fleet management, and other vehicles. Very often,
the IoV network communication includes the interactions among modules in the networks, such as
1) Intra vehicle units, 2) Vehicle-to-Vehicle (V2V), 3) Vehicle-to-Infrastructure (V2I), 4) Vehicle-to-
Cloud (V2C) and 5) Vehicle-to-Pedestrians (V2P) [26]. Based on such infrastructures, IoV architectures
commonly include the capability of robust perception modules and strong backbone networking
modules targeted for the intended applications. While modern vehicles are a nodal point in the IoT,
it increases convenience and versatility. Further, it also presents a significant potential target for
cyber attackers. This fact demands multi-level protection, considering the complexity of the modern
vehicle’s electrical/electronic (EE) architecture [27]. From the control unit level, which is the core nerve
centre for modern vehicles, the state-of-the-art security solutions protect electronic control unit (ECU)
firmware and the data from being manipulated and misused. Here, secure on-board communication
ensures the integrity and confidentiality of critical network signals. Domain separation and secure
gateways allow the overall security of automotive electronics and electrical architecture. In addition,
secure communication protocols protect the connection to the cloud, as the firewalls shield the vehicle
network and ensure multi-level security solutions.

However, as the threat landscapes are constantly changing with every new connectivity service,
the long service of the vehicles opens up new attack vectors [28]. Attackers are continuously perfecting
their methods to undermine existing protection mechanisms, find loopholes, and anticipate that they
might succeed at one of their attempts. As hackers may gain complete control of the vehicle, it is
observed that state-of-the-art security solutions do not provide sufficient assurance when they roll off
the production line.

This fact drives the demand for automotive intrusion detection and prevention systems that could
provide reliable protection against vehicle cyber-attacks. The embedded intrusion detection software
monitors the data traffic on the vehicle network, detects anomalies, and reports them to a cyber-
defence backend based on big data analysis technologies. This automated backend solution analyses
the attack patterns, and security experts then use the results to decide on countermeasures [29]. Security
updates can be broadcast by air to all connected vehicles as a possible countermeasure. As they are
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connected to the vehicles, the immune system of vehicles gets stronger with every attack and becomes
steadily smarter. It was also possible due to the constantly expanding attack signature database, which
puts the original equipment manufacturers in a position to adapt their defence systems to modified
attack strategies and new cyber risks at any time.

2.2 Internet of Vehicles

From the network perspective, IoV is more like a mobile terminal in the Internet of Vehicles
architecture. Its internal part is a distributed real-time system composed of high-speed real-time
heterogeneous networks. The communication with the external part is mainly completed through the
vehicle gateway, as shown in Fig. 2. The network architecture is heterogeneous, real-time, and cost-
sensitive [30].

Figure 2: The electronic system structure of the Intelligent and Connected Vehicle from the network

The traditional vehicle network design did not initially consider external cybersecurity threats,
resulting in the lack of basic security mechanisms for vehicles, such as authentication, encryption,
and access control. With the development of IoV technology, the automobile is no longer a closed
individual. The decision-making framework of IoV (see Fig. 3). From it, we can find that with the
increasing demand for in-vehicle and external communication, the cybersecurity threats faced by IoV
have become more diverse. In recent years, there have been cyberattacks against IoVs, which often
cause serious consequences [31,32]. Therefore, it is urgent to explore the network security technology
of IVs to improve cybersecurity.

In recent years, with the development of autonomous driving technology, IoV has put forward new
requirements for the internal on-board network, such as high bandwidth (to meet the communication
requirements of a large amount of data), information security, and low latency (to ensure real-time
communication and security). The authors in [21] proposed a hybrid DL approach for detecting cyber-
attacks in IoV with LSTM and GRU. Using a car-hacking dataset to demonstrate the robustness of
this approach to avoid fatal accidents due to privacy and security issues, a detection accuracy of 99.5%
was achieved.
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Figure 3: Internet of Vehicles decision-making framework

Alladi et al. [33] developed an AI-based intrusion detection platform for the IoV networks
subjected to various cyberattacks on a mobile vehicle. Here, the deep learning models are deployed
on multi-access edge computing frameworks rather than the conventional means of cloud setup.
Anzer et al. [34] focused on using multilayer perceptions for intrusion detection on the IoV networks
and demonstrated its effectiveness in addressing the specific vulnerabilities in V2V communication.
The authors in [35] provided a comprehensive means of securing the IoV backbone networks using
DL-based network traffic predictions. The article discussed the implications of end-to-end prediction
of the network by observing the spatiotemporal features from a real network traffic dataset.

An intruder detection system in the IoV (IDS IoV) is a security measure designed to detect and
alert of any unauthorised access or tampering of connected vehicles. These systems utilise a variety
of sensors, such as GPS, accelerometers, and RFID readers, along with machine and deep learning
algorithms, to analyse data in real-time and identify potential threats. The goal of an IDS in the IoV is
to ensure the security and integrity of connected vehicles and protect against cyber threats like malware
and hacking attempts. These systems are essential for maintaining the safety and reliability of self-
driving and traditional cars connected to the IoV [36].

Vulnerabilities and security requirements for ICV IDS systems aim to protect the IoV from the
following attack types [1]. If the research and deployment of in-vehicle network security enhancements
are not carried out in time, they will suffer from various malicious attacks due to potential security
vulnerabilities. Distributed denial-of-service (DDoS) steals crucial information from the network data
packets in the communication using a software package or hardware equipment. A sniffing attack is
a process for stealing significant information from the network data packets in communication using
a software package or hardware equipment. A Brute Force Attack is a stealing attack using a trial-
and-error fashion, especially passwords, login information, and encryption keys. An integrity attack
is a type of data-spoiling attack. Here, using malware intruders delete and alter the intended messages
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or information. A web attack is an application layer attack. The intruders follow various strategies
like cross-site scripting, SQL injection, path traversal, and cand local file inclusion to delete, change,
or add harmful content to the web pages. Fuzzy attack: The fuzzy attack is one of the most common
attacks which CANs can face. Because these attacks arbitrarily inject random messages, increase the
complexity of the traffic, and reduce the stability of the IoVs.

DL-based IDS scheme for IoV in [36] is considered to protect the CAN bus in vehicles. The
authors considered the VGG architecture and the CAN-intrusion dataset, trained the model on
various intrusion patterns, and derived a robust solution to detect malicious attacks. It was shown that
a false positive rate of 0.6% was achieved with an overall accuracy of 96%. The work in [8] used CNN
to enable data-driven IDS for intelligent IoV. It highlights the analysis performed on roadside units
and the link load behaviour for assessing attacks through malware. Further, based on the convergence
analysis, it was observed to be a perfect candidate for the ITS in smart cities. The transfer learning-
based IDS for IoV presented in [4] used multi-task learning to transfer the knowledge gained from the
chosen benchmark datasets. The implementation and investigations performed in this work through
CNN promise to provide efficient computational intelligence as a transfer of the acquired knowledge
among the datasets.

