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ABSTRACT

Estimation of crowd count is becoming crucial nowadays, as it can help in security surveillance, crowd monitoring,
and management for different events. It is challenging to determine the approximate crowd size from an image of
the crowd’s density. Therefore in this research study, we proposed a multi-headed convolutional neural network
architecture-based model for crowd counting, where we divided our proposed model into two main components:
(i) the convolutional neural network, which extracts the feature across the whole image that is given to it as an
input, and (ii) the multi-headed layers, which make it easier to evaluate density maps to estimate the number of
people in the input image and determine their number in the crowd. We employed the available public benchmark
crowd-counting datasets UCF CC 50 and ShanghaiTech parts A and B for model training and testing to validate the
model’s performance. To analyze the results, we used two metrics Mean Absolute Error (MAE) and Mean Square
Error (MSE), and compared the results of the proposed systems with the state-of-art models of crowd counting.
The results show the superiority of the proposed system.
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1 Introduction

The concept of crowd monitoring and crowd management are becoming major issues and main
concerns in political geography nowadays as the crowd of small cities from their virtual reality are
coming out and are connecting to the physical world which has raised the need to monitor and manage
the grown crowd. Overcrowded area necessitates strict crowd management methods for public safety
using video surveillance, urban planning models, and crowd behavior understanding techniques; for
this purpose, security analysts are taking advantage of artificial intelligence to monitor and manage
the crowd activities in crowded areas. By using these cautious methods, they are making great progress
and better observational designs for administration and data archiving for subsequent use by insight
devices and associations [1]. Ada-HAR (Qi et al.) presented the idea of crowd detection using the
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cellular phone for this purpose they presented a framework for Human Activity Recognition (HAR)
with the help of online supervised learning [2]. Later, Su et al. implemented the same methodology to
identify the tool dynamics using deep neural networks for the surgery of teleoperations [3].

Some conventional methods for crowd prediction were presented, which detect the number of
people from the moving window within that environment [4]. Some techniques have trained the
classifiers by using feature extraction for crowd detection that targets the whole body to extract the
features like edges [4], temples [5], and histogram-oriented gradients [6] since these methods perform
effectively in scenarios where individuals are observable, but failed to detect in those situations where
the presences of people are difficult or where parts of body and appearances are not visible clearly
and the scenes are congested. To overcome these problems different researchers proposed different
techniques such as different classifiers being trained to detect the different parts of bodies. In [7—
11], multiple classifiers were used to detect certain body parts, comprising arms, legs, head, etc. The
features were discriminated based on parts of the body. However, these proposed methods still do not
detect the satisfactory number of persons or person’s activity and other features of the crowd. Over the
years, many different approaches such as regression approaches and others were introduced for crowd
monitoring and crowd detection but still, it is a worthy task to estimate the crowd in dense crowd
areas. Various techniques have attempted to figure out the people count from the image by employing
feature detection on it using learning of maps between the people present inside the image and each
patch present inside that image [9].

Linear regression [10,11] is one of the popular types of regression techniques used to perform
mappings for crowd management. In [12], Idrees et al. employed regression models and attempted
to develop an approach that emphasized the significance of crowd detection in crowded areas. In
their approach, the authors attempted to identify the crowd actions with the feature mapping using
these mappings between the people present inside the picture, however, the proposed method does not
fetch any spatial information about the crowd. In [13], Lempitsky et al. have presented a method for
the detection of crowd and density mapping by employing a linear mapping function between local
characteristics and a patch inside the images, however, the method does not collect the local features
of an image that are needed for crowd estimation.

Since deep neural networks (DNN) are employed to capture the local features of image and video,
it enables to capture of the minimal details of the image from the wider area and wide architecture.
The multi-layer architecture of DNN with its better self-learning capabilities enables the models
to recognize more complicated and effective system characteristics and functions in more intensive
computational tasks in a very short amount of time. DNNs have been designed specifically to capture
the density mapping characteristics as well as the accuracy count estimate of the crowd as deep learning
has grown over the past few years, operating on the concept of the human neural network. All DNN
models work well for feature detection such as audio detection, image detection, similarity detection,
color detection, patch detection, traffic detection, etc. Therefore, there are varieties of deep neural
network models available for different computational requirements: Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN), Encoder-Decoders, Long Short-Term Memory (LSTM),
and Transformers are the most common models of DNN.

