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ABSTRACT

The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle, profoundly
impeding their effective utilization across various domains. Dehazing methodologies have emerged as pivotal
components of image preprocessing, fostering an improvement in the quality of remote sensing imagery. This
enhancement renders remote sensing data more indispensable, thereby enhancing the accuracy of target iden-
tification. Conventional defogging techniques based on simplistic atmospheric degradation models have proven
inadequate for mitigating non-uniform haze within remotely sensed images. In response to this challenge, a novel
UNet Residual Attention Network (URA-Net) is proposed. This paradigmatic approach materializes as an end-
to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters
and gated jump connections. The essence of our methodology lies in local feature fusion within dense residual
clusters, enabling the extraction of pertinent features from both preceding and current local data, depending on
contextual demands. The intelligently orchestrated gated structures facilitate the propagation of these features to the
decoder, resulting in superior outcomes in haze removal. Empirical validation through a plethora of experiments
substantiates the efficacy of URA-Net, demonstrating its superior performance compared to existing methods when
applied to established datasets for remote sensing image defogging. On the RICE-1 dataset, URA-Net achieves a
Peak Signal-to-Noise Ratio (PSNR) of 29.07 dB, surpassing the Dark Channel Prior (DCP) by 11.17 dB, the All-in-
One Network for Dehazing (AOD) by 7.82 dB, the Optimal Transmission Map and Adaptive Atmospheric Light For
Dehazing (OTM-AAL) by 5.37 dB, the Unsupervised Single Image Dehazing (USID) by 8.0 dB, and the Superpixel-
based Remote Sensing Image Dehazing (SRD) by 8.5 dB. Particularly noteworthy, on the SateHaze1k dataset,
URA-Net attains preeminence in overall performance, yielding defogged images characterized by consistent visual
quality. This underscores the contribution of the research to the advancement of remote sensing technology,
providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.
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1 Introduction

Haze stands as a prevalent atmospheric phenomenon in nature, predominantly stemming from
natural scattering phenomena [1,2]. Its primary constituent is particulate matter suspended within
the atmospheric milieu. When the radiative flux from a scene traverses the atmospheric medium
and converges upon the imaging apparatus, it undergoes intricate interactions with haze particles,
encompassing processes of absorption, reflection, and refraction [3]. Consequently, the resultant
images captured by remote sensing equipment are vulnerable to the deleterious consequences of
haze, manifesting in perceptible edge blurring and color distortion [4], as illustrated in Fig. 1. This
compromise in image fidelity hinders the accurate portrayal of ground surface information, thereby
diminishing the efficacy of remote sensing technology. The attenuation in the precision of ground
surface information, in turn, curtails the utilization rate and intrinsic value of remote sensing satellites.

(a) (b)

Figure 1: Remotely sensed hazy image and ground truth image. (a) Input hazy image. (b) Ground truth

Currently, models designed for remote sensing image defogging can be broadly classified into three
primary categories: image enhancement-based dehazing algorithms, physical model-based defogging
algorithms, and data-driven-based algorithms.

1.1 Image Enhancement-Based Dehazing Algorithm
This methodology, facilitated through foggy day image enhancement, endeavors to ameliorate

image contrast while minimizing the impact of image noise, thereby effectuating the restoration of a
lucid image devoid of fog [5,6]. The inherent advantage lies in the utilization of well-established image
processing algorithms that target the enhancement of image contrast [7], thereby accentuating scene
characteristics and pertinent information within the image. However, a drawback is discerned in the
potential loss of certain information, leading to image distortion. Notwithstanding, this algorithmic
approach boasts broad applicability. Representative algorithms within this category encompass the
Retinex algorithm [8–12], histogram equalization algorithm [13–17], the partial differential equation
algorithm [18,19], the wavelet transform algorithm, and analogous methods [20–23]. While these
techniques often yield visually appealing images with relatively efficient computational times, their
efficacy is constrained by the inability to comprehensively eradicate haze, given the absence of explicit
degradation processes.



CMES, 2024 3

The methodology for enhancing images captured under foggy conditions encompasses a suite
of techniques, including the Retinex algorithm, histogram equalization algorithm, partial differen-
tial equation algorithm, and wavelet transform algorithm. These methodologies are employed to
enhance image contrast and reduce noise, thereby restoring clarity to fog-obscured images. Leveraging
established image processing algorithms, these techniques aim to emphasize scene characteristics and
essential information. Despite their widespread applicability and relatively efficient computational
characteristics, a notable limitation resides in the potential loss of information, which can lead to
image distortion. Furthermore, these techniques encounter challenges in completely mitigating haze
due to the absence of explicit degradation modeling. The selection of a particular technique entails a
trade-off between heightened contrast and the risk of distortion, necessitating careful consideration
aligned with the specific demands of the application at hand.

1.2 Physical Model-Based Defogging Algorithm
This category of algorithms is predicated on the principles of atmospheric scattering theory,

resolving the atmospheric scattering (Eq. (1)) by imbuing it with supplementary conditions to render it
nonpathological [24,25]. These algorithms leverage diverse a priori information as auxiliary inputs to
estimate the parameters λ, η, and β in Eq. (1). Subsequently, by harnessing image degradation, these
algorithms enable the direct restoration of the fog-free map [26–28]. It is noteworthy that a common
limitation shared by a priori algorithms is the circumstance-specific nature of their efficacy; optimal
results in a priori estimation are attainable only under specific scenario conditions, thereby engendering
variable performance across diverse scenarios. The atmospheric scattering equation is articulated as
follows:

I (x) = J (x) t (x) + A [1 − t (x)] , t (x) = e−βd(x) (1)

where I (x) is the fogged image, J (x) is the reflected light from the observation target, the image
after de-fogging, A and t (x) are the atmospheric light coefficient and the atmospheric transmittance,
respectively, d (x) is the depth map of the scene and β is the atmospheric light scattering coefficient.
It is evident from Eq. (1) that the fog-free image, denoted by J (x) can be recovered from the fogged
image I (x) provided that accurate estimations of atmospheric transmittance ((t (x))) and atmospheric
light (A) are obtained.