Yang et al. [11] focused on using the transfer learning technique and the ensemble-based IDS
for intrusion detection in IoV in association with CNN. This work experimented with a car hacking
dataset and tested the impact of cyber-attack detection in both intra and external vehicular networks.
The multi-tiered hybrid IDS for IoV proposed in [37] incorporates a signature-based strategy and an
anomaly-based IDS to detect strange attacks over vehicular networks. From the experimentation on a
car dataset, the model detects zero-day attacks and computes the average processing time of the data
transmission between the vehicles. In [38], cloud-based and local update methods were considered to
ensure timely data exchange with the IoV cloud. It employs transfer learning on the pseudo-labelled
data, which could find new attacks without needing labelled data. Such timely updates to the IoV
cloud enable better and enhanced detection accuracy for the IDS employed to estimate the attacks over
IoV. Alferaidi et al. [12] investigated how a distributed Deep CNN-LSTM model can detect intrusion
in IoV. They use the Apache Spark framework and the developed model to estimate the abnormal
behaviour of the car networks and the associated intrusions. Further, the experimental results show
that the model delivers quick convergence with a 99.7 accuracy range.

The leader class and confidence decision ensemble [39] technique is used to detect attacks over
IoV networks with an ensemble IDS framework, which was constructed using sophisticated ML
models to classify the attacks. The experiments were performed with standard CICIDS2017 and car-
hacking datasets, and the authors demonstrated effective intrusion detection over intra and external
vehicular networks. The privacy-preserving-based secured framework for IoV [40] incorporates DL
and blockchain frameworks to address the privacy, vulnerabilities, verifiability, and data integrity
challenges among the involved vehicles in the IoV network. It encompasses a cloud interface with the
roadside unit and the cloud server, designed to handle the data and detect intrusion with the support
of the blockchain module. Based on the implementation performed over the IoT-Botnet dataset, the
developed framework emphasises a better privacy-preservation platform for the IoV network. The
developed IDS based on gradient descent in [41] can be efficiently evaluated and validated for use in
real vehicles. The experimentation employing the deep learning approach uses gradient descent with
momentum and adaptive gain to detect anomaly data so that attacks over vehicles could be addressed.
Since they use log-ratio sampling and outlier detection for intrusion detection in IoV [3], they consider
the minority classes and imbalance ratio and rescale the samples to learn the metrics. Using the UNSW-
NB15 dataset, the authors evaluated the false alarm rates for the attacks over IoV, providing a secure
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means of in-vehicle communications. The authors in [42] studied the characteristics of malfunctioning
IoV-based systems in terms of deployment scenario, with different malware attacks and ensuring user
security in the IoV infrastructure.

Machine learning (ML) techniques help detect different cyber-attack types for improving IoV
security. The performance of the ML models varies based on the types of attacks. ML models are
utilised to design classifier-oriented IDS that can discriminate between cyber-attacks and benign net-
works through network traffic data analysis. Due to the advancement of ML techniques, automotive
manufacturers and researchers have been employing ML-driven IDS in IoV. At the outset, we discuss
the pros and cons of several supervised and unsupervised learning techniques in identifying malicious
activities. These unsupervised and supervised methods design the IDS with low false reports and robust
detection [42]. In addition, the systems adjust fast to the changing malicious behaviour.

Supervised Learning, like Naive Bayes (NB), K-Nearest Neighbour (KNN), Decision Trees (DTs),
Support Vector Machines (SVMs), Ensemble Learning (EL) and Random Forest (RF), the advantages
and limitations. Different IDS exploited NB techniques for being easy to implement and simple
algorithms. It can classify both multi-label and binary classification and the requirement for classi-
fication sample is minimal. The accuracy is affected as the method fails to consider interdependencies
between features for classification. In KNN, determining the optimal value of K and detecting missing
nodes are costly and time-consuming, but it is simple to use. The method provided good accuracy for
identifying Remote-to-Local (R2L) and User to Root (U2R) attacks. DTs have the potential to be used
in IDS, but computational complexity and bigger storage are some of the concerns of this technique.
The benefits of SVM algorithms are less memory usage and high scalability due to their simplicity.
It is a challenge to the technique to acquire the classification speed by utilising the optimal kernel
function that is applied to isolate data when it is not linearly separable. As no ML technique can be
depicted as suitable for all solution types, EL may be best suited for enhancing accuracy by avoiding
overfitting and reducing variance. The time complexity increases due to the application of various
classifiers in parallel. RF produces more accurate and robust output requires significantly lower inputs
and is resistant to overfitting. It does not require the process of feature selection. Since RF constructs
numerous DTs, RF may not be suitable in real-time applications having huge datasets.

Unsupervised Learning, e.g., K-Means clustering, does not require labelled data but proves less
effective when compared to supervised learning methods in particular identifying known attacks.

The Principal Component Analysis (PCA), employed as a feature reduction or selection technique
transforms a huge set of features into a minimal and effective set of variables without losing much
information. We discussed some of the state-of-the-art machine-learning techniques used for IDS in
the IoV environment. A new ensemble technique dubbed LCCDE (Leader Class and Confidence
Decision Ensemble) was presented by Yang et al. [39] to yield optimal performance on all types
of attacks in IoV networks. They determined the final prediction classes through the prediction
confidence information. They employed three cutting-edge gradient-boosting ML techniques Cat-
Boost, LightGBM, and XGBoost, to devise the ensemble model. Their IDS framework showcased
99.81% and 99.99% F1-scores on the CICIDS2017 and Car-Hacking datasets representing the external
vehicular network and intra-vehicle data respectively. Another method called multi-tiered hybrid
intrusion detection system (MTH-IDS) was introduced by [37] to identify different types of zero-
day and known cyber-attacks on both external-vehicular networks and intra-vehicle. Their technique
comprised feature engineering, data pre-processing ML stages and four prime tiers of learners applying
different ML classifiers. They used four tree-based supervised classifiers for known attack detection
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and supervised learning optimisation, a Bayesian optimisation with a tree Parzen estimator (BO-TPE),
and a stacking ensemble method exploited.

For zero-day attack identification, cluster labelling (CL) K-Means was utilised as an unsupervised
learner and unsupervised learner optimisation, a Bayesian optimisation with Gaussian process (BO-
GP) and two biased classifiers were employed. In [43], the authors proposed machine learning methods
to classify and cluster the intrusions in vehicular ad hoc networks (VANETs) by SVM and KNN
techniques to detect Fuzzy and DoS attacks. Their IDS relied on the time interval between the
message request and the response and the offset ratio in the CAN analysis. They used two car-hacking
datasets called the “Fuzzy dataset” and the “DoS dataset” provided by the Hacking and Counter-
measure Research Lab (HCRL). An intelligent IDS was presented by [44] based on tree-structure-
oriented machine learning algorithms. The empirical results demonstrated that their framework can
detect different types of cyber-attacks in autonomous vehicle (AV) networks. Their system uses
feature selection and ensemble learning approaches and achieves low computational cost and high
detection rate.