The author proposed a technique for locating crowds in light of the regulation of DNN called
Multicolumn Neural Network (MCNN), the reason for this approach is to take advantage of the
count of the group of a single picture by utilizing the multicolumn CNN model [14]. This work was
utilized by different specialists over the years to find the group count utilizing a static picture. In [15],
Boominathan et al. proposed a CrowdNet architecture for the reduction of versions in the static image
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of deeply dense areas using the CNN model, later Simonyan et al. [16] involved a similar philosophy but
eliminated the associated layers in it. The researcher has proposed a novel technique neural network
hydra CNN for ongoing groups which is supposed to be a scale-aware model for crowd counting that
can estimate the thickness guide of individuals’ vehicles and most of the general items tracked down
in the picture of the group [17].

In [18], Sam et al. proposed a method with the assistance of a crowd sense patch that estimates
the crowd count utilizing regressor convolutional neural networks called switching. Influenced by the
work [14] of Zhang et al., the authors Sindagi et al. used the CNN model in their study [19] where
they used five different layers of CNN and proposed a Cascading Multi-Task Learning architecture
(CMTL) for the counting of the crowd where they estimated the density maps and the contextual
classifier were trained to estimate ten different types of crowds.

In 2017, Vaswani et al. presented a new concept named transformers [20] which are one of the main
models of deep neural networks. Transformers are designed on the principle of knowledge learning and
can solve more complex problems than CNNs and provide more accurate results in a short time [21].
The transformers use the knowledge from the pre-trained models that are trained on large datasets
and provide similar work on smaller or similar tasks, transform provides better accurate results. For
this reason, the Keras library [22] provides multiple state-of-the-art pre-trained models that can be
used directly or finetuned as per the requirements of the given problem.

Based on the scaling type, weight, parameters, and size of the model there are various types of
pre-trained models available in the Keras library. Starting from AlexNet [23] in 2012 to EfficientNet
[24] in 2022 training models have achieved an accuracy of 63.5% to 90% above, respectively. Similarly,
we have used EfficientNet in our model which is a scaled version of CNN to obtain better accurate
results for large datasets. EfficientNet [24] works on the technique called compound coefficient where
(Tan et al.) used the scaling method and AutoML framework. We used an EfficientNet-B3 pre-trained
model in our proposed methodology that is fine-tuned for obtaining the maximum accuracy and takes
less time for computation. The main contributions of this work are the following:

1) Proposed a state-of-the-art deep learning-based model for crowd counting. The proposed
model is relatively lightweight and less computationally expensive.
i1) The proposed methodology is designed on multi-head layers architecture for the density crowd
counting.
iii) Extensive analysis of existing techniques is presented. It is concluded from the analysis that
the proposed methodology outperforms state-of-the-art techniques.

The rest of the paper is structured in the following manner: the literature review is presented in
Section 2, the proposed approach is presented in Section 3 the findings are discussed in Sections 4,
and 5 provides a conclusion and recommendations for further work.

2 Literature Review

Over the years, numerous techniques have been suggested to detect crowd management and
different authors have worked on different methods and techniques to provide the best out of all
methods to trace and manage crowds under different situations. In this study, we performed a
literature review in two ways: Traditional methods and advanced methods; traditional methods are
those methods that define crowd activities using a variety of techniques like regression method, linear
method, machine learning algorithms, etc. whereas the advanced methods including deep neural
network methods to find and estimate crowds.
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2.1 Traditional Methods

Traditional methods for the detection of crowd detection involve regression approaches, holistic
approaches, logical approaches, detection-based approaches, and many others.

2.1.1 Holistic Approach

According to the image, features such as textures, foreground pixels, and edge features primarily
contribute to determining the crowd size. In 1995, Davies et al. [25] showed well-established techniques
of image processing from monitoring to collecting the data of the crowd based on its behavior for
security surveillance by using semi-global and global pixel intensity values to tackle pedestrians to
infer the crowd behavior avoiding the recognition. In 1999, for the monitoring of complex sceneries
of the platform underneath the station [26], a hybrid algorithm containing least squares and a global
search algorithm was developed as a neural learning-based system for the estimation of the crowd with
the results being accurate. From the sequence of pictures, the huge elements are removed, and these
highlights are displayed by the neural network to assess the crowd density.

In 2006, Liet al. [27] proposed techniques using a support vector machine and multi-scale analysis,
that may determine the density of a crowd. Wavelet transform was used to convert the pictures into
a multi-image format, and then the vectors were removed to extract the features from the image. The
proposed techniques were compared to the statistical conventional approaches and the results showed
that the technique outperforms the better understanding. In 2007, Roqueiro et al. [28] suggested a
method for video surveillance in which the ratio of foreground pixels from each grid cell was used to
estimate the number of individuals visible in the crowd. By using the intermediate filter to predict the
evaluated data and a highlighted extraction method from data mining methods were used to provide
a working accuracy of 85%.