1.2.1 Dark Channel Prior (DCP)

He et al. [29] conducted an observation of an extensive corpus of outdoor haze-free images,
revealing that within the majority of non-sky patches, there exists a noteworthy occurrence wherein at
least one color channel manifests pixels with markedly low intensities, proximal to zero, as shown in
Fig. 2. For an arbitrary image J its dark channel [30–33] Jdark is given by:

Jdark (x) = min
y∈�(x)

(
min

C∈{R,G,B}
JC (Y)

)
(2)

where JC is a color channel of J, and �(x) is a local patch centered at x. The value of Jdark should be
very low or close to zero if J is an outdoor haze-free image. It is imperative to acknowledge that the
diminished intensity observed in the dark channel primarily stems from shadows cast by the scene, the
presence of dark objects, and vividly colored surfaces or objects.



4 CMES, 2024

Figure 2: Dark channel removal method [5]: (a) hazy image, (b) dehazed image, and (c) recovered
depth-map

The dark channel a priori defogging algorithm, grounded in statistical principles, has demon-
strated commendable outcomes within the realm of image defogging, exhibiting greater stability in
comparison to the aforementioned non-physical model algorithms [34–38]. This algorithm can more
accurately estimate the thickness of the fog, resulting in a more natural and clearer defogging effect
[39–41]. Nevertheless, a caveat emerges in the form of a discernible darkening effect, and its perfor-
mance exhibits instability when confronted with foggy images featuring a sky background.

1.2.2 Color Attenuation Prior (CAP)

Through a comprehensive experimental observation of an extensive collection of foggy images,
a discernible correlation has been identified between the variance in fog and the brightness as well
as saturation of the images. This empirical insight has led to the formulation of a linear model
for reconstructing the depth map of the image scene. Subsequently, by leveraging this model, the
estimation of atmospheric transmittance t (x) becomes feasible through the utilization of t (x) = e−βd(x).
The final step involves the restoration of the fog-free image, achieved through the application of
Eq. (3).

J (x) = I (x) − A
max (t (x) , t0)

+ A (3)

This category of algorithms exhibits heightened effectiveness in handling mist images character-
ized by a distinct and unobstructed background, coupled with significant color saturation. However,
a notable susceptibility arises in the form of fog residue phenomena within regions of varying depth
of field, thereby diminishing its efficacy. Furthermore, its effectiveness is notably diminished when
applied to fog-containing images featuring clustered elements [42–45].
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1.3 Data-Driven Based Dehazing Algorithm
In tandem with the relentless evolution of deep learning theory, the Convolutional Neural

Network (CNN) [46–49] has garnered widespread adoption and commendable success in diverse
domains such as face recognition and image segmentation. CNN networks can efficiently learn
complex feature representations from large amounts of image data to achieve excellent performance
in visual tasks [50–53]. Image dehazing, a salient concern within the realm of image processing,
has garnered considerable scholarly interest. Notably, data-driven dehazing techniques, rooted in
deep learning paradigms, have demonstrated remarkable advancements when juxtaposed against
conventional haze removal methods.

Deep learning defogging algorithms can be stratified into two overarching categories: estimated
parameter methods and direct repair methods. The parameter estimation method employs deep con-
volutional neural networks to directly estimate key parameters such as t (x) and A, etc., subsequently
facilitating image dehazing through the application of the atmospheric scattering model. Leveraging
the learning capability inherent in deep neural networks, the direct inpainting method achieves an end-
to-end process, directly deriving the haze-free image from the foggy image within the framework of
data-driven conditions.

1.3.1 Parameter Optimization-Based Methods

This approach involves parameter estimation through deep learning techniques, with the param-
eters t(x) and A, among others, estimated through both non-deep learning physical model algorithms
and deep learning estimation parameter methods. Notably, parameters estimated via deep learning
exhibit a higher degree of accuracy compared to their non-deep learning physical model counterparts,
resulting in a more pronounced improvement in de-fogging effectiveness [54–58]. Parameter estimation
through deep learning methods allows for greater flexibility in adapting to a variety of complex
scenarios and data distributions, resulting in higher levels of performance improvement [59–63].

However, it is essential to acknowledge that the dehazing method predicated on neural network
parameter estimation shares similar drawbacks with physical model dehazing algorithms. Specifically,
inaccuracies in parameter estimation significantly compromise the efficacy of dehazing. Additionally,
since the neural network’s parameters are trained on synthetic datasets, the challenge arises in truly
capturing the relevant characteristics of real environmental fog. Consequently, the application of such
algorithms to dehaze real scenes may lead to a degradation in defogging quality.

1.3.2 Advancements in Dehazing for Enhanced Image Restoration

To circumvent the constraints associated with estimated parameters, researchers have harnessed
the formidable learning capabilities of neural networks, ushering in a new wave of direct repair
dehazing algorithms [64–68]. This new approach shows high robustness and generalization ability
when dealing with various types and degrees of haze images [69–72]. This category can be further
classified into feature fusion dehazing and adversarial generation dehazing algorithms.

Gated Context Aggregation Network (GCA-Net) [73], leveraging smoothed dilation convolution
and threshold fusion, excels in producing commendable results by enabling the network to learn residu-
als between J(x) and I(x). The algorithm constructs a loss function and undergoes training to optimize
network performance. Gated Fusion Network (GFN) [74], achieving noteworthy outcomes through
white balancing, contrast enhancement, and λ correction for foggy maps, employs three auxiliary maps
as inputs to the network, learning belief maps of White Balance (WB), Contrast Enhancing (CE),



6 CMES, 2024

and Gamma Correction (GC). The algorithm, despite exhibiting superior performance compared to
parameter estimation algorithms, is characterized by a heightened complexity.

Grid-Dehaze Net [75] achieves enhanced results by incorporating a multi-scale attention mecha-
nism through the utilization of a grid network in its backbone. Feature Fusion Attention Network
(FFA-Net) [76], introducing both channel attention and spatial attention mechanisms, achieves
superior outcomes through the integration of a learning structure containing the attention mechanism
and global residual connections. Notably, this algorithm achieves remarkable results with L1 loss
alone. The efficacy of these algorithms in de-fogging is contingent upon the specific feature fusion
methods employed, necessitating meticulous design for optimal results.