Injadat et al. [45] devised a new multi-stage optimised ML-based IDS approach that exploited
mini-mum training sample size and oversampling techniques. They examined several ML hyper-
parameter optimisation methods and their performance enhancement in the framework. They investi-
gated their model’s performance using two state-of-the-art datasets (UNSW-NB 2015 and CICIDS
2017). It is challenging to get good performance in the multi-class scenario to detect each attack
type rather than only identify the intrusion, which involves binary classification. ML models perform
differently for identification in each class, hence it is perplexing to choose one ML model applicable to
the prediction of all classes. Chen et al. [46] presented a novel ensemble learning approach dubbed All
Predict Wisest Decides (APWD) built on the training ML techniques and testing them individually
to predict the performance for all classes. They selected an expert model (i.e., wisest) based on the
lowest false detection rate, best accuracy and F1-score for each attack category. Complex connections
among divergent nodes and frequent data transmission enhance the complexity of malicious attacks
in IoV. Jin et al. [3] introduced an IDS to detect such attacks rapidly and accurately by integrating
metric learning, outlier detection, and oversampling. An optimal subset of features was extracted by
employing a genetic algorithm and LightGBM was exploited for the classification task.

In [47], the authors applied Artificial Bee Colony optimisation combined with SVM to devise Sec-
IoV, a multi-stage technique for the detection of the anomaly of anomalous traffic in vehicle-to-vehicle
(V2V) communications in IoV networks. In [48], the authors proposed ML-based probabilistic cross-
layer IDS identifying spoofing attacks with comparable accuracy. They introduced a novel metric
using Relative Speed, called Position Verification (PVRS), demonstrating a positive impact on the
classification outcome. Sharma et al. [49] designed an ML framework by combining plausibility checks
and instantiating it with six ML techniques and the results demonstrated the technique’s efficacy.
Incorporating the plausibility checks for the maximum position attack types improved the recall
and precision by 2% and 5%, respectively. Their framework yielded favourable outcomes in being
autonomous without human intervention, privacy-preserving compatible with the security credential
management system (SCMS), and real-time by a local process. Table 2 describes some of the state-of-
the-art ML-based IDS for IoV are listed below.
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Table 2: State-of-the-art ML-based IDS for IoV

Ref. Year ML methods Dataset used Performance

[39] 2022 CatBoost, LightGBM,
and XGBoost

CICIDS2017 and
Car-Hacking datasets

99.81% and 99.99%
F1-scores on the
CI-CIDS2017 and
Car-Hacking datasets

[37] 2021 DT, RF, ET, XGBoost,
BOTPE, BO-GP

CAN-intrusion-dataset
and CICIDS2017

99.88% accuracy on the
CICIDS2017 dataset

[43] 2018 KNN and SVM DoS dataset and fuzzy
dataset

98.3% accuracy by
KNN on the DoS
dataset

[44] 2019 Decision tree, Random
forest, Extra trees, XG-
Boost

CAN-intrusion-dataset
and CI CIDS2017 datasets

accuracy of
CAN-intrusion and
CI-CIDS2017dataset
reaches 100% and 99%,
respectively.

[45] 2020 KNN and RF with
optimizers GA,
Bayesian Optimization,
PSO and Random
Search

CICIDS 2017 and the
UNSW-NB 2015 datasets

99% accuracy on both
the datasets

[46] 2021 Adaboost, XGBoost
and RF

NSL-KDD dataset Overall accuracy 79.7%

[3] 2021 LightGBM with GA UNSW-NB15, ROAD,
Car-hacking and
CAN-intrusion datasets

98.51% accuracy on the
UNSW-NB15 dataset

[48] 2020 Bagging, KNN and RF Simulation of Urban
Mobility (SUMO) and the
OMNET++/VEINS

K-NN and RF
algorithms achieved
equal accuracy scores of
91.3%

[49] 2020 SVM, KNN, NB, RF,
Boosting and Voting

VeReMi dataset Ensemble algorithms
(AUC = 0.85)

In [10], an IDS for an in-vehicle (IV) network was proposed using convolutional neural networks
(CNNs). Electronic control units (ECUs) of IV establish communication with the outside vehicles
for information exchange, which can lead a chance to cyber-attacks. The communication protocol,
namely, the controller area network (CAN), is vulnerable to these attacks. Therefore, the authors
have developed this IDS system based on recurrence plots (RPs) and CNN. Firstly, the sequence
of arbitration IDs is converted into images using RPs, then these images are trained, and a model
is developed using CNN. The authors tested various attacks in this process, e.g., drop, fuzzy, and
insertion attacks. The proposed model was examined on a publicly available and an author’s private
dataset.
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The authors have taken advantage of the deep learning (DL) model CNN by converting the raw
data to RPs, which can provide the temporal relations between IDs inside and outside of vehicles. Also,
the computational complexity was reduced by performing a hyperparameter optimisation. Besides, the
method is limited due to the need for retraining of CNN when a new arbitrary ID appears in the CAN
due to some software updates. It leads to high complexity in time and model. The other disadvantage
of this approach is that it can only identify fewer typical intrusions. Nevertheless, the method was
limited to addressing the attacks that alter the CAN’s data without changing the arbitrary ID.

Alferaidi et al. [12] developed an IDS model using a combined DL model implemented on a spark
framework. As CNN is a reliable model that works on high dimensional data features, and long-short-
term memory (LSTM) is suitable for handling time-series data, the authors fused these two methods
to develop a final model. The advantage of the Apache Spark framework is the capacity to process
diverse and large datasets. The proposed method was validated on the NSL-KDD and UNSW GNB15
datasets. Nevertheless, this method requires more data to train the model to achieve state-of-the-art
performance.

The authors in [14] demonstrated an IDS model CANintelliIDS to detect IV intrusion. The
proposed CANintellilDS is a fusion of CNN and attention-based gated recurrent unit (GRU). The
proposed model was examined for single intruders and multi-intruder environments. The system is
validated on real-time collected data. The system performs better than many machine learning models
and a neural net with five hidden layers. However, the performance is limited to relational aspects and
contextual information. They relied on other features without GRU to improve the method’s efficacy.

A ConvLSTM-based IDS was proposed in [50]. In the training phase, a federated learning (FL)
framework is employed in the client-server mode. Intelligent connected vehicles (ICVs) are the local
clients and mobile edge computing is the servers. The authors have also added a proximal policy
optimisation (PPO)-based federated client selection (FCS) scheme to minimise the system overhead
and improve the framework’s accuracy. The experiments are validated on the existing Internet of
Vehicles (IoV) and real datasets. The proposed work mainly focuses on IDS in the client-server FL
framework. However, to use this model in real time, the model must be tested in a multi-agent system.
The authors in [51] proposed an IDS system using CNN and the mosaic pattern-based coding (MPBC)
method. As CAN provides time-series data, processing such data for DL models is difficult. Therefore,
they have developed a 2D MPBC to convert the 1D data to 2D grid data without losing the temporal
characteristics of CAN information. The authors used the data from the Hacking and Countermeasure
research lab in South Korea. The data is examined on three types of attacks: Fuzzy, Dos, and Spoofing.
On the other hand, the models were trained on each attack type individually. Therefore, the validation
of each model must be separate. Such models can only identify the attacks with which they are trained.
Also, the proposed method must be trained with the versatility of other crucial/vulnerable attacks.

