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Abstract: The advancement of automated medical diagnosis in biomedical
engineering has become an important area of research. Image classification is
one of the diagnostic approaches that do not require segmentation which can draw
quicker inferences. The proposed non-invasive diagnostic support system in this
study is considered as an image classification system where the given brain image
is classified as normal or abnormal. The ability of deep learning allows a single
model for feature extraction as well as classification whereas the rational models
require separate models. One of the best models for image localization and clas-
sification is the Visual Geometric Group (VGG) model. In this study, an efficient
modified VGG architecture for brain image classification is developed using
transfer learning. The pooling layer is modified to enhance the classification cap-
ability of VGG architecture. Results show that the modified VGG architecture
outperforms the conventional VGG architecture with a 5% improvement in
classification accuracy using 16 layers on MRI images of the REpository of
Molecular BRAin Neoplasia DaTa (REMBRANDT) database.
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1 Introduction

The anatomical structures of the brain from MRI give rich information for biomedical research. Many
computer systems are developed in the last two decades to aid the diagnosis of brain cancer from MRI
images. The extensive works performed on brain images are discussed here. All approaches fall into two
categories: supervised and unsupervised. The former one uses Artificial Neural Network (ANN) [1–3],
Support Vector Machine (SVM) [4–5], Naive Bayes (NB), and k-Nearest Neighbour (k-NN) [1,6] and the
later one uses Fuzzy C-Means (FCM) [7] and self-organizing map [8]. While comparing the performance
of these two types of approaches, supervised classification is superior to unsupervised approaches in
terms of classification accuracy, as the unsupervised approaches require experts with strong knowledge to
select the meaningful features and also prone to error for the classification of large scale data.
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The feature extraction techniques utilize spatial [6] and frequency domain [1–5] analysis methods and it
is well known that frequency domain features give rich texture information than spatial domain features for
classification [9]. Among the frequency domain analysis, Discrete Wavelet Transform (DWT) is a powerful
tool for a signal as well as image processing [10]. The feature vector computed from the 3rd level low-
frequency sub-band of DWT is utilized in [1] for brain image classification. The principal component
analysis is applied to the feature vector to reduce the dimensionality. Then, KNN and ANN are separately
analyzed for classification which provides an accuracy of 98% and 97% respectively. DWT is analyzed
up to the 8th level in [2]. Spider web plots are constructed using the entropy of all levels of low-
frequency components. ‘db4’ wavelet filter and probabilistic neural network is employed for classification
and achieved 100% accuracy. In [3], up to 5th level energy features obtained from ‘db8’, ‘bio3.7’, and
‘sym8’ filters are analyzed after applying the median filter in the preprocessing stage. SVM is employed
for classification with 93.5% classification accuracy. The main drawback of DWT based systems is the
selection of a level of MRI brain image decomposition which is related to the information contained in
the extracted features and affects the classifier performance if the proper level of decomposition is
not chosen.

Slant transform, an improved version of DWT is used in [4]. After relevant feature extraction, FCM has
been employed to segment the MRI image. Accuracy of 100% is achieved with the minimum number of
features. However, this performance is achieved only on a small dataset that consists of 75 images.
Statistical features such as energy and entropy and three important co-occurrence features from the dual-
tree M band wavelet transform are discussed in [5] for MRI brain image analysis. It uses SVM with
various kernel functions for the classification and achieved a maximum of 97.5% accuracy. Feature level
fusion is discussed in [6] with a fuzzy inference system for MRI image classification. Two types of
features; mutual information and seven features from gray-level co-occurrence matrix are fused. After
fusion, ANN, NB, and kNN are used for the classification of 85 images. The fuzzy-based system gives an
accuracy of 96.23%. As the co-occurrence features are sensitive to noise and the spatial relationship
between the textures are ignored.

Multilayer perceptron (MLP) for MRI brain image classification is discussed in [11]. The images are
preprocessed before extracting and central moments are computed as features. The multilayer perceptron
is trained using these features for effective classification with 88.33% accuracy. MLP disregards spatial
information and the complexity is very high as each perceptron is connected with others. Spectral
distribution based MRI brain classification is discussed in [12]. At first, segmentation is done using a
particle swarm optimization approach and then spectral distribution is computed on the segmented region.
SVM is used for classification which provides an accuracy of 99.18% on a small set of 50 images.