Increasing the visibility of nighttime hazy images is challenging because of uneven illumination
from active artificial light sources and haze absorbing/scattering. To address this issue, Zhang et al. [77]
proposed a novel method to simulate nighttime hazy images from daytime clear images, and finally
render the haze effects. Degradation-Adaptive Neural Networks can adapt to different types and
levels of image degradation. Chen et al. [78] designed a high-quality single-image defogging algorithm
based on a degenerate adaptive neural network and achieved good results. The scheme, which is
called Towards Perceptual Image Dehazing (TPID) [79] leverages three generative adversarial networks
(GJ, GA, and Gt indicate the generators for the scene radiance, the medium transmission, and the
global atmosphere light, respectively) for image de-fogging, employing an atmospheric scattering
model. It addresses the inherent dependency on pair-wise datasets in deep learning de-fogging by
constructing unpaired fogged and unfogged datasets through a combination of adversarial loss and
L1 loss. ICycleGAN [80] integrates the concept of Cycle Generative Adversarial Network (GAN),
incorporates perceptual loss L Perceptual, and undergoes network training. While these algorithms
exhibit efficacy in real scene de-fogging, they are susceptible to dataset dependence and prone to
color shift distortion issues. In this context, Fig. 3 illustrates a comparison of URA-net with other
image dehazing methods on the RICE-I set. Inspired by the aforementioned developments, this paper
proposes a U-Net-based end-to-end attention residual network, denoted as URA-Net, featuring an
updated encoder-decoder structure. The key contributions of this study are summarized as follows:

1. Residual structures are introduced to the backbone to alleviate the gradient vanishing problem,
enhancing the generalization performance of the backbone. A simple attention module is
incorporated into the residual unit to bolster the trunk’s capacity for extracting fine-grained
features, thereby improving defogging performance.

2. Jump connections are further enhanced by integrating a gating mechanism, allowing attention
coefficients to be more precisely targeted to localized regions, resulting in improved overall
performance.

The subsequent sections of the paper are organized as follows: Section 2 presents an overview of
related work; Section 3 elucidates the proposed image-defogging framework; Sections 4–6 provide a
discussion and comparative analysis of experimental results; and Section 7 concludes the paper.
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Figure 3: Comparison of URA-net with other image dehazing methods on the RICE-I set

2 Related Work
2.1 Remote Sensing Image Defogging-Related Approaches

The quest to mitigate atmospheric haze in remote sensing images and enhance their quality has
given rise to two principal categories of methods: traditional a priori knowledge-based approaches and
deep learning-based methods.

Traditional a priori methods typically commence by estimating transmittance maps for atmo-
spheric light and hazy images, followed by the application of classical atmospheric scattering models
to reconstruct fog-free images. However, these methods heavily hinge on assumptions about the
scene and haze properties, rendering their defogging performance susceptible to inaccuracies in these
assumptions [81–83]. Additionally, these approaches are formulated based on diverse assumptions
and models, constraining their universal applicability across various environmental conditions and
atmospheric compositions.

In contrast, deep learning-based methods for de-fogging remote sensing images leverage advanced
algorithms to learn the mapping between fogged and fog-free images. Utilizing extensive datasets
containing paired foggy and clear images, these methods have demonstrated efficacy in alleviating
haze in diverse remote sensing scenarios.

2.2 Deep Learning-Based Approach for De-Fogging
Deep learning-based image-defogging methods can be broadly categorized into two main groups.

These categories are determined by the architectural design of the defogging networks, with commonly
employed networks either operating independently of atmospheric scattering models or incorporating
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them. The former category includes encoder-decoder networks, GAN-based networks, attention-
based networks, and transformer-based networks. Notably, these state-of-the-art networks demon-
strate superior generalization capabilities and robustness compared to their early counterparts, making
them the mainstream methods in the field. Despite their advancements, the complex architectures
of these networks pose challenges. While they enhance performance, they also significantly increase
network complexity, introducing challenges in terms of training, inference, and deployment [84,85].
Balancing performance improvement and complexity is an ongoing area of research in de-fogging
networks, addressing the challenge this paper seeks to resolve. These methods contribute to reducing
the defogging network’s reliance on specific datasets, endowing them with more robust generalization
abilities.

2.3 U-Net-Related Approaches
Conventional neural networks (CNNs) demonstrate proficiency in learning multi-level image

features but encounter difficulties in achieving pixel-level image classification. The introduction of
Fully Convolutional Networks (FCN) represented a significant leap forward in image segmentation
compared to traditional CNNs. FCN achieves end-to-end image segmentation by up-sampling the
feature mapping from its final convolutional layer [86,87]. However, the relatively simplistic structure
of FCN imposes limitations on its overall performance. Addressing this constraint, U-Net enhances
image feature fusion by introducing an encoder-decoder structure based on FCN. The encoder module
of U-Net utilizes convolution and down-sampling to extract shallow features from the image [88–91].
Simultaneously, the decoder module employs deconvolution and up-sampling to capture deep image
features. U-Net further refines segmentation by incorporating skip connections between shallow and
deep features, facilitating the extraction of finer image details.

Despite these advancements, an increase in the number of network layers often results in a
performance decline due to the challenge of gradient vanishing. To tackle this issue, He et al. proposed
the widely acclaimed Residual Network (ResNet). Res-Net adopts a novel approach by focusing on
learning the residual representation between inputs and outputs rather than solely emphasizing feature
mapping [92,93]. This architectural innovation has proven effective in mitigating the impact of gradient
vanishing, leading to improved network performance, especially in tasks involving a large number of
layers.

3 The Proposed URA-Net for Remote Sensing Image Dehazing

Fig. 4 delineates the comprehensive architecture of the proposed URA-Net, showcasing its
evolution through the synthesis of U-Net and Res-Net principles. Notably, URA-Net preserves the
foundational encoder-decoder structure of U-Net while introducing an additional seven building
blocks at the junction, referred to as the bottleneck structure, strategically positioned between the
encoder and decoder modules. Moreover, URA-Net incorporates the fundamental concept of Res-
Net, emphasizing the learning of residual images rather than direct image defogging. This is realized
by introducing the residual image and integrating it with the original blurred image, culminating in
the derivation of the final image-defogging result. The amalgamation of U-Net’s encoder-decoder
architecture with Res-Net’s residual learning approach empowers URA-Net to effectively address
atmospheric haze in remote sensing images, as visually depicted in the proposed architectural rep-
resentation.
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Figure 4: The architecture of URA-Net