The authors in [6] designed an IDS system for roadside units (RSUs) in the IoV to fight against
the attacks. For this purpose, they have used the attributes extracted from the RSUs to train the CNN
model. The proposed model was implemented on the testbed. The main difference between this work
and others is that the model was analysed via the link loads of RSUs rather than network nodes.
This approach saves many network resources like network bandwidth and IoV memory. However, the
problem with this method is that if the length of the attack is large, then CNN’s performance may
decrease.

A hybrid-DL (HDL) based IDS was proposed in [21]. The authors have clubbed the LSTM
and GRU to exploit their advantages as better training time of the LSTM and better performance
of GRU, thereby mitigating their adverse results. Before training the model, the authors used a
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few preprocessing techniques: cleaning, shuffling, data and attribute normalisation. The proposed
methods were validated on two datasets: Combined DDoS and car hacking. The main advantage of
this method is its lower response time and the shortcoming is its complexity due to the fusion of two
schemes (LSTM and GRU).

The authors in [24] have proposed a temporal CNN-based IDS system. First, the 19-bit length
arbitrary ID is transformed into the images. Later, temporal and spatial features of these images
are fed to CNN for training the model. Because of the global attention mechanism, the residual
convolution component assigns more weight to these features. However, the proposed method is a
binary classification method. Hence, it cannot address the various types of attacks. Also, if the length
of the arbitrary ID increased due to attacks, it would be another problem.

In autonomous vehicles, automotive Ethernet is the next-generation network that replaces CANs
for higher throughputs. Jeong et al. [52] proposed an IDS model for the audio-video protocol
(AVP) in IoV using a CNN model. A total of six different attack cases have been tested using the
proposed model. Though the model performs well, slightly degraded results were observed when the
environment changed from indoor to driving. It is one of the frequent issues with most DL models.

The authors in [16] have proposed an IDS system using VGG16 DL model. They have utilised the
Hacking and Countermeasure Research Lab (HCRL) dataset for validation and examined various
network attacks: denial of service (DoS), Fuzzy, and spoofing gear. The results were compared with
the ensemble machine learning (ML) models.

In a recent study [53], an IDS system was developed using ML and DL algorithms. The authors
utilised various DL algorithms (recurrent neural networks (RNNs), LSTM, and GRU) to build the
models individually. Later, an XGBoost-based feature selection algorithm was used for the feature
selection. The proposed model was examined using two datasets, the NSL-KDD and UNSW-NB15.
In the case of binary classification, the LSTM-XGBoost combination yielded the best results on the
prior dataset (NSL-KDD). Simple-RNN-XGBoost achieved better performance on the later dataset
(UNSW-NB15). Similarly, in the case of multiclass classification, the LSTM-XGBoost is the best fit
for the NSL-KDD, and GRU-XGBoost was the best model for the UNSW-NB15 dataset. Despite the
better performance, the algorithm has to be tested with various cyber-attacks.

The literature shows that DL approaches outperformed the ML methods in designing IDS
systems. However, a large quantity of training data is required to implement robust DL methods.
Also, almost all the DL models include many layers for performing feature engineering. It needs a
lot of resources because of having several parameters. Moreover, many IDS based on DL-proposed
hybrid or fused DL algorithms increase computational and timing complexity. One possible solution
is employing lightweight DL models or exploiting the transfer-learning-based DL methods.

DEEP TRANSFER LEARNING TECHNIQUES. The existing ML approaches achieved a good
performance level for developing IDS systems for the IoV. However, these methods fail to predict new
cyber-attacks since the pre-trained model has limited/no knowledge of this attack. The DL models
succeeded to some extent in addressing this issue. However, the success of these models depends on
the amount and versatility of data used for training the model and the organisation of the different
layers.

Transfer learning (TL) is a better alternative to the abovementioned problems. TL is an ML
approach where a pre-trained network (trained using different data) is reused for solving other related
issues. The main advantage of TL is saving a lot of resources and time in training a model with massive
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data. The already trained model’s knowledge will be shared with a new model for better prediction
accuracy of the current task. It is also known as an inductive transfer.

In [11], the authors developed an IDS model for IoV by fusing various existing CNN models:
VGG16, VGG19, Xception, Inception, and InceptionResnet. The concatenation and confidence
averaging methods were used for this fusion. Also, the hyper-parameter strategies of particle swarm
optimisation (PSO) and hyper-parameter optimisation (HPO) were included for tuning the selected
CNN models. The developed model is tested on two publicly available datasets, car-hacking, and
CICIDS2017. The advantage of this proposed method is that it can handle both intra-vehicle and
inter-vehicle cyber-attacks.

Fine-tuning methods utilisation allows learning higher-order features of the data by unveiling the
top few layers of the pre-trained models. Besides, the authors have chunked the data samples based on
feature size and time stamps. Later, these huge chunks were converted into lots of data to images for
training and labelling purposes, which may lead to some data loss [54].

A novel wide and deep TL-based stacked GRU called the WideDeep is proposed for the IDS
[55]. The model can be applied for regression and classification based on the input data. Moreover, it
has the memorisation capacity of the regression (linear) model and the generalisation strength of the
GRU. The hyper-tuned pre-trained networks are tested on the datasets KDDCup and UNSW-NB15.
The other feature of this proposed model is employing a novel pre-processing method for converting
numerical to categorical pf multi-dimensional data for classification and multivariate time series data
for regression. In [56], the authors have built an IDS system based on the TL mechanism. First, the
authors considered a pre-trained CNN model and did some fine-tuning in the early layers. Later, the
model is trained and validated on the Bot-IoT dataset. Later, they applied another dataset, TON-IoT,
to test the model, which was built on another dataset with different attacks. Based on the results, the
model was again re-trained by fine-tuning the parameters above the frozen CNN base. This re-training
ensures the minimal influence of the new attacks on the prior trained model. Finally, the new model
was tested using the attacks from both datasets, which were kept aside from training. The authors
mentioned their future work to deploy the proposed model in a real IoT environment.

A dependable IDS system based on TL was proposed in [57]. This model aims to detect any
malware attack within any diversified IoT network. The success of the dependable IDS systems relied
on the scalability of the features. Therefore, the authors developed a TL-based proposed residual
network (P-ResNet) for training the data. The model can classify the attacks: DoS, DDoS, password
cracking attack, and scanning. The data was collected from various IoT sensors from different
locations. Another significant contribution of the authors is applying a redundancy and correlation
analysis to remove redundant data that affects the results. In the future, the authors would like to
add optimisation techniques for fine-tuning the network parameters and adding more diverse data for
designing a robust model.