In 2008, Chan et al. [29] proposed a privacy-preserving system consisting of pedestrians that travel
in different directions based on the estimation of the size of the inhomogeneous crowd without utilizing
the explicit segments or the tracks of the video; where the turned crowd segments into a component of
homogeneous motions by using dynamic texture and then set their holistic features form each segment
than by comparing the segment the found out the learning rate using Gaussian process regression. In
2009, Chan et al. [30] proposed an approach for the surveillance system to count the crowd based on the
segmentation of the crowd into sub-parts for analyzing the number of people employing analyzing the
holistic properties of each subpart in the video. They also performed crowd modeling using dynamic
textual mode and training event classification on that using the PETS 2009 dataset.

In 2009, Chan et al. [9] proposed an approach based on holistic properties for the counting of
the crowd utilizing the low-level features of the segments, The authors analyzed Poisson regression by
introducing the prior distribution on the weight of linear function in a Bayesian setting. The Hyper-
parameters of the kernel were optimized using the kernelized approximation. The main benefit of the
proposed work was to remove noise from the Gaussian process.

2.1.2 Local Approaches

Using local techniques, it is possible to capture details that are specific to a person or group of
pedestrians in an image. These local features are further categorized into two methods: The Detection
Method and the Localization Method. Below mentioned are the methods of the local approach.

In 2005, Dalal et al. [6] proposed an approach for robust object visualization and recognition using
linear SVM-based human detection as a test case. They used the girds of the histograms of the oriented
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gradient (HOG) that help to detect the existing features of detection estimation. The experimental
work performed over 1800 images from the MIT dataset of the pedestrian.

In 2010, Conte et al. [31] introduced a method employing Support Vector Regression (SVR) aimed
at enhancing the accuracy and robustness of crowd counting and estimation. The approach helps to
find more accurate results for the estimation of the crowd. For low-density crowds, statistical data
from pixels and feature points can depict changes in highly dense crowds. The authors in this study
fuse the pixels and corners, while SVR is used to learn the corresponding connection between the
feature and the number of persons [32]. In 2010, Felzenszwalb et al. [7] proposed a system based on a
latent support vector machine (SVM) framework, which incorporates a mixture of parts with multi-
scale deformations within the model. Considering [31], the authors have combined a multi-sensitive
approach for data mining and provided better results.

In 2012, Chen et al. [33] proposed a methodology because of a multi-output regression model
for the inclusion of the group in open scenes which can include packs in nearby districts and is more
versatile without the requirement for preparing countless corresponding planning in neighborhood
locales. The assessed low-level features and multi-level features of the result were designed for crowd
estimation. In 2013, Idrees et al. [12] utilized multi-source data to figure the estimation for the number
of pictures to distinguish the very thick group noticeable in a solitary picture by utilizing a Filter
and the recurrence space examination or the estimation count of worldwide steady count utilizing the
picture locales and the Markov random field.

2.2 Advanced Methods

The advanced methods for the estimation, surveillance, and detection of crowds include machine
learning and deep learning algorithms.

In the proposed study, Zhang et al. [14] proposed a framework where they used a multi-column
convolutional neural network to map the image using the crowd density map, and to accurately
estimate the crowd count from the individual with an arbitrary crowd they used those images of
density map. In 2016, Shang et al. [34] proposed an approach in which they first feed the image to
the pre-trained CNN to fetch the most relevant features of the image for surveillance. Then with the
memory cell using the recurrent network, they mapped those features to the local counting number.
A Contextual pyramid of information based on CNN for crowd estimation was also presented which
utilized CNN and Image processes at different density classes to generate high-quality crowd density
maps. The proposed approach attained 295.8 MAE & 320.9 MSE [35].

In 2017, Sindagi et al. [19,36] presented contextual pyramid CNN for the mapping of crowd
density and the count estimation of the crowd based on worldwide and local context data for
crowd photos. It classifies images into different densities and then trains to perform the pitch-wise
classification of the image. In 2019, Zhang et al. [37] proposed an approach for crowd counting and
estimation using the rational attention model to perform pixel-wise short-range and long-range pixel
capturing. LSA and GSA ration modules were introduced for the more informative aggregate features.