The architecture of URA-Net, as illustrated in Fig. 4, encompasses three principal components:
an encoder module, a jump connection (as referenced in [94,95]), and a decoder module. Specifically,
the encoder module is engineered to extract and amalgamate the feature mappings of an image via
a dense feature fusion module. Within URA-Net, the primary objective of the decoder module is to
acquire the depth feature mapping of the image through inverse convolution operations, a process
involving the reconstruction of detailed features from the encoded representation. Moreover, to aug-
ment feature fusion and facilitate information propagation, a skip connection is established between
the encoder module and the decoder module. This connection enables the integration of shallow
feature mappings from the encoder with deep feature mappings from the decoder. Fundamentally,
URA-Net adopts an encoder-decoder architecture to learn the residual image, as discussed in [96,97].
The ultimate defogging outcome of the image is derived by adding the original blurred image to the
computed residual image. This methodology not only captures intricate details through the decoder’s
inverse convolution but also ensures the retention of crucial information from both shallow and
deep feature levels, thereby enhancing the overall efficacy of the image-defogging process. The central
operational mechanism of URA-Net is elucidated in Fig. 5.
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Figue 5: Schematic flow diagram of URA-Net

3.1 Residual Group
This paper predominantly employs a neural network model based on PyTorch, leveraging key

building blocks to enhance the network’s performance. The ‘make dense’ class defines a dense con-
nection block, fostering feature accumulation by linking input and output in the channel dimension.
This design facilitates information transmission and gradient flow, mitigating the issue of vanishing
gradients. The introduction of residual blocks, instantiated through the ‘ResidualBlock’ class, further
bolsters gradient propagation. These blocks, connected via skips, enable direct gradient flow to shallow
layers, alleviating vanishing gradient challenges in deep networks–a crucial aspect for effectively
capturing complex image features.

The overall network structure follows a U-shaped encoding-decoding architecture. The encoding
section captures image features, while the decoding portion progressively restores spatial resolution
through up-sampling convolution. The ‘UpsampleConvLayer’ class handles the upsampling operation,
with interpolation implemented using PyTorch’s ‘F.interpolate’ function. In the decoding phase, the
‘AttentionBlock’ class introduces an attention mechanism, enabling the model to focus on crucial
feature areas during image reconstruction [98–101]. This inclusion enhances the network’s perfor-
mance and generalization capabilities. Batch normalization and the Rectified Liner Units (RELU)
activation function are integral components of the code, contributing to improved stability and faster
convergence of the network. The entire model is instantiated on Compute Unified Device Architecture
(CUDA) devices and leverages GPU acceleration, underscoring its commitment to efficient process-
ing. In summary, this paper’s neural network model adeptly combines dense connections, residual
blocks, multi-scale design, and attention mechanisms, creating an image-processing network with
robust generalization capabilities. The U-Net architecture exhibits inherent limitations, particularly in
spatial information loss during encoder down-sampling and insufficient connectivity between features
from non-adjacent levels. To address these drawbacks, a straightforward approach involves resampling
all features to a common scale and subsequently fusing them through bottleneck layers, incorporating
connectivity and convolutional layers, similar to DenseNet [102]. However, the conventional splicing
method for feature fusion proves less effective, primarily due to variations in scales and dimensions
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across features from different layers. In response to these challenges, we propose a novel Dense Feature
Fusion with Attention (DFFA) module to efficiently compensate for missing information and leverage
features from non-adjacent layers [103,104]. The DFFA module is designed to enhance features at the
current level through an error feedback mechanism, specifically implemented in the encoder.

As depicted in the architecture, a DFFA module is strategically introduced before the residual
group in the encoder for effective feature extraction and fusion. This module not only addresses the
limitations of the U-Net architecture but also leverages an error feedback mechanism to enhance
the features at each level, ensuring improved information compensation and connectivity across non-
adjacent layers [105,106]. The utilization of the DFFA module represents a significant enhancement
to the overall network, contributing to the efficiency and efficacy of feature extraction and fusion
processes.

3.2 Dense Feature Fusion
Following the extraction of local dense features utilizing a series of Dense Blocks, the introduction

of DFFA aims to encapsulate hierarchical features from a global standpoint. The DFFA is structured
around two principal constituents: global feature fusion (GFF) and global residual learning, as
referenced in [107,108]. Within this framework, global feature fusion entails the derivation of the global
feature (FGF) by amalgamating features originating from all Dense Blocks.

FGF = HGFF ([F1 · · · , FD]) (4)

where [F1, · · · , FD] is the stitching of the feature maps generated by the Dense Block, and HGFF

represents the composite function of the 1 × 1 and 3 × 3 convolutions.

3.3 Global Residual Learning
The feature mappings are then obtained through global residual learning, followed by Eq. (5), and

scaling is then performed

FDF = FLF + FGF (5)

where FLF denotes shallow feature mapping. Our proposed residual dense block makes full use of
all other layers before global feature fusion. The Residual Group produces multi-level local dense
features, which are further adaptively fused to form FGF . After global residual learning, dense features
are obtained as FDF .

3.4 Attention Gate

Algorithm 1: Pseudo code of attention gate
Require: g: Feature map, x: Feature map
Ensure: x̂ : Fusion feature map

1: g′ ← Wg (g)

2: x′ ← Wx (x)

3: σ1 ← Add (g′ + x′)
4: σ2 ← Relu (σ1)

5: ζ1 ← ψ (σ2)

6: ζ2 ← Sigmond (ζ1)

7: α ← Resample (ζ2)

8: x̂ (Fusionfeaturemap) ← α × x
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Attention gates [109,110] are akin to a human visual attention mechanism that automatically
focuses on the target region. They learn to suppress irrelevant feature responses in the feature map
while highlighting salient feature information crucial for a particular task. From the pseudo-code
flow in Algorithm 1, it is evident that the inputs of the Attention gate are two feature maps (g, x)

These correspond to the feature map of the decoder part and the feature map of the encoder part of
the layer above it. The specific steps are given as follows: firstly, g and x are operated in parallel, and
g′ is calculated by means Wg of g and x′ is then derived by means Wx of. Subsequently, the operation
g + x is thus performed to obtain σ1. Then σ2 is calculated through the Rulu operation on σ1, ζ1 is
calculated by means ψ of σ2, ζ2 is calculated through means of ζ1, and α is then derived by means of.
Finally, multiply α by x to get the fusion feature. A typical architecture of an attention-gating unit is
shown in Fig. 6.

Figure 6: Attention gate control unit

3.5 Loss Function
The loss function of a network plays a crucial role in determining the training efficiency and

effectiveness of the network. The mean square error (MSE) loss function is commonly used for image-
defogging tasks. However, defogged images obtained using the MSE loss often exhibit blurriness,
leading to a mismatch in visual quality. The L1 loss function, being less sensitive to outliers than
the MSE loss, has been found to achieve better performance [111].