An in-vehicle IDS model was proposed using a TL method, namely, LeCun Network (LeNet)
in [19]. The data was collected from various resources that contain three types of cyber-attacks. The
attacks are flooding, fuzzing, and spoofing. The proposed method was compared with the other ML
and DL methods using statistical methods and they proved that the TL approaches outperform all
other methods. Though the method is performing well on the considered datasets, there is a need to
test the model with more diversified data from intra-vehicles and new cyber-attacks.

In [38], the authors have proposed a novel IDS scheme using the TL approach. The approach has
two model updates one online-based cloud and one offline. In the prior update method, the cloud will
provide small labelled data for the unlabelled attacks using the pre-classifiers. In the later update, there
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is partial assistance from the cloud. Hence a local update will be done. Therefore, the proposed model
guarantees that the model can independently and locally learn new attacks. The model was verified on
the two datasets of the AWID public database.

An IDS scheme was recently proposed to identify zero-day attacks [58]. The proposed approach
was based on a TL approach using pre-trained CNN. Besides, the authors also proposed three new
datasets derived from the UNSW-NB15 to evaluate the proposed method. The first dataset, the
UNSW-NB15-Basic, has normal and four known attacks. The second dataset, the UNSW-NB15-
Test+, has normal and five zero-day attacks, and the third dataset, the UNSW-NB15-Test, has normal,
known, and zero-day attacks. Albeit the proposed model tested on various attacks, all these were
derived from a single source. Therefore, the model’s efficiency is limited. Hence, the authors mentioned
in their future work that they want to add more diversified data from IoT networks.

An open-source software called IDS-ML was developed for detecting cyber-attacks in IoT
communications [59,60]. The authors have developed this model with the help of ensemble learning,
TL, and HPO. They used various pre-trained networks like VGG16, 19, Inception, and Xception.
The unique contribution of the authors is that the developed software is made open to the public.
Hence, others can use it, and new modifications are also possible. Despite the advantages of the TL
method, it has some limitations, like negative knowledge transfer. If the utilised pre-trained network
has a different input data source when compared with the current task’s data, then there is massive
scope for negative results.

3 Discussion

This section discusses studies done in the field of IoV, methods used, contributions, limitations,
and plans for future studies. The most commonly discussed attacks in previous studies are related to
the security mechanism of IoV, and the most often-used algorithm is CNN. The details of some of the
related studies considered from the past are discussed below and summarised in Table 3.

Table 3: Details of some of the attacks in IoV

Ref. Problem Contribution Attacks type Techniques used Future work

[61] Attacks IoV Resolving
attacks

Sybil,
Masquerading,
Wormhole,
GPS deception

Digital signatures,
Group signatures,
Identity-based
cryptography

Safe and secure
vehicular
communication
infrastructure

[62] Security
challenges in
IoV

Authentication
mechanism

Sybil,
Masquerading,
Wormhole

RSU-based
authentication,
Pseudonym based
authentication

N/A

(Continued)



CMC, 2024 17

Table 3 (continued)

Ref. Problem Contribution Attacks type Techniques used Future work

[63] Malicious
attacks and
limitations of
local & weak
feature
mapping

Spatial-
temporal
correlation
features of
in-vehicle
communication
traffic
(STC-IDS)

Intrusion
detection

LSTM, CNN Express realistic
unknown attack
messages

[64] Cyber attacks IVN design Intrusion
detection

Classification,
Deep learning and
Sequential
Techniques

In-Vehicles
Networks

[11] Vulnerabilities
and cyber
threats

IDS for IoV
systems

Cyber CNN, Learning An online adaptive
model capable of
online learning

[1] Security threats AI-based IoV
IDSs

Denial of
Service, DDoS,
Sniffing

Federated
Learning (FL)

Feature extraction,
identification and
classification

[10] Security is-sues
for cyber
attacks

IDS system
Rec-CNN

Denial of
Service, Fuzzy,
Spoofing-gear,
Spoofing-RPM

CNN Extending the
promising results
to an IDS

[65] Intrusion issues
in engineering
vehicles

Method of
motion target

Intrusion
detection

CNN Higher accuracy of
classification

[12] Security issues
of IoV

Distributed
deep CNN-
LSTM

Intrusion
detection

CNN-LSTM Performance and
reduction of
detection time

Samad et al. [61] have conducted a systematic literature review focused on the security require-
ments of the IoV, potential attacks, and how to counter them. They consider four types of attacks:
Attacks on authentication (Sybil attack, GPS deception attack, Wormhole attack), Availability attacks
(Channel Interference Attack, Denial of Service, Distributed Denial of Service Attack), Privacy
attacks, and Routing attacks. The authors present some possible countermeasures of the Sybil attack
(digital signatures combined with anonymous certificates, group signatures, identity-based cryptog-
raphy, tamper-proof devices, one-time identity-based aggregate signature, multiple secret sharing),
Wormhole attack (digital signature), Channel Interference Attack (hardware-related side channels,
visual light, and ultrasonic audio to verify identity and location of the vehicle), Distributed Denial of
Service Attack (digital signature, user authentication methods, defining the trustworthiness of a node
using group communication and predicting the possible attacks), Privacy attack (Encryption), Routing
attacks (IDS, Routing Protocol for Low-Power and Lossy Networks in IoV). The authors highlight
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the security requirements of IoV, some possible attacks on it, and countermeasures to overcome
some of these attacks. Authors do not make deep analyses based on which a reader selects a specific
countermeasure for dealing with such attacks and provides a safe and secure vehicular communication
infrastructure.

A novel coupled map car-following model in [66] considers cyber-attacks on continuous delay
effects. It facilitates improved traffic stability by maintaining traffic flow stability and reducing
emissions in the model. As an extension of this, the same authors in [67] incorporated cyber-attacks and
continuous delay effects under stable conditions through control theory. The numerical simulations of
the model confirm its efficacy for maintaining traffic flow stability and reducing emissions in the
model.

Sharma et al. [62] focused on security issues and have presented a model of the IoV system. They
discuss security issues, various security attacks, and their countermeasures from an IoV standpoint.
In addition, they propose an authentication mechanism for vehicle-to-infrastructure (V2I) communi-
cation and an authentication scheme based on RSU-based authentication, Pseudonym authentication
and Group-based authentication. This scheme ensures secure communication between two nodes
in IoV and prevents malicious nodes from infiltrating the system. In their method, base stations
and newly connected vehicles to the IoV network can authenticate each other using public key
infrastructure cryptography.