In 2020, Mazzeo et al. proposed the progressive MH-MetroNet plan that presents multi-head
layers for swarm appraisal of density. On notable, freely open datasets, MH-MetroNet beats the
top cutting-edge draws near. the execution of populace density gauges in tram-trains, where MH-
MetroNet performs better compared to the latest cutting-edge designs where openly accessible source
code is accessible. In 2021, Ahmed et al. [38] proposed a video detection framework for crowd
detection. By counting distinct individuals and then conducting crowd analysis, the presence of a crowd
is discovered. The gender and age of everyone in the crowd are identified during the study of crowds.
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In 2021, Bhuiyan et al. [39] proposed a way for performing the multiplicity analysis accurately in a
separate video using any perspective and multitude density. The analysis of intervention and correla-
tion of these reliable methods was performed with an accentuation on late recent CNN networks. The
extensive literature review that is presented in this research highlights the historical evolution of crowd
detection methods, transitioning from traditional techniques to advanced deep learning approaches.
While traditional methods demonstrate early efforts, they often rely on manual feature engineering and
face challenges in accuracy and adaptability. The proposed methodology focuses on EfficientNet-B3
and multi-headed layers, which addresses these limitations, leveraging recent advancements in neural
network architectures. The extensive literature review is also summarized below in Table 1.

Table 1: A comparative analysis of the literature review

Year Ref. Methodology Advantages Limitations Results

2005 [6] A detection and Detection and No crowd 89%
recognition visualization of the detection approach accuracy
technique is person are shown. is defined, it
proposed using an discusses the
SVM visualizer. individual.

2010 [7] Recognition system The approach This model is not  —
built on SVM provided better good at detecting
latent structure results than the the same
followed by [31]. [31]. component of

different objects.

2013 [12] Crowd estimation ~ Help to detect the =~ The huge dataset  —
using image object in an needs to be
reigning with extremely dense preprocessed first.

Markov random crowd.
field detection.

2016 [14] The multi-column  You may use a The existing crowd MAE 1.07
CNN is used for picture with any count datasets do  and MSE
crowd counting. resolution and size not cover the entire 1.35

to retrieve the challenging
filters. situation.

1995 [25] Image processing  Based on the No experimental 23%
using global and environmental work has been accuracy
semi-global pixels. changes and performed against

behavior the the proposed
technique can methodology.
better monitor the

pedestrian.

1999 [26] Neural Image features The proposed 90%
batch-based image were captured and methodology is accuracy
processing. modeled with more dataset-dependent.

accuracy.

(Continued)
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Table 1 (continued)

Year Ref. Methodology Advantages Limitations Results

2006 [27] Multi-scale vector  Better The result of the -
support image performance was system can be
processing. achieved compared improved more.

to the conventional
statistic algorithm.

2007 [28] Multiple data Foreground pixels  The technique is 91%
mining techniques  were focused to dataset-dependent. accuracy
were used to fetch  fetch the pictures
image features for  of the crowd.
crowd count.

2008 [29] Holistic properties The proposed The proposed has  —
using dynamic approach can neither provided
textual property. detect the flow of  the results nor

multiple compared its
pedestrians at the  results with other
same time. studies.

2009 [30] Holistic properties It helps to count The proposed has  —
using dynamic the crowd number  neither provided
textual property from the video for  the results nor

the surveillance compared its
system. results with other
studies.

2010 [31] Albiol’s approach ~ The proposed No experimental 50%
is used for method has shown results were shared. accuracy
capturing simple better results than ~ The proposed
and robust the state-of-the-art approach is
estimations of the ~ Albiol’s approach.  dataset-dependent.
crowd.

2012 [33] Local regression The technique No sensitive crowd  16%, 24%
crowd counts using provides low-level  sections are and 15%
low-level and and multi-level defined. MAE, MSE
multi-level features features of the & MDE
of the interdependent
interdependent structure of the
output. output of crowd

count.

2017 [35] Contextual Image process at Extensive MAE 295.8
pyramid of different density computation is & MSE
information based  classes. performed. 320.9
on CNN for crowd
estimation.

(Continued)
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Table 1 (continued)

Year Ref. Methodology Advantages Limitations Results

2020 [36] Multi-headed Performed state of Lake of accuracyis MAE 1.12
CNN for coward results compared recorded in the & MSE 1.43
estimation. to traditional model result.

models.

2019 [37] Rational attention It provides Generated results MAE 594 &
model for the short-range are needed to be MSE 102.0
capturing of the long-range pixel improved for the
crowd detail of the capturing. short-range pixels
pixels. of the image.

2022 [3€] A video detection  The system can All the results are  —
framework based  detect age and dataset-dependent
on age and gender  gender.
for crowd
management.

2021 [39] Multitude density ~ Multitude No comparative MAE 82.0
architecture for the detection results results are & MSE 240
detection of the are generated using obtained.
crowd. a new dataset.

2022 [40] The characteristics Optimal flow It is difficult to 79.63%
of an image are extracted the dense manage the flow of accuracy
extracted using the estimation of the optimality.

optimal flow crowd flow.
method and a

GAN model.