Deep learning approaches have become more popular in the field of computer vision in the last ten years.
They use base network architecture such as Alex Net [13], VGG [14], and Google Net [15]. The Alex Net
uses large-sized filters of size 11 and 5 in the first and second convolution layer which increases the
computational complexity. This drawback is overcome by VGG by convolution filers of size 3 × 3 and 1
× 1. Google Net uses sparse connections between activations which reduces the complexity of the system
and increases the performance slightly over VGG [16]. Among these networks, VGG is chosen in many
pattern recognition approaches due to its simplicity and performance over other architectures. Deep
networks are used in many applications including MRI brain image classification [17].

The major aim of this study is to improve the analysis of MRI brain images. In particular, the aim is to
develop a new deep learning architecture for detecting abnormality in brain images. The description of the
blocks of modified VGG architecture is illustrated in Section 2. Section 3 analyzes the results obtained from
the modified VGG architecture and compares them with the existing system and the conclusion in Section 4.
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2 Modified VGG Architecture

The visual similarity between normal and abnormal MRI brain images influences the accuracy of the
MRI brain image classification system. Also, they have huge intra-class variance. The hierarchical feature
learning of the convolution neural network has a discrimination capability that helps to achieve more
gains. In any deep learning architecture, there are two simple elements; convolution and pooling layers.
However, the success of deep learning for a given problem mainly depends on the arrangement of these
two layers. The proposed architecture follows the arrangement of convolution and pooling layers in the
VGG model [14] as they use smaller sized filters of 3 × 3 and 1 × 1. Also, the large-sized filter is
obtained by the stacking of filters. In neural network architecture, the major building blocks are
convolution layers where a Feature Map (FM) is generated by applying a Filter (F) to an Input (I). The
discriminating features can be detected anywhere in an image by applying the same filter repeatedly.
Fig. 1 shows an example of how the filters are applied to an image to generate a feature map.

Fig. 2 shows the computation of FM by a convolution filter F of size 3 × 3 to an input image of size
5 × 5 with a stride of 1. For simplicity, a simple convolution filter is assumed. The output of F to a
specific window on the input image is shown in the FM with the same color.

F

I

FM

Figure 1: Feature map generation
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The window is moved to one pixel (stride:1) in the horizontal direction
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After completing the move in the horizontal directions, the window is moved to one pixel (i.e., from the 
second row) in vertical direction and the process is repeated until the whole image is convolved with F.
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Figure 2: Example of a convolution layer in the architecture
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The hierarchical decomposition is achieved by stacking of convolution layers i.e., the convolution layer
also operates on the output of other layers to get more information from the input. The abstraction of features
increases while increasing the depth of the network. The major difference between the modified VGG
architecture and the conventional VGG is the logic behind the pooling layers. Fig. 3a shows the original
VGG architecture with 16 weight layers and Fig. 3b shows the modified VGG architecture with the same
number of layers. Fig. 4 shows the feature map obtained from the first convolution layer.

The feature maps from the convolution layer are down-sampled by pooling layers. The pooling
operation is applied to the feature map with a predefined size of patches and stride. The movement over
the pixels along vertical and horizontal directions between the successive applications of filters is referred
to as stride and it is typically set to (2, 2). The common techniques used for down sampling are
maximum pooling and average pooling. Let us consider a sample FM of size 2 × 6 in Eq. (1).

FM ¼ 2 4 1 1 2 8
2 0 1 1 3 3

� �
(1)

The application of maximum pooling (Pmax) reduces the FM from 2 × 6 to 1 × 3 with a stride of (2, 2) and
patches of (2 × 2). Thus, the first step is applied to the Pmax operation which is given below:

max
2 4
2 0

� �
¼ 4 (2)

(a)                                        (b)
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(a)             
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Conv3-512
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     (b)
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FC-4096
FC-1000
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Figure 3: (a) Conventional VGG-16 architecture (b) Modified VGG-16 architecture
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The next step is the application of stride, thus Pmax is applied on the FM by moving at left along the two
columns,

max
1 1
1 1

� �
¼ 1 (3)

Figure 4: (a) Input image (b) Feature map (FM) from the first convolution layer of modified VGG-
16 architecture
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This operation is continued until it reaches the last rows and last columns,

max
2 8
3 3

� �
¼ 8 (4)

The final result of the Pmax is shown in Eq. (5)

Pmax ¼ 4 1 8½ � (5)

Similarly, the application of average pooling (Pavg) is given in Eq. (6)

Pavg ¼ 2 1 4½ � (6)

Instead of using the common pooling methods, the median pooling layer is introduced in the modified
VGG architecture. The application of the median pooling layer (Pmed) is given in Eq. (7).