Cheng et al. [63] have discussed security concerns. They propose a novel deep transfer learning-
based dependable IDS model for detecting automotive intrusions using in-vehicle communication
traffic spatial-temporal correlation features (STC-IDS) based on LSTM and CNN. The model makes
use of encoding-detection architecture. Spatial and temporal relations are encoded concurrently
in the encoder part. The encoded data is sent to the detector, which generates powerful spatial-
temporal attention features and enables anomaly classification. Single-frame and multi-frame models,
in particular, are built to provide distinct advantages. The model has been trained to get the best
performance using automatic hyper-parameter selection based on Bayesian optimisation. The model
outperforms several existing approaches. The authors include effective attribute selection, best suited
to identify normal and attack scenarios for a small amount of labelled data, designing a dependable
deep transfer learning-based ResNet model, and evaluating real-world data. The authors have done
an extensive analysis and performance evaluation that show that their model is robust, more efficient,
and has demonstrated better performance, ensuring dependability. There is still much room for
improvement, particularly in detecting unknown attacks. In the future, the authors plan to study
how to express realistic unknown attack messages to improve model robustness and generalisation
capabilities.

Wu et al. [68] investigated the security risks of in-vehicle networks (IVNs) and state that all
previous IVN designs lack cybersecurity considerations. They used classification, deep learning, and
sequential techniques to introduce an IVN environment and present the constraints and characteristics
of an IDS design for IVNs. The external interface for vehicle attacks was creatively analysed on three
layers, and the vulnerabilities of each layer were discussed. The characteristic parameters available
for IVN IDS design at each level (bus, message, data flow, and functional) were examined. Based on
implementation techniques, cutting-edge intrusion detection methods for IVNs were classified into
four types. Furthermore, advanced intrusion detection solutions for IVNs were thoroughly studied
and proposed for future work.

The paper in [69] investigated the intrusion detection in IoVs problem and proposes an intrusion
detection strategy based on Road Side Unit (RSU) anomalous traffic. The authors considered
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OnBoard Unit (OBU) network resources and designed an intrusion detection mechanism based on
RSU link loads. CNN-based architecture is developed to extract the spatiotemporal feature of link
loads. It uses a traditional CNN architecture and a redundant error term in the output layer to achieve
the convergence of the deep architecture for intrusion detection. The proposed method provides a
theoretical analysis of the proposed deep architecture in convergence using a Bayesian hierarchical
model. Finally, the proposed method was tested and evaluated for accuracy by implementing it on the
test bed.

Yang et al. focused on cyber threats to IoV systems [11]. They proposed a transfer learning and
ensemble learning-based intrusion detection framework (IDS) that detects various at-tack types in
IoV systems to protect connected vehicles from cyber-attacks. Authors use CNN, transfer learning,
ensemble learning models, and hyper-parameter optimisation techniques to build the framework. The
experimental results show that the proposed IDS framework can effectively identify attack types with
higher F1-scores of 100% and 99.925% on the two benchmark datasets than other compared state-of-
the-art methods. The higher performance of the proposed models when compared with other state-of-
the-art IDSs supports the reasons for using CNN, transfer learning, and hyper-parameter optimisation
techniques. Also, the results from model testing on a vehicle-level machine demonstrate the feasibility
of the proposed IDS in real-time vehicle networks. The authors plan to expand the framework in future
work by creating an online adaptive model capable of online learning and addressing concept drift in
time-series vehicle network data. Karie et al. [1] have focused on AI-based IoV IDSs, security threats,
and attacks the IoV network has faced. They concentrate on the current anomaly-based IDS for IoV
and discuss the use of AI technology in IDS, unresolved issues, and future research directions. Among
the discussed machine learning techniques (KNN, SVM, RF, DT, ET, XGBoost, ANN, DNN, CNN,
RNN, DBN & GAN, Federated Learning), Federated Learning is supposed to be one of the best
techniques to be considered for designing IoV IDS. Desta et al. [10] focused on security measures for
Controller Area Network (CAN) protocol that provides no authentication or encryption to prevent
the consequences of cyberattacks. They use CNN-based IDS, where Rec-CNN is a CNN trained on
recurrence images generated from encoded labels of CAN frame arbitration IDs. The proposed method
is tested on a publicly available dataset and public passenger vehicles with DoS, fuzzy, spoofing-gear,
and spoofing-RPM attacks, resulting in an accuracy of 0.999. In addition, we have tested the method
on our target vehicle. When the attack frequency is once every 10 milliseconds, this method can classify
simulated attacks with an accuracy of 0.999. The proposed method does not outperform the Inception-
ResNet-based method in all cases.

The comparison of the performance of the two methods shows that the Inception-ResNet-based
method works best when the attack frequency is high, and the proposed method outperforms the
Inception-ResNet-based significantly when there are only a few attacks in a window. The proposed
method has some disadvantages. Firstly, model retraining is required when the data used for training
is significantly different from the data collected for inference. Another shortcoming of the proposed
method is that it can only detect attacks that disturb the CAN packet flow’s normal sequence and leave
undetected attacks like impersonation, which manipulate the CAN frame’s data without affecting the
arbitration ID. The method could be extended to an IDS that can detect such attacks.

Lampe et al. [65] have proposed a two-step deep-learning method to detect engineering vehicles
operating under high-power transmission lines. The intrusion detection algorithm is used in the first
step to identify the potential target area. Then, the output is fed into a trained deep convolution
neural network classifier. By combining the intrusion detection method with CNN, the invasion of
engineering vehicles under high-power transmission lines can be detected with 97.2% accuracy.
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Alferaidi et al. [12] focused on the practical application of emerging technologies in IoV. Because of
its uniqueness, the car does not value network security highly enough. IoVs’ security has increasingly
become a barrier to their adoption. Due to the rapid changes in the structure of the IoV, the large
data flow, and the complex and diverse forms of intrusion, traditional detection methods cannot
ensure their accuracy and real-time requirements and cannot be applied directly to the IoV. To
solve these problems, Alferaidi and his team [14] proposed a new AA-distributed combined deep-
learning intrusion detection method. Their method combines deep-learning convolutional neural
network (CNN) and extended short-term memory (LSTM) networks to extract features and data for
detecting car network intrusion and irregular behaviour from large-scale car network data traffic.
The experimental results show that compared to other existing models (CNNGLSTM, SVM, RNN,
CNN, and LSTM algorithm), the CNN-LSTM algorithm using the Spark framework can reach 20
in the shortest time possible, with an accuracy rate of up to 99.7%. Among the advantages of the
proposed solution are the reduced training and test time, improved detection rate, and the fact that it
meets the real-time requirements of intrusion detection and satisfies the actual needs of the IoV for
intrusion detection. This study also has some limitations. The method could be improved in terms of
reduction of detection time, conducting intrusion detection on distributed platforms, and exploring
suitable distributed deep learning algorithms to meet the needs of intrusion detection for car network
information security.