3 Methodology

By designing the convolutional neural network into two parts we have estimated the density maps:
In the first part we have used the base architecture for the feature extraction and in the other part we
have used the multi-headed layers that combine these features which are obtained from the density
maps for the estimation of the number of people inside the image which is given as the input to the
design model. Other key resources involved in the study include high-quality crowd datasets, such
as the UCF_CC_50 dataset, which contribute to the diverse training and evaluation scenarios. The
use of NVIDIA’s CUDA toolkit for GPU-accelerated parallel computing is also common in deep
learning workflows. Overall, the combination of NVIDIA RTX TITAN GPU and PyTorch, alongside
relevant datasets and tools, forms a powerful and widely adopted setup for conducting deep learning
experiments in the field of crowd counting and density estimation.

3.1 Base

To enhance the performance of the base layer, we have grown the base deeper and more compli-
cated over time. Typically, we have employed the pre-trained model from the Keras library named
EfficientNet-B3, and we have enhanced the depth of the network by including new convolutional
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layers for better procedures by fine-tuning the performance of the model. We have also employed
several base layers intending to improve the performance in terms of both the map’s density and the
counting. Furthermore, we also compare the proposed approach with relevant researchers such as
CSRNet, DenseNet, and SeNet [41-43].

ResNet: The ResNet is a collection of architectures that are motivated by the VGG network. It
makes use of “Residual Learning” to improve output and performance and its convolutional layers
are mostly 3 x 3 kernels in size. The ResNet family has five alternative configurations, ranging in
size from 18 layers to 152 layers. Although training slows down as network depth grows, performance
improves. ResNet-152 is the version that was utilized in this research. Particularly, the fourth layer and
later layers are stripped away. The base produces a picture with output dimensions that are equivalent
to one-eighth of the original ones in this way.

DenseNet: The DenseNet network was proposed by Huang et al. [42]. In this study, we have
utilized the constrained version of the model called the DenseNet-121 model. Only level one is used
for the model, the dense 2 layer is those up by it. The major of this is that the organization has been
created to tackle the classification problems and by going through each layer the size of the picture
will generally lessen. Contrasted with the firsts, the form used decreases the size by an eighth.

EfficientNet-B3: A new architecture named EfficientNet was suggested by Tan et al. in 2019
[24]. With less computing, this new network can outperform previous models in the categorization
of the ImageNet dataset. The network resolution, breadth, and depth have been properly tuned by the
creators to deliver a group of EfficientNets that reach from the B3 architecture up to the B3 plan. The
EfficientNet-B3 model employed in this study is a constrained version of the model. Particularly, only
the initial levels up to MBConvLayer 9 are utilized. Like earlier base layers, this one likewise employs a
reduced version to produce an output image with dimensions equivalent to one-eighth of the original.

SetNet: Squeeze and Excitation is a novel layer that SeNet, as described by [43], proposes to
support in increasing channel reliance while enhancing performance with almost little computational
expense. After receiving the input tensor, the layer performs average pooling, a fully connected level,
a ReLU, and finally another completely linked level, then a sigmoid. This layer’s results are scaled
such that it may be linked to the input tensor. A collection of SE layers can be stacked on top of one
another to create an SE network. In this study, a scaled-down version of the SeNet-154 is employed.
Specifically, all layers beginning with layer 3 are removed. As a result, the base becomes significantly
lighter, and pictures that are just one-eighth of their original size can be produced.

The choice of ResNet, DenseNet, EfficientNet, and SetNet for crowd counting is driven by a
strategic balance between model complexity, computational efficiency, and their respective strengths
in capturing complicated patterns within crowd scenes. ResNet’s skip connections address gradient
issues, DenseNet’s dense connectivity promotes efficient feature reuse, EfficientNet-B3 optimizes
performance with fewer parameters, and SetNet’s attention mechanism is tailored for spatial depen-
dencies in crowd structures. These architectures are selected to maximize performance while addressing
specific challenges associated with crowd-counting scenarios and provide a strong comparison with the
proposed methodology. Fig. 1 shows the proposed architecture.
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Figure 1: Proposed model for crowd counting using pre-train EfficientNet-B3

3.2 Dataset

In this study, three datasets were used to develop the model and the evaluation of the proposed
network’s demonstration to assess the performance of the suggested approach in the field of crowd
inspection like UCF CC 50, and ShanghaiTech parts A and B. The data has been partitioned into an
80-20 ratio for training and testing, respectively.

The ShanghaiTech is a dataset introduced by [14] in 2016. This is further divided into two parts
called ShanghaiTech part A and ShanghaiTech part B it contains 1198 images of a congested crowd
and has 330165 people inside the image.