To address the blurriness issue and enhance the visual quality of defogged images, we introduce
the Structural Similarity Index Metric (SSIM) loss. The total loss function is defined as follows:

loss = λ1 × SmoothL1_LOSS + λ2 × SSIM_loss (6)

where λ1 = λ2 = 0.5, the first L1 smoothing error is based on the MSE, which addresses the zero
non-smoothing problem. It is employed to measure the loss between the residual images obtained by
URA-Net and the actual residual images. This smoothing mean square error is defined as:

SmoothL1 (x) =
{

0.5x2 if |x| < 1
|x| − 0.5 otherwise (7)

SSIM is proposed to assess the structural similarity between two images by extracting structural
information, which can be defined as follows [112,113]:

SSIM
(
Ide, Igt

) = 2μIdeμIgt + C1

μ2
Ide + μ2

Igt + C1

2σIdeIgt + C2

σ 2
Ide + σ 2

Igt + C2

(8)
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where μIde and μIgt are the mean of the defogged and clear images, respectively. σ 2
Ide and σ 2

Igt are the
variance of the defogged and clear images, respectively. σIdeIgt is the covariance of the defogged and
clear images; and C1 and C2 are constants. Correspondingly, the SSIM loss can be expressed as:

LS = 1 − SSIM
(
Ide, Igt

)
(9)

4 Experiments

We conducted evaluations on the following datasets using state-of-the-art methods:

(i) RICE-I dataset [114]: Contains 500 pairs of images, each with and without clouds, of size 512 ×
512. Randomly selected 400 pairs of images for training and 100 pairs for testing.

(ii) SateHaze1k dataset [115]: Comprises pairs of aerial images, including clean and degraded
images with varying levels of haze density (thin, moderate, and thick). Utilizes data augmenta-
tion techniques such as random flipping. Consists of 1920 image pairs (degraded and ground-
truth) for training, containing light, medium, and dense haze. Includes 45 image pairs dedicated
for testing in each level of haze density.

(iii) Competitors & Metrics: We compare our method with several state-of-the-art dehazing
algorithms, including Dark Channel Prior (DCP) [29], Dehazing Scheme Using Heterogeneous
Atmospheric Light Prior(HALP) [116], All-in-One Network for Dehazing (AOD-Net) [117],
FFA-Net [118], GCA-Net [119], the Optimal Transmission Map and Adaptive Atmospheric
Light For Dehazin (OTM-AAL) [120], Unsupervised Single Image Dehazing Network (USID-
Net) [121] and Uperpixel-Based Remote Sensing Image Dehazing (SRD) [122]. Evaluation
metrics include Peak Signal-to-Noise Ratio (PSNR) and SSIM [57] to assess the quality of
restored images.

(iv) Implementation details:

(a) In the training phase, we apply the discriminator proposed in [103] with a patch size of
30 × 30

(b) The Adam optimizer with a learning rate lr = 10−4 is used to optimize the network.

(c) A batch size of 16 is employed for training.

4.1 Evaluation Metrics
For hazy images with ground truth, we use the reference image as the ground truth, and the

defogging effect can be quantitatively assessed by calculating the statistical values of the image before
and after defogging. The metrics mean square error (PSNR) and structural similarity index (SSIM) are
employed. PSNR, which stands for peak signal-to-noise ratio, indicates the quality of the images. The
higher the PSNR value, the lower the distortion between the two images and the higher the quality.
SSIM, or structural similarity index, measures how similar the two images are; the closer SSIM is to
1, the more similar the images are in terms of structure.

For hazy images without ground truth, we introduce BRISQUE (Blind/Referenceless Image Spa-
tial Quality Evaluator) [123], NIQE (Natural Image Quality Evaluator) [124], and PIQE (Perception-
based Image Quality Evaluator) [125] as performance evaluation metrics. BRISQUE is an image
quality assessment metric based on the analysis of local image features. The NIQE algorithm employs
features that are more sensitive to regions with higher contrast in images, without relying on any
subjective assessment scores. PIQE is a perception-based image quality assessment algorithm that
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frames the problem of image quality evaluation as simulating human visual perception. Additionally,
all three evaluation metrics exhibit the characteristic that lower values indicate better image quality.

4.2 Quantitative Comparison
Table 1 presents the results of a comprehensive quantitative comparison of the SateHaze1k and

RICE datasets. The proposed URA-Net model demonstrates a noteworthy improvement over other
mainstream state-of-the-art methods listed in the table. The performance gains are particularly evident
across various metrics. Notably, URA-Net outperforms the second-place method by a margin of 0.1
in terms of SSIM on the dense haze dataset, showcasing a substantial advantage over CNN-based
methods. On the RICE dataset, URA-Net exhibits a remarkable improvement, surpassing GCA-Net
by more than 2.0 and 8.5 dB over SRD. This compelling performance differential underscores the
efficiency and accuracy of our proposed method in handling diverse types of haze distributions. The
results affirm URA-Net’s robustness and effectiveness in comparison to contemporary approaches.

Table 1: Average SSIM/PSNR on dataset

Methods Goal DCP HALP Aod-net GCA-Net OTM-AAL USID-Net SRD URA-Net
RICE-1 PSNR ↑ 17.10 22.12 21.25 22.00 23.70 21.07 20.55 29.07

SSIM ↑ 0.8613 0.8132 0.6875 0.8501 0.8965 0.8371 0.9153 0.9215
RS-Thin PSNR ↑ 20.51 18.47 18.74 19.10 17.60 19.98 21.33 24.01

SSIM ↑ 0.8733 0.8513 0.8460 0.8453 0.8255 0.8453 0.8960 0.9094
RS-
Moderate

PSNR ↑ 21.36 18.46 19.64 19.56 16.92 20.06 20.77 26.57
SSIM ↑ 0.8942 0.8527 0.8253 0.8420 0.8148 0.8406 0.9300 0.9425

RS-Thick PSNR ↑ 16.39 14.04 15.47 16.62 10.07 16.17 17.26 23.92
SSIM ↑ 0.7535 0.7135 0.6992 0.6981 0.5229 0.7306 0.8140 0.8624

In Table 1, quantitative evaluations on the benchmark dehazing datasets. Red texts and blue texts
indicate the best and the second-best performance, respectively. ↑ and ↓ mean the better methods
should achieve higher/lower scores of this metric.