Pmed ¼ 2 1 3½ � (7)

The main reason to use the median is that the median value is less affected by outliers than average or
max. The outliers are observation which has abnormal distance from other samples in the population. Fig. 5
shows how the different pooling layers work in the architecture.

It is observed from Fig. 5 that the output of the max-pooling layer is affected by outliers and the output of
the average pooling layer depends on the outliers. In this case, the median pooling layers are not affected by
the outliers that may increase the performance of the system. In the hidden layers, rectified linear activation
function is used which is defined as

ReLuðyÞ ¼ maxð0; yÞ (8)

Convolution layer Output
Pooling layer

with
stride 2x2

Output

64 128 100 255

64 255 48 24

15 30 255 120

255 80 200 75

Max
255 255

255 255

Average
127.75 106.75

95 162.5

Median
96 74

55 160

Figure 5: Example for different pooling layers
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After the operations on these layers, the final extracted FM is given to the output layer where the
predictions will take via the softmax layer. It converts the output of the layer into a probability
distribution for potential outcomes. It is defined by

SMðyiÞ ¼ eyiP
j
eyj

(9)

where j is the total number of outputs from the last layer and yi is the output of the ith layer. From the
probability distribution SMðyiÞ, the target class is assigned with the class which has a high probability.
Though other activation functions such as tanh and sigmoid are available, this study uses softmax as
other functions stuck while training the network. Also, the modified VGG architecture uses mini-batch
gradient descent with momentum of 0.9 and stochastic gradient descent optimizer is employed. The
number of epochs is set to 20 and cross entropy loss function is used. The computation of the softmax
layer is shown in Tab. 1.

3 Results and Discussions

The superiority of the modified VGG architecture is demonstrated in this section. The REMBRANDT
dataset [18–19] consists of MRI brain images of 130 patients which are downloaded freely [20]. The in-plane
resolution of images is 256 × 256 pixels. The database consists of MRI images from normal and glioma
patients. Samples from normal and abnormal images are shown in Fig. 6.

Table 1: Computation of soft max layer

The output of the layer ðyiÞ eyi
P
j
eyj SMðyiÞ

3 20.0855

1390441.1831

1.44454E−5

4 54.5982 3.92668E−5

12 162754.7914 0.117053

8 2980.9580 0.00214389

10 22026.4658 0.0158414

14 1202604.2842 0.864908

Figure 6: (a) Normal and (b) Abnormal
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200 MRI images are randomly selected with 100 normal and 100 abnormal. The setting for database
split-up for training and testing is shown in Tab. 2 which is used to evaluate the system.

For a supervised classification model, the network should be trained using known training samples
before classification. At first, the available images (200) are divided into two sets; training (70%) and
testing sets (30%). The VGG architectures are trained using the former set of images and then testing by
the later set of images. As the raw pixels of an image are given to the modified VGG architecture, an
input database is created at first which contains the raw pixels and output labels of all selected images
from the REMBRANDT dataset. After successful training, the modified VGG architecture is
implemented in the testing phase. In this phase, a test image is individually inputted to the system and the
output class (+1 for abnormal and −1 for normal) is stored which is compared to the ground truth data to
determine the correct classification. This process is repeated for all testing images in the input database
and a confusion matrix is drawn based on the results which are shown in Tab. 3. In this table TP
represents True Positive, TN represents True Negative, FP represents False Positive, and FN represents
False Negative.

The efficiency of the system to categorize the test MRI brain images into two classes; P-cases or N-cases
is measured based on the following performance metrics:

Accuracy: It gives the overall performance of the system for both normal and abnormal brain image
classification accuracy.