ShanghaiTech A data contains 482 records of the congested crowd images with different resolu-
tions starting from pixel 300-200 to 1024-1024. Out of the total 482 images, 300 images are training
images and 182 are tested images. The dataset contains about 10 individuals per photograph samples
are shown in Fig. 2.

The dataset ShanghaiTech part B contains 716 records with the same image resolution of
1024 x 768 pixels presented in Fig. 2. The total number of images, there are 400 images of trained
data and 316 are test data. In contrast, the total population inside the image is lesser as compared to
the ShanghaiTech A dataset and they are present in a few hundred only.

The authors presented a dataset referred to as UCF CC 50 in [13]. The UCF CC 50 comprises 50
black and white photographs from the internet, most of which are from the FLICKR, depicting highly
crowded settings in various sizes ranging from 368-496 to 1024-1024. The collection contained 63.974
distinct people or an average of 1.279 per picture. The sample images from the dataset are shown in
Fig. 2.
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Figure 2: Images of datasets (A) an image of UCF CC 50 dataset (B) an image of ShanghaiTech part
A dataset (C) an image of ShanghaiTech part B dataset

3.3 Data Pre-Processing

In the preprocessing pipeline for crowd analysis using the UCF CC 50 and ShanghaiTech part
A, B dataset, to guarantee a proper depiction of head positions and their spatial relationships, several
pre-processing steps have been performed. A ground-truth density map is generated by transforming
the discrete representation of individual heads into a smoothed density function. This is achieved
by convolving a function (H(x)) representing the sum of delta functions for all heads in the image
with a Gaussian kernel (G(x)). The resulting density map Dgti(x) = H(x) * G(x)) captures the spatial
distribution of heads in a more defined manner. To enhance the density maps, information about the
distances between heads is incorporated. The distances to nearest neighbors (k) are calculated, and the
average distance (d") is derived. Applying a Gaussian filter with a standard deviation (o) proportional
to the average distance (d"), the density map is further refined (Dgti(x) = H(x) * G o (x)).

Lastly, the processed data is stored in easily accessible formats, such as CSV files. This facilitates
seamless integration into the training phase of neural networks, ensuring that the generated ground-
truth density maps contribute to the accurate analysis of crowd dynamics based on the UCF CC 50
and ShanghaiTech part A, and B datasets.

3.4 Proposed Architecture

The proposed architecture contains six parallel layers, and the characteristics retrieved are utilized
to create a representation of a density map (M1, . .., M6). Every single layer has 3 layers of convolution
with various sizes of filter kernels. Unlike the layer’s initial layer, which consists of either a 3 x 3,
5 x 5,7 x 7 filter with various channels, the second convolutional layer of the Mi layer compresses the
depths at the same values or 32 channels. The six parallel layer configurations are shown in Table 1.
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When it is demonstrated that data along the second layer’s channels are compressed down to 32 and
combined utilizing a mean or a connection once the activation map, delivered by a convl-1 activity,
is gotten by adding a subsequent convolution layer M7, and it fills in as the main sub-tested estimate
of the density map. The spatial resolution of this is comparable to one-eighth of the size of the first
picture. An interpolation process is used to accomplish an up-sampling to produce a map with a better
resolution. In comparison to standard un-pooling operations or dilated convolutions, the interpolation
operation produces better results. Table 2 below has a view of multi-head layer configuration details.

Table 2: The multi-head layers of the configuration

Multi-headed layer configuration

M1 — Conv3- 256, Conv3- 128, Conv3- 32
M2 — Conv3- 128, Conv3- 64, Conv3- 32
M3 — Conv5- 256, Conv5- 128, Conv5- 32
M4 — Conv5- 128, Conv5- 64, Conv5- 32
M5 — Conv7- 256, Conv7- 128, Conv7- 32
M6 — Conv7- 128, Conv7- 64, Conv7- 32
M7 — Conv—1-1

M1, which has three convolutional layers stacked on top of each other, is the first feature extractor.
On the other hand, M2 uses a similar structure but shallower filter depths to expand on the features
that M1 extracted. The M3 module is designed to extract broader contextual information from the
input, emphasizing the importance of larger receptive fields. Similar to M2, M4 follows a structure
of decreasing filter depths. It focuses on refining the features obtained from M3, emphasizing the
importance of mid-level features in the overall model. M5 introduces an even larger convolutional
kernel, emphasizing the extraction of very long-range dependencies in the input data. This module
aims to capture more patterns and relationships. M6 has a structure similar to M4, but with bigger
convolutional kernels. Its main objective is to combine and enhance the features acquired from MS5,
readying them for further processing. M7 uses a 1 x 1 convolutional kernel to function as a bottleneck
layer. Before final processing, it is probably used for dimensionality reduction and feature fusion, to
combine data from various scales and levels of abstraction. Certainly, with a learning rate of 0.01 and
a batch size of 32, the model’s training is completed accordingly. The learning rate of 0.01 sets the
step size for parameter updates, impacting the steps of convergence and overall model performance. A
batch size of 32 strikes a balance between computational efficiency and model generalization, affecting
how the model generalizes patterns from the training to testing data.