Table 2 presents the results of a comprehensive quantitative comparison on the Real-World
dataset. Red texts and blue texts indicate the best and the second-best performance respectively. For
quantitative comparison, three well-known no-reference (BRISQUE, NIQE and PIQE) image quality
assessment indicators are adopted for evaluations. All these metrics are evaluated on 350 real-world
hazy images selected from the Goole and public datasets. The BRISQUE, NIQE, and PIQE metrics are
used to assess the overall quality of the restored images, with lower values indicating better results. As
observed, URA-Net achieves two first and third places in these three indicators, respectively, showing
that the haze-free images restored by our method are of high quality.

Table 2: Average BRISQUE/NIQE/PIQE on real-world dataset

Goal DCP HALP Aod-net GCA-Net OTM-AAL USID-Net SRD URA-Net

BRISQUE ↓ 31.54 32.03 36.84 34.69 31.69 33.14 34.55 31.35
NIQE ↓ 9.975 7.658 8.376 8.003 9.353 7.342 8.614 7.983
PIQE ↓ 30.92 28.03 30.11 29.26 31.59 31.15 31.11 27.77
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4.3 Qualitative Evaluations
Figs. 7–10 depict the denoising outcomes obtained from RICE-1 and SateHaze1k images, respec-

tively, following resizing to a 512 × 512 dimension to enhance detail visibility. While DCP and
Aod-Net effectively eliminate the translucent cloud layer, they concurrently induce a perceptible
darkening across the resultant images. Although GCA-Net exhibits improved fidelity in restoring
original colors, its efficacy in deblurring remains wanting, particularly discernible in scenarios where
denoising performance falls short. In contrast, OTM-AAL showcases superior deblurring capabilities,
albeit at the expense of noticeable image distortion, overexposure in bright regions, and inadequate
de-fogging performance. HALP demonstrates enhanced image clarity; however, it comes at the cost
of conspicuous exposure effects.

Input DCP Aod-Net HALP GCA-Net OTM-AAL USID-Net SRD Ours Clear image

Figure 7: Qualitative comparisons of different methods on Haze1k-Thin

The proposed URA-Net method addresses these inherent shortcomings by assimilating DCP’s
superior deblurring capabilities while ameliorating the issue of darkened imagery. URA-Net further
enhances cloud shadow and dark area details, resulting in a more lucid depiction. In comparison, our
algorithm surpasses existing methodologies by furnishing images endowed with sharper structures
and details closely approximating ground truth. The perceptual evaluation of results underscores the
superior performance and enriched visualization achieved by our proposed URA-Net method.
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Input DCP Aod-Net HALP GCA-Net OTM-AAL USID-Net SRD Ours Clear image

Figure 8: Qualitative comparisons of different methods on Haze1k-Moderate

Input DCP Aod-Net HALP GCA-Net OTM-AAL USID-Net SRD Ours Clear image

Figure 9: Qualitative comparisons of different methods on Haze1k-Thick
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Input DCP Aod-Net HALP GCA-Net OTM-AAL USID-Net SRD Ours Clear image

Figure 10: Qualitative comparisons of different methods on RICE-I dataset

4.4 Results on Real-World Hazy Images
We qualitatively evaluate URA-Net with other dehazing approaches on several real-world hazy

images from the Goole-net. Fig. 11 exhibits 4 real-world hazy samples and the corresponding restored
results by different dehazing algorithms. As can be seen from the figure, DCP suffers from color
distortion (e.g., sky component), which leads to inaccurate color reconstruction. For HALP, AOD,
and GCA, the details of objects are relatively blurred in real foggy conditions, probably because these
methods do not accurately estimate the fog component when dealing with complex real scenes. OTM-
AAL and SRD produce bright effects but have poor and limited de-fogging capabilities. Our method
generates better perceptual results in terms of brightness, colorfulness, and haze residue compared to
other methods.

Input DCP Aod-Net HALP GCA-Net OTM-AAL Usid-Net SRD Ours

Figure 11: Qualitative comparisons of different methods on real-world dataset
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5 Ablation Study

The efficacy of the proposed modules undergoes rigorous evaluation through ablation studies
conducted on the StateHaze1K and Real-World datasets. These studies are designed to systematically
dissect the URA-Net architecture by isolating and scrutinizing individual components, aiming to
discern their specific contributions and impact on overall performance. The overarching objective is
to juxtapose these components against counterparts with analogous designs, thereby elucidating their
roles and effectiveness within the URA-Net framework.

This methodical approach facilitates a comprehensive comprehension of how each module
influences the model’s overall efficacy. Through the conduct of ablation studies, the endeavor is to
quantitatively gauge and appraise the significance of each proposed component, fostering a nuanced
comparison with analogous designs. Such endeavors contribute to a refined understanding of the
pivotal elements inherent in the URA-Net architecture and their respective contributions to its
performance. We designed five sets of experiments: (a) Without Stacked Cross(SC)-Attention, remove
SC-Attention modules from the residual group (b) Without Gate, use common jump connections
instead of gated structures (c) Without Dense Feature Fusion, use down-sampling instead of dense
connection fusion (d) Without Loss, use MSE-loss instead of our proposed loss and (e) URA-Net,
complete network proposed.

Table 3 demonstrates notable enhancements in PSNR metrics, showcasing an elevation of 0.96
with the incorporation of the SC attention mechanism, 0.99 with the introduction of the self-
attention gating mechanism, and a substantial increase of 1.42 attributable to the adoption of
the devised combined loss function. The amalgamation of these modules is intricately designed to
afford discerning attention to both multi-channel and multi-pixel aspects, concurrently facilitating the
retention and dissemination of information across diverse network layers.