As can be seen from Table 3, in which the studies discussed in this section are presented in a
systematised form, most of them are focused on Intrusion detection attacks [12,63,65]. The conducted
study shows that the most suitable techniques for dealing with this attack type are CNN [63,65],
LSTM [63] and the combined CNN-LSTM [12], followed by the Classification Technique, Deep
learning Technique and Sequential Technique [64]. Four studies focus on Denial-of-Service attacks
[2,10,61,62] as all of them use different techniques-Federated Learning [1], CNN [10], RSU-based
authentication [62], Pseudonym-based authentication [62], Group-based authentication [62]. The Sybil
attack is considered in two studies [64,67], and for dealing with them are used digital signatures
and group signatures, Identity-based cryptography, Tamper-proof devices, One-time identity-based
aggregate signature, and multiple secret sharing [61], RSU based authentication, Pseudonym based
authentication, Group based authentication [62].

Two studies focused on Channel interference attacks [61,62] and proposed solutions based on
hardware-related side channels [61], RSU-based authentication [62], Pseudonym-based authentication
[62], Group based authentication [62]. Digital signature [61], user authentication methods [61], and
Federated Learning [1] are used for dealing with Distributed Denial of Service attacks in two studies
[2,64]. Wormhole attacks are considered in two studies [61,62], and to overcome them different
methods are used-digital signature [64], RSU-based authentication [62], Pseudonym based authen-
tication [62], Group-based authentication [62]. For dealing with Fuzzy Attacks [2,10] researchers
proposed Federated Learning [1] and CNN [10] to be used. Each one of the remaining attack
types discussed is the subject of a study. Researchers propose several methods to deal with some of
them-Privacy attacks (Encryption [61]), Routing attacks (Intrusion Detection Systems and Routing
Protocol for Low-Power and Lossy Networks in IoV [61]), Data authenticity attacks (RSU based
authentication, Pseudonym based authentication and Group based authentication [62]), Cyber-attacks
(CNN, Transfer Learning, Ensemble Learning Models and Hyper-Parameter Optimization techniques
[11]), Sniffing Attack (Federated Learning [1]), Brute Force Attack (Federated Learning [1]), Integrity
Attack (Federated Learning [1]), Web Attack (Federated Learning [1]), Malware Attack (Federated
Learning [1]), Spoofing-gear (CNN [12]), Spoofing-RPM attacks (CNN [10]).



CMC, 2024 21

Most of the discussed techniques are suitable for dealing with more than one attack type. The
most widely used is the CNN method, suitable for dealing with 6 attack types- Intrusion detection
attacks [63,65,69], Denial-of-Service attacks [10], Fuzzy attacks [10], Cyber-attacks [11], Spoofing-gear
[10], Spoofing-RPM attacks [10]. Federated Learning is also applied to deal with a large number of
attacks, among which Denial-of-Service attacks [1], Distributed Denial-of-Service attacks [1], Fuzzy
attacks [1], Sniffing attacks [1], Brute Force attacks [1], Integrity attack [1], Web attack [1], Malware
attack [1]. Different types of authentications (RSU-based authentication, Pseudonym-based authen-
tication, Group-based authentication) are suitable for dealing with Denial-of-Service attacks, Sybil
attacks, Channel interference attacks, Wormhole attacks, and Data authenticity attacks [61]. Studies
have shown that Digital signatures can handle Sybil attacks [61], Distributed Denial-of-Service attacks
[61], and Worm- hole attacks [61]. The rest of the methods discussed are indicated as being suitable for
dealing with only one type of attack-Identity-based cryptography (Sybil attack [61]), Tamper-proof
devices (Sybil attack [44]), One-time identity- based aggregate signature (Sybil attack [61]), Multiple
secret sharing (Sybil attack [61]), Hardware-related side channels (Channel interference attack [61]),
User authentication methods (Distributed Denial-of-Service attack [61]), Encryption (Privacy attacks
[61]), IDS (Routing attack [64]), Routing Protocol for Low-Power and Lossy Networks in IoV (Routing
attacks [61], Transfer Learning (Cyber-attacks [11]), Ensemble Learning Models (Cyber-attacks [11]),
Hyper-Parameter Optimization techniques (Cyber-attacks [11]), LSTM (Intrusion detection attacks
[68]), CNN-LSTM (Intrusion detection attacks [12]), Classification Technique (Intrusion detection
attacks [64]), Deep learning Technique (Intrusion detection attacks [64]) and Sequential Technique
(Intrusion detection attacks ([64]).

4 Open Research Challenges
4.1 How to Reduce the Deployment Cost of IDS-IoV

As a large-scale commodity, how to reduce its production cost is a significant factor for automo-
bile manufacturers to consider. Therefore, one of the challenges faced at present and for a long time
to come is how to reduce the deployment cost of IDS-IoV systems. Therefore, for intrusion detection
technology based on deep transfer learning, how to further reduce its consumption of computing
performance and storage resources is one of the key research directions in the future.

To reduce costs, some current work is based on statistical methods and deployed at the vehicle
network data link layer. For example, Wu et al. proposed a sliding window method based on
information entropy [68]. In the reference [69], Jin et al. proposed a method based on multi-feature
recognition to achieve lightweight and low-cost intrusion detection in-vehicle networks through multi-
feature recognition. In general, deploying intrusion detection at the data link layer or even the physical
layer to provide a native security mechanism for the in-vehicle network is the overall path to achieve
low-cost and real-time security enhancement.

4.2 How to Reduce the Response Time of Intrusion Detection

Considering that cyber-attacks against intelligent vehicles will not only bring threats to informa-
tion fields, such as information leakage and data theft but also may cause serious personal injury to
passengers and roadside personnel due to malicious control of vehicles. Therefore, the IDS-IoV based
on deep transfer learning should consider not only the detection accuracy, and false alarm rate but
also focus on the detection response time of attacks. In this way, cyber-security protection actions
can be taken after the intrusion attack as soon as possible. Therefore, it is a research direction in the
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future to implement intrusion detection algorithms by using hardware methods such as deep learning
processing units (DPU), application-specific integrated circuits (ASIC), FPGA, etc.

The time consumption caused by the computational complexity of classic machine learning
methods is one of the factors affecting the reduction of intrusion detection response time. Therefore,
the existing work in this area mainly focuses on three aspects-lightweight DTL model design,
combining statistics and machine learning, and sinking the intrusion detection technology to the
physical layer to achieve a more real-time detection response.

4.3 The Security Requirements of Next-Generation in-Vehicle Networks

The requirements for in-vehicle network bandwidth of intelligent network-connected vehicles are
constantly improving. The existing in-vehicle network standard CAN network is increasingly unable
to meet the needs of intelligent network-connected vehicles. Ethernet TSN is expected to become
the next-generation vehicle network standard. Therefore, the research on intrusion detection will be
increasingly vital for designing the network security enhancement mechanisms of vehicle Ethernet
TSN. Meanwhile, for the heterogeneous in-vehicle network environment, how to take full advantage
of the characteristics of the deep transfer learning model to extract network data is one of the research
challenges in the future.