4 Evaluation Metrics and Experimental Results

This section presents the findings obtained from the conducted experiments. The experimental
results have shown two experiments on different datasets, e.g., ShanghaiTech part A, B [14] and UCF
CC 50 [12] but using a distinct well-known base like DenseNet-121 [42], SeNet-154 [43], ResNet-152
[44], and EfficientNet-B5 [24]. The second fold of results was derived using the same state-of-the-art
model that was used for the last experiment and using the same dataset.
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4.1 Metrics Used for Results

Two performance metrics Mean Absolute Error and Mean Squared Error have been used in this
section to obtain the results to analyze the performance.

4.1.1 Mean Absolute Error (MAE)

An average of the error made on the estimation of the number of people in the crowd, which is the
difference between the original and computed values. This is called the L1 loss function. It is formally
shown in Eq. (1).

1 N
MAE = 5 ZH

t
R m

1 1

) ) . _est t.
where the number of the test sample is donated by N, the estimated count is C—, and the Cg—_ 1s used

i i
to calculate the ith sample. This metric’s main advantages are its high resistance to outliers and ease
of interpretation.

4.1.2 Mean Square Error (MSE)

The MSE is the average of the square error of the number of people in the crowd. which presents
the distinct computed and real values. The L2 loss function is formally shown in Eq. (2).

1 N est gt ?
MAE = — ZH (cT — 07) )

est . . . .
The number of test samples donated by N, C — is the estimation count and the Cg—_ is the ground

i i
truth count of the ith sample corresponding. For the large error, this metric is too sensitive to handle.

5 Results and Discussion

Due to the limited images, this dataset is very challenging to handle. We mention below shows
the performance of the achievement using the different bases among which the ResNet-152 received
the best results in MSE and MAE. Given are the examples of density maps produced on this dataset.
Table 3 depicts the performance of the model compared with different Baselayers. Fig. 3 illustrates the
crowd image, ground truth, and estimated density maps generated on the UCF CC 50 dataset.

ShanghaiTech’s component of the data includes pictures in various resolutions with plenty of
people in it. While the ShanghaiTech portion B has a lower-quality image with lower resolutions and
several individuals. The performance of the network utilizing various bases is presented in Table 3.
below, along with the performance of our model using the ResNet-152 base, which produces the
most optimal results in terms of MSE and MAE. Fig. 3 depicts the density map estimations on the
ShanghaiTech part A and B datasets. An example of the density map produced on our dataset this
shown in Table 3 below. In this section, we present the comparison between different methodologies
and our proposed approach based on MSE and MAE for the UCF CC 50 and the ShanghaiTech Part
A and B datasets. Table 4 presents studies that have shown promising performance on the state-of-art
methodologies, the studies using the UCF CC 50 are shown in Table 4 below.
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Table 3: Performance results of the model with different base layers

Ref. Base MSE MAE
[24]  EfficientNet-B3  262.7 298.3
[42]  DenseNet-121 172.3 251.5
UCF CC 50
[43]  SeNet-154 169.8 231.5
[44]  ResNet-152 163.3 197.4
[24]  EfficientNet-B3  115.62  179.54
Part A [42]  DenseNet-121 78.72 123.82
[43]  SeNet-154 107.54  163.25
[44]  ResNet-152 63.43 104.31
[24]  EfficientNet-B3  15.01 23.99
Part B [42]  DenseNet-121 8.34 12.15
[43]  SeNet-154 12.79 19.43
[44]  ResNet-152 7.65 12.17

CMC, 2024

Figure 3: Density map estimation (A) Density map estimation using UCF CC 50 dataset, with crowd
image, ground truth, and estimated density map, respectively. (B) Density map estimation using
ShanghaiTech part A dataset, with crowd image, ground truth, and estimated density map respectively.
(C) Density map estimation using ShanghaiTech dataset part B dataset, with crowd image, ground
truth, and estimated density map, respectively
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Table 4: ShanghaiTech part A and part B and UCF CC 50 performance comparison