Table 3: Qualitative comparisons of different variants of URA-Net on the Remote Sensing-Thick

Model PSNR 2 SSIM

Without SC-Attention 22.96 0.8514
Without gater 22.93 0.8419
Without loss (Only MSE loss) 22.50 0.8310
Without dense feature fusion 21.71 0.8285
URA-Net 23.92 0.8624

Table 4 demonstrates the significant reduction of BRISQUE, NIQE, and PIQE metrics, using
the proposed gating mechanism, BRISQUE decreased by 1.32, NIQE decreased by 0.35 and PIQE
decreased by 0.80. Due to the use of the designed combined loss function, BRISQUE decreased by
1.86, NIQE decreased by 0.49, and PIQE decreased by 1.66. The experimental results show that the
use of each component is beneficial to improve the image quality of real foggy maps after defogging,
and verifies the effectiveness of the proposed defogging network in real defogging.
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Table 4: Qualitative comparisons of different variants of URA-Net on the Real-World dataset

Model BRISQUE NIQE PIQE

Without SC-Attention 32.11 8.28 28.15
Without gater 32.67 8.33 28.57
Without loss (Only MSE loss) 33.21 8.47 29.43
Without dense feature fusion 32.95 8.53 28.89
URA-Net 31.35 7.98 27.77

Figs. 12 and 13 show the comparison of the defogging effect under each group of experiments.
The SC attention mechanism, leveraging its sophisticated weighting mechanism, directs attention
toward pivotal features such as dense foggy regions, high-frequency textures, and color fidelity. This
targeted attention yields augmented image-defogging capabilities. The experiments conducted in this
subsection adeptly demonstrate the constructive optimization influence stemming from the integration
of the SC attention and self-attention gating mechanisms, alongside the utilization of the combined loss
function within the network architecture. By assigning distinct weights for fusion operations to channel
information characterized by varying receptive fields, the network garners enhanced adaptability,
thereby fortifying its overall performance.

(a) (b) (c) (d) (e) (f) (g)

Figure 12: Ablation experimental qualitative evaluations (a) input image (b) without SC-Attention
(c) without gater (d) without loss (e) without dense feature fusion (f) URA-net (g) groud truth

(a) (b) (c) (d) (e) (f)

Figure 13: Ablation experimental qualitative evaluations on the real-world hazy image (a) input
image (b) without SC-Attention (c) without gater (d) without loss (e) without dense feature fusion
(f) URA-net

6 Experiments on Object Detection Task

Haze as an adverse weather condition, poses a significant challenge to the efficacy of land-based
observation systems in remote sensing applications. In scenarios such as autonomous navigation, the
presence of haze can severely impact object detection, leading to degraded image quality and potential
safety risks. Therefore, it becomes imperative to employ a preprocessing step for image enhancement
before undertaking tasks like object detection [126–130].
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To address the absence of datasets containing built-in synthetic haze images for object detection,
we conducted experiments using 100 randomly selected images from the VisDrone2019 datasets. Syn-
thetic fogged versions of these images were generated for experimentation. For our model evaluations,
we utilized YOLOv5 for target detection, with the dataset employing default outdoor pre-training
weights. The experimental outcomes, as shown in Fig. 14, demonstrate improved detection perfor-
mance post-defogging, underscoring the effectiveness of our proposed model in enhancing images
for subsequent upstream tasks. This evidence supports the contention that our model contributes
positively to addressing the challenges posed by haze in remote sensing applications, particularly in
the context of object detection in adverse weather conditions.

(a) (b) (c) (d) (e)

Figure 14: Comparison of object detection results under different conditions from VisDrone2019

Moreover, the detailed analysis of comprehensive detection results for a specific scene is visually
presented in Fig. 14a, providing an overview of the overall impact of the de-fogging process. However,
the crux of the improvement is vividly illustrated in Figs. 14b–14e, where the most compelling instances
of the de-fogging effect are showcased. Noteworthy examples include Figs. 14b and 14c, which reveal
a remarkable enhancement in the detection rate post-defogging. Here, additional instances of cars
are successfully identified compared to the fogged condition, signifying the algorithm’s efficacy in
improving object recognition. In Fig. 14d, the de-fogging method addresses challenges posed by
nighttime foggy images, effectively resolving detection issues and underscoring its capacity to enhance
the accuracy of object recognition in challenging environments. Fig. 14e provides a before-and-after
comparison, highlighting the transformative impact of the de-fogging process on a synthetic fogged
image of a car. These visual examples not only validate the methodology’s success in mitigating fog-
induced obstacles but also emphasize its pivotal role in bolstering the reliability and accuracy of
autonomous navigation systems operating under adverse weather conditions.

7 Limitations and Future Work

The URA-Net proposed in this paper has some limitations, which are shown in Fig. 15. (a) There is
extremely dense and unevenly distributed haze in the test sample, which will lead to some irretrievable
loss of image information and render the URA-Net algorithm powerless for hazy image restoration.
(b) The proposed method will rely on a large number of labeled images for training, and it is difficult
to achieve a good de-fogging effect for real foggy remote sensing images.
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(a) (b)

Figure 15: Limitations of the URA-Net algorithm. (a) Distributed haze. (b) Real-world hazy image

The principal factor contributing to these limitations stems from the dependency on a substantial
volume of labeled data for model training. However, these constraints can be mitigated through strate-
gies such as domain adaptation and unsupervised learning. In our forthcoming research endeavors,
we intend to delve deeper into the pertinent features associated with haze, refine our haze-adding
algorithm, and explore the efficacy of deep learning networks in addressing the residual haze challenge
inherent in real remote sensing image dehazing.

8 Conclusions

This paper presents a deep learning-based model tailored for remote sensing image defogging,
encompassing a comprehensive review of image defogging methodologies. The initial section offers
an overview of traditional techniques including image enhancement-based and physical model-
based defogging, alongside deep learning methodologies. A meticulous literature comparison of deep
learning-centric approaches is provided, elucidating the strengths and weaknesses of diverse strategies.
The enhancement strategy adopted in this study is delineated thereafter. Subsequently, the paper delves
into a detailed exposition of the proposed dense residual swarm-based defogging attention network.
The discussion elucidates the intricacies of the model architecture and its operational mechanisms.
Finally, the paper concludes with an assessment of the efficacy and superiority of the proposed
model’s defogging efficacy. This evaluation entails a comparative analysis of its performance against
mainstream models leveraging the RICE-I and SateHaze1k datasets. The authors assert that the
methodology introduced herein holds promise for elevating the quality of input images pertinent to
foggy conditions. Consequently, this advancement is anticipated to bolster the accuracy and reliability
of downstream tasks encompassing target detection, scene recognition, and image classification.
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105. Liu X, Chen S, Song L, Woźniak M, Liu S. Self-attention negative feedback network for real-time image
super-resolution. J King Saud Univ-Comput. Inf Sci. 2022;34(8):6179–86.

106. Ding J, Guo H, Zhou H, Yu J, He X, Jiang B. Distributed feedback network for single-image deraining.
Inf Sci. 2021;572:611–26. doi:10.1016/j.ins.2021.02.080.

107. Liu L, Song X, Lyu X, Diao J, Wang M, Liu Y, et al. FCFR-Net: Feature fusion based coarse-to-fine
residual learning for depth completion. In: Proceedings of the AAAI Conference on Artificial Intelligence;
2021; Vancouver, Canada; p. 2136–44.