To ensure network security, TSN defines the 802.1Qci protocol to block malicious devices or
attacks like DDoS. Currently, there is little research on TSN security, and the enhancement of
protocols, algorithms, and encryption mechanisms to ensure network security. As a potential standard
for a new generation of in-vehicle networks, TSN can consider functional safety and network security
issues during the design and completion processes. In the current research, for the functional safety
and network security of TSN, reference [70] discussed the key management, frame replication and
elimination, and virtual local area network (VLAN) segmentation); To achieve end-to-end security
in TSN, reference [71] proposed a centrally configured network mechanism that combines TSN flow
configuration with Security Group Tags (SGT).

5 Future Directions
5.1 Intrusion Detection Technology for Automotive Ethernet

With the development of information and communication technology and the improvement of
intelligent driving technology, in-vehicle networks and automotive electronic systems are becom-
ing increasingly complex and often handle large data loads to meet their multi-clock intelligence
requirements [72,73]. Automotive Ethernet is expected to meet the requirements of next-generation
in-vehicle networks. Automotive Ethernet has better security measurements than CAN networks, e.g.,
it can be protected using encryption technologies such as IPsec and MACsec. However, these security
mechanisms only prevent spoofed messages and man-in-the-middle attacks against unauthenticated
devices. However, we believe that it is not enough to protect the communication channels of the in-
vehicle network because the risk of authenticated ECUs being exploited throughout the vehicle life
cycle remains. Therefore, we believe automotive Ethernet still requires other security mechanisms,
such as intrusion detection and firewall policies. Although there are a lot of studies on CAN network
intrusion detection technology, the research on vehicle Ethernet intrusion detection technology is still
relatively lacking. However, it has been conducted on attacks that can be executed on automotive
Ethernet. For example, in [74], Nie et al. demonstrated the use of automotive Ethernet to control
vehicles, which shows that attacks against automotive Ethernet exist. There are also a few reports
of attacks on SOME/IP, a standard protocol in automotive Ethernet. Similarly, there is very little
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research on automotive Ethernet IDS. Therefore, this part will become the key research direction in
the field of vehicle network security in the future. Considering the increased performance and network
bandwidth of automotive ECUs, Deep Transfer Learning techniques will play a more significant role
in IDS development [74–76].

5.2 Automotive Operating Systems Will Provide More Support for In-Vehicle Cybersecurity

The cybersecurity of IoV is becoming more systematic due to the development of networked
and automated vehicles. Automotive operating systems are a significant part of the automotive
software ecosystem. In the field of safe vehicle control operating systems, due to the high requirements
of automotive functional safety levels, MCU-based high-real-time and high-deterministic operating
systems (such as OSEK/VDX OS) are still widely used, and these systems are usually bundled with
the AUTOSAR CP platform. Today, the microkernel-based RTOS real-time system has products
that support the ASIL-D functional safety level and will play an increasingly important role in safe
vehicle control. In terms of vehicle network intrusion detection, the vehicle operating system will
play greater key support, such as providing partition isolation, therefore, the integration of vehicle
network intrusion detection technology into the mainstream automotive operating system in the form
of middleware will become the focus of research in the future, of which AUTOSAR is currently the
most common and commonly used middleware solution.

AUTOSAR already incorporates various IT security applications, e.g., to secure in-vehicle
communication or protect confidential data. However, Classic and Adaptive AUTOSAR offer partly
identical and partly different security applications due to their different architectures. Therefore, the
security enhancement of AUTOSAR will also be a long-term dynamic development process.

5.3 Development of In-Vehicle Network Security Simulation Test Platform

In-vehicle cybersecurity enhancement technology needs extensive testing to meet commercial
requirements before it can be truly commercialised. Using a real intrusion attack environment to
optimise intrusion detection algorithms is too time-consuming and costly. Open road testing is still
restricted by regulations, making it difficult to reproduce extreme attack conditions and scenarios,
and there are hidden dangers in test security. Therefore, the simulation test platform suitable for
vehicle network security will be more widely valued by the industry, similar to the autonomous driving
simulation platform (Udacity, Car-Sim, etc.), about 90% of the future intrusion detection algorithm
test will be completed by the simulation platform, 9% will be completed in the test field, and 1% will be
completed through the actual environment. The vehicle network security simulation test platform must
have several core capabilities: realistic restoration of attack scenarios, efficient use of road acquisition
data to generate simulation attack scenarios, restoration of vehicle network data flow, etc., so that the
simulation test meets the closed-loop conditions for verification of vehicle network intrusion detection
algorithms. Today, technology companies, car companies, autonomous driving solution providers,
simulation software companies, universities scientific research institutions, etc., are actively engaged
in the virtual simulation platforms construction.

The current udacity vehicle simulator is a simulation platform to simulate the autonomous
driving environment. Although its dynamic model is poor, its configuration requirements are low,
and it is convenient for experiments. Therefore, it can be used as a potential vehicle network security
verification simulation platform. Considering the complexity of the vehicle network IDS, the current
focus is more on the design of the data set. Lampe, from the Technical University of Denmark, has
been working on the development of open-source data sets for in-vehicle network IDS testing [65].



24 CMC, 2024

In [77], a state-of-the-art dataset for intrusion detection called the Car-Hacking dataset is proposed.
Another widely used intrusion detection dataset is provided by vehicular network security researchers
from South Korea in [78].

6 Conclusion

The landscape of automobile security in the era of 5 G/B5 G presents a complex interplay of design
metrics such as cost, performance, safety, and reliability. The IoV stands out as a technology with
immense potential, offering a range of functionalities from online communication services to accident
prevention. However, with these benefits come significant cybersecurity challenges, necessitating
robust IDS tailored for IoV environments. This article has provided a thorough survey of IDS-IoV,
outlining its features, concepts, and the array of security attacks and threats facing IoV systems.
Through an extensive review of research, we have explored various machine learning, deep learning,
and transfer learning strategies employed in IDS-IoV, focusing on the recent advancements in DTL
models for anomaly detection. Our evaluation criteria encompassed the ability to transfer knowledge,
detection rate, accurate analysis of complex data, and stability, offering insights into the strengths
and limitations of DTL models. Moreover, we have discussed the advantages and open challenges for
future research in this domain, emphasising the need for cost-effective solutions and efficient intrusion
response mechanisms. The key findings of this work serve as a foundational resource for researchers
aiming to delve deeper into IDS-IoV, guiding them toward innovative approaches for enhancing the
security and resilience of IoV systems. By leveraging state-of-the-art deep learning techniques and
addressing emerging threats, we can pave the way for a safer and more reliable IoV ecosystem, ensuring
the seamless integration of technology and transportation.

The obtained results allow for studying the applicability of IoV for real-time monitoring and
operation of vehicles to enhance cost-effectiveness in various organisations, incl. higher education
institutions. In addition, the study of the advantages and limitations of machine learning and Deep
Transfer Learning techniques is beneficial for the planned future studies of their application in other
fields, such as smart education, smart learning, and learning analytics, in particular and in general, in
creating intelligent educational environments.
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