Ref. Method MSE MAE
[14] MCNN 110.2 173.2
[17] Hydra CNN 67.52 113.47
[18] Switching CNN 90.4 135.0
[19] CMTL 101.3 152.4
[41] CSRNet 68.2 115.0
[45] SANet 67.0 104.5
Part A [46]  SaCNN 86.8 139.2
[47] ACSCP 75.5 102.7
[48] PADNet 59.2 98.1
[49] DSSINet 60.63 96.04
[50] SPN 61.7 99.5
Proposed method 61.3 107.6
[14] MCNN 26.4 41.3
[17] Hydra CNN 7.93 13.0
[18] Switching CNN 21.6 33.4
[19] CMTL 20.0 31.1
[41] CSRNet 10.6 16.0
[45] SANet 8.4 13.6
PartB [46]  SaCNN 16.2 25.8
[47] ACSCP 17.2 27.4
[48] PADNet 8.1 12.2
[49] DSSINet 6.85 10.34
[50] SPN 9.4 14.4
Proposed method 6.25 11.2
[14] MCNN 377.6 509.1
[15] CrowdNet 452.5 -
[17] Hydra CNN 333.73 425.26
[18] Switching CNN 318.1 439.2
[19] CMTL 322.8 397.9
[41] CSRNet 266.1 397.5
UCF CC 50 [44] SANet 258.4 334.9
[45] SaCNN 314.9 424.8
[47] ACSCP 291.0 404.6
[48] PADNet 185.8 278.3
[49] DSSINet 216.9 302.4
[50] SPN 259.2 3359

Proposed method 162.3 213.2
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Our proposed approach achieves the best results out of all methodologies and has shown
promising results for the ShanghaiTech dataset. It presents different studies in which authors have
used the UCF CC 50 dataset for their experimental results and achieved different values for the
MSE and MAE. Among the mentioned studies, our proposed methodology has achieved the lowest
MSE and MAE rate 162.3 and 213.3, respectively, which is closer to the PADNet [48] 185.8 MSE
and 278.3 MAE. Table 4 presents various experimental results of different research methodologies
with comparison to our proposed methodology using ShanghaiTech part A and part B datasets. The
experimental analysis verifies that our proposed lightweight CNN model has achieved the lowest
rate for the MSE and MAE for part A 61.3 and 107.6, respectively, whereas for part B 6.25 and
11.2 is respectively obtained that is again closest to the PADNet [48], CSRNet [47] and SANet [45]
MAE and MSE rates for both. ShanghaiTech part A and part B datasets. The study evaluates the
performance of a proposed lightweight CNN model on ShanghaiTech datasets A and B, comparing it
with various methodologies, particularly focusing on MSE and MAE metrics. Notably, the proposed
approach outperforms other methodologies on both datasets, achieving the lowest MSE and MAE
rates. The comparison extends to the UCF CC 50 dataset, where the proposed model exhibits superior
performance, surpassing established benchmarks such as PADNet, CSRNet, and SANet in terms of
MSE and MAE rates.

Furthermore, the authors in [51] propose a deep learning-based method, utilizing a convolutional
autoencoder and YOLOV3 architecture, to estimate passenger occupancy on buses in real-time,
improving scheduling for transport operators and enhancing travel convenience for passengers but
the proposed model is resource-constraining. Moreover, the authors in [52] propose incorporating
IoT sensors into public transit networks to develop a “smart” crowd control solution. While it provides
a well-structured reference architecture and predicts advantages beyond pandemic concerns, it lacks
critical features. The design has not been tested in real-world applications, and critical issues such
as privacy, cost-benefit analysis, and data fusion algorithm performance have been overlooked. A
smart city leverages innovative technologies and data acquisition elements to enhance operations,
optimize resources, and improve citizen services through the integration of information, digital, and
telecommunication technologies, fostering sustainability and efficiency [53]. Addressing the dynamic
distribution of crowds in smart cities, a deep-reinforcement-learning-based smart routing algorithm is
designed to mitigate network congestion, balance loads, and ensure viability and low-latency support
for smart city services in the context of advanced technologies like mobile edge computing, ultra-dense
networking, and software-defined networking [54].

6 Conclusions

In conclusion, our research addressed the need for a novel multi-head Convolutional Neural
Network approach for crowd counting using EfficientNet-B3 as the base. Our proposed model
incorporates six parallel convolutional layers as head layers combining features from the convolutional
backbone to estimate density maps and counting the number of people. We tested our approach on
three benchmark crowd-counting datasets including UCF CC 50 and ShanghaiTech parts A, and B
to confirm its effectiveness. The results demonstrated that our proposed architecture outperformed
the state-of-the-art models in terms of performance. The model excels in tasks like crowd counting,
showcasing its adaptability and superior performance across various applications in crowd analysis.

In the future, we will focus on the base model EfficientNet-B5 and B7 by enhancing modifications
to their architectures. Our focus will also be on the reduction of the computational complexity of the
model.
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