108. Gurrola-Ramos J, Dalmau O, Alarcón TE. A residual dense u-Net neural network for image denoising.
IEEE Access. 2021;9:31742–54. doi:10.1109/Access.6287639.

109. Li F, Luo M, Hu M, Wang G, Chen Y. Liver tumor segmentation based onmulti-scale and self-attention
mechanism. Comput Syst Sci Eng. 2023;47(3):2835–50. doi:10.32604/csse.2023.039765.

110. Tong X, Wei J, Sun B, Su S, Zuo Z, Wu P. ASCU-Net: attention gate, spatial and channel attention u-net
for skin lesion segmentation. Diagnostics. 2021;11(3):501. doi:10.3390/diagnostics11030501.

111. Hodson TO. Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not.
Geosci Model Dev. 2022;15(14):5481–7. doi:10.5194/gmd-15-5481-2022.

112. Setiadi DRIM. PSNR vs SSIM: imperceptibility quality assessment for image steganography. Multimed
Tools Appl. 2021;80(6):8423–44. doi:10.1007/s11042-020-10035-z.

113. Bakurov I, Buzzelli M, Schettini R, Castelli M, Vanneschi L. Structural similarity index (SSIM) revisited:
a data-driven approach. Expert Syst Appl. 2022;189:116087. doi:10.1016/j.eswa.2021.116087.

114. Lin D, Xu G, Wang X, Wang Y, Sun X, Fu K. A remote sensing image dataset for cloud removal. arXiv
preprint arXiv:190100600. 2019.

115. Huang B, Zhi L, Yang C, Sun F, Song Y. Single satellite optical imagery dehazing using SAR image
prior based on conditional generative adversarial networks. In: Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV); 2020; Snowmass, CO, USA; p. 1806–13.

116. He Y, Li C, Li X. Remote sensing image dehazing using heterogeneous atmospheric light prior. IEEE
Access. 2023;11:18805–20. doi:10.1109/ACCESS.2023.3247967.

117. Li B, Peng X, Wang Z, Xu J, Feng D. AOD-Net: All-in-One dehazing network. In: Proceedings of the
IEEE International Conference on Computer Vision (ICCV); 2017; Italy; p. 4770–8.

https://doi.org/10.32604/cmc.2023.038640
https://doi.org/10.1109/JSEN.2022.3172132
https://doi.org/10.1016/j.neucom.2021.03.091
https://doi.org/10.1016/j.neucom.2021.03.091
https://doi.org/10.1016/j.ins.2021.02.080
https://doi.org/10.1109/Access.6287639
https://doi.org/10.32604/csse.2023.039765
https://doi.org/10.3390/diagnostics11030501
https://doi.org/10.5194/gmd-15-5481-2022
https://doi.org/10.1007/s11042-020-10035-z
https://doi.org/10.1016/j.eswa.2021.116087
https://doi.org/10.1109/ACCESS.2023.3247967


28 CMES, 2024

118. Qin X, Wang Z, Bai Y, Xie X, Jia H. FFA-Net: Feature fusion attention network for single image dehazing.
In: Proceedings of the AAAI Conference on Artificial Intelligence, 2020; New York, USA; p. 11908–15.

119. Chen D, He M, Fan Q, Liao J, Zhang L, Hou D, et al. Gated context aggregation network for image
dehazing and deraining. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV);
2019; Waikoloa, HI, USA; p. 1375–83.

120. Ngo D, Lee S, Kang B. Robust single-image haze removal using optimal transmission map and adaptive
atmospheric light. Remote Sens. 2020;12(14):2233. doi:10.3390/rs12142233.

121. Li J, Li Y, Zhuo L, Kuang L, Yu, T. Unsupervised single image dehazing network via disentangled
representations. IEEE Trans Multimed. 2023;25:3587–601.

122. He Y, Li C, Bai T. Remote sensing image haze removal based on superpixel. Remote Sens.
2023;15(19):4680. doi:10.3390/rs15194680.

123. Mittal A, Moorthy AK, Bovik AC. No-reference image quality assessment in the spatial domain. IEEE
Trans Image Process. 2012;21(12):4695–708. doi:10.1109/TIP.2012.2214050.

124. Mittal A, Soundararajan R, Bovik AC. Making a “completely blind” image quality analyzer. IEEE Signal
Process Lett. 2012;20(3):209–12.

125. Venkatanath N, Praneeth D, Bh MC, Channappayya SS, Medasani SS. Blind image quality evaluation
using perception based features. In: 2015 Twenty First National Conference on Communications (NCC);
2015; Mumbai, India; p. 1–6.

126. Liu W, Ren G, Yu R, Guo S, Zhu J, Zhang L. Image-adaptive YOLO for object detection in adverse
weather conditions. In: Proceedings of the AAAI Conference on Artificial Intelligence; 2022; BC, Canada;
p. 1792–800.

127. Wang H, Xu Y, He Y, Cai Y, Chen L, Li Y, et al. YOLOv5-Fog: a multiobjective visual detection algorithm
for fog driving scenes based on improved YOLOv5. IEEE Trans Instrum Meas. 2022;71:1–12.

128. Zhang Q, Hu X. MSFFA-YOLO network: multi-class object detection for traffic investigations in foggy
weather. IEEE Trans Instrum Meas. 2023;72:2528712.

129. Zhang Y, Ge H, Lin Q, Zhang M, Sun Q. Research of maritime object detection method in foggy
environment based on improved model SRC-YOLO. Sensors. 2022;22(20):7786. doi:10.3390/s22207786.

130. Huang J, He Z, Guan Y, Zhang H. Real-time forest fire detection by ensemble lightweight YOLOX-L and
defogging method. Sensors. 2023;23(4):1894. doi:10.3390/s23041894.

https://doi.org/10.3390/rs12142233
https://doi.org/10.3390/rs15194680
https://doi.org/10.1109/TIP.2012.2214050
https://doi.org/10.3390/s22207786
https://doi.org/10.3390/s23041894

	Advancements in Remote Sensing Image Dehazing: Introducing URA-Net with Multi-Scale Dense Feature Fusion Clusters and Gated Jump Connection
	1 Introduction
	2 Related Work
	3 The Proposed URA-Net for Remote Sensing Image Dehazing
	4 Experiments
	5 Ablation Study
	6 Experiments on Object Detection Task
	7 Limitations and Future Work
	8 Conclusions
	References