Accuracy ¼ TP þ TN

TP þ FN þ TN þ FP
(10)

Table 2: Setup for training and testing images

#Total images #Training images (140) #Testing images (60)

Positive cases Negative cases Positive cases Negative cases

200 70 70 30 30

Table 3: Confusion matrices for conventional and modified VGG architecture

Target class Output class (conventional
VGG architecture)

Output class (Modified VGG
architecture)

#Training
images

#Testing
images

#Training
images

#Testing
images

P-cases N-cases P-cases N-cases P-cases N-cases P-cases N-cases

P-cases 70 (TP) 0 (FP) 29 (TP) 2 (FP) 70 (TP) 0 (FP) 30 (TP) 0 (FP)

N-cases 0 (FN) 70 (TN) 1 (FN) 28 (TN) 0 (FN) 70 (TN) 0 (FN) 30 (TN)
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Sensitivity: It shows the ability of the system to identify P cases correctly.

Sensitivity ¼ TP

TP þ FN
(11)

Specificity: It shows the ability of the system to identify N cases correctly.

Specificity ¼ TN

TN þ FP
(12)

Tab. 4 shows the performance metrics of the system presented in this study for brain image classification
system.

It is observed that the accuracy of conventional VGG architecture is low for brain image classification
than modified VGG architecture. One of the reasons for the highest accuracy of modified VGG architecture is
the application of median pool layers instead of the max-pooling layer which is less affected by outliers.
Also, the robustness of conventional VGG architecture is limited as the accuracy changes for different
iterations. Tab. 5 shows the performance comparison of modified VGG architecture when compared to
recent brain image classification results using different features and classifiers.

Table 4: Performance measures of the system

Algorithm Accuracy (%) Sensitivity (%) Specificity (%)

Conventional VGG architecture 95 96 93

Modified VGG architecture 100 100 100

Table 5: Classification performance comparison for brain image classification system

Author Algorithm Database Accuracy (%)

Features Classifier

El-Dahshan et al. [1] DWT+PCA ANN Harvard 97

DWT+PCA k-NN Medical 98.6

Chaplot et al. [8] DWT SVM School 98

Mohankumar [3] DWT SVM

REMBRANDT

93.5

Ayalapogu et al. [5] DTMBWT SVM 97.5

Babu et al. [21] Tetrolet SVM 98

Muthaiyan et al. [22] Shearlet Hybrid 99

Proposed system Deep features

Conventional
VGG architecture

95

Modified VGG
architecture

100
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The references [4–5] had used different variants of wavelets such as DWT, dual tree M band WT
(DTMBWT) respectively to perform feature extraction and utilized SVM for the classification approach.
But they had achieved the classification accuracy of below 98%. Even though the results in [1–3,8] had
achieved 100% accuracy, but they had used Harvard medical school images of a total of only 75 images.
The Modified VGG architecture of the proposed system has attained classification accuracy of 100% for a
total of 200 images which means that all test images from the REMBRANDT database are correctly
classified. Hence from the performance comparison table, it is proved that the proposed architecture is
more efficient than the compared references.

4 Limitations

The main limitation of this study is the small study population (200 images) which is randomly selected
from REMBRANDT database. Also, the system is tested by using MRI images only. The modified VGG
architecture can be evaluated using advanced validation techniques such as k-fold cross validation to
confirm the efficiency of the system.

5 Conclusions

The ability of deep learning is utilized in this study to design a computer system for image classification.
The conventional VGG architecture is modified to improve the analysis of medical images. It is applied to
classify the REMBRANDT database images to a normal brain or an abnormal brain. Due to the visual
similarity and huge intra-class variance between the brain images of normal and abnormal categories, it is
not possible to manually classify them. The modified VGG architecture provides excellent performance in
terms of classification accuracy, specificity, and sensitivity. Also, it is shown that a significant
improvement of 5% over the conventional VGG architecture (95%) is obtained. This is due to that the
median pooling layer reduces the dimension of deep features with almost no noisy features. Although the
system is applied for only MRI brain images, it can be logically applied to other types of diseases also. In
future, the median pooling layer can be integrated with other deep learning approaches such as AlexNet
and GoogleNet and their performances will be analyzed for brain image classification.
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