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Multiple myeloma (MM), a type of malignant tumor, is characterized by dysplasia of clonal plasma cells in 
the bone marrow. People with MM will have damaged organs or tissues due to secretion of large amounts of 
monoclonal immunoglobulin or fragments (M protein). Despite improved survivability by novel treatment 
strategies over the last decade, MM is still incurable by current therapies. Long noncoding RNAs (lncRNAs), 
with length of more than 200 nucleotides, have been reported to act as important regulators in many diseases, 
including MM. Recent studies have reported aberrant lncRNA expression in MM; these dysregulated lncRNAs 
can play oncogenic and/or tumor-suppressive roles in the development and progression of MM. In this article, 
we present a general overview on the role of lncRNAs in MM pathogenesis and discuss their potential as prog-
nostic biomarkers and targets for treatment.
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INTRODUCTION

Multiple myeloma (MM), as a malignant plasmocyte 
disease, features proliferation of monoclonal malignant 
plasma cells and generation of monoclonal immuno-
globulin. MM commonly occurs in elderly people. The 
early clinical symptoms of MM include musculoskel-
etal pain, anemia, and susceptibility to infection, while 
late stage MM is characterized by fracture, pancytope-
nia, renal insufficiency, and occurrence of some neuro-
logical signs1. In Western countries, MM is the second 
most common malignant tumor in the blood system, with 
onset age over 652. Although the MM onset age in China 
is lower than that in Western countries, with the aging 
of the population, MM morbidity in China is increasing  
annually.

In general, MM is a multistage disease wherein the 
pathogenetic process can be divided into the following 
stages: 1) monoclonal gammopathy of undetermined sig-
nificance (MGUS), 2) smoldering MM (SMM), 3) MM, 
and 4) MM with extramedullary infiltration3. The mor-
bidity of MM has been increasing. The clinical prognosis 
is highly heterogeneous; however, the mechanism within 
remains unclear. More and more evidence has shown that 

the molecular cytogenetic heterogeneity and molecular 
biologic heterogeneity of MM determine its clinical prog-
nosis heterogeneity. The genetic change of MM is mainly 
complex chromosomes containing both quantity abnor-
mality and structural change. The chromosome number 
abnormality mainly involves trisomy 3, 5, 7, 9, 11, 15, 
19, and 21 as well as monosomic 8, 13, 16, 17, 22, and 
Y chromosome. Structural abnormality mainly contains 
14q32 translocation; 13q14, 1p21, 6q, 11q, and 7p dele-
tion; and 1q21 amplification4–9. Chromosome abnormal-
ity can lead to activation of oncogenes, inactivation of 
anti-oncogenes, and disorder of transcription factors. At 
present, oncogenes such as N-RAS and FGFR3, tumor 
suppressor genes such as TP53 and RB1, and apoptosis- 
related gene BCL2 have been found to take part in the  
development of MM10–14. In addition to cytogenetic abnor-
malities, epigenetic alterations, especially abnormal expres-
sions of some noncoding RNAs (ncRNAs), have been  
verified to be involved in the development of MM. A 
number of international research groups have analyzed 
the abnormal expression of ncRNAs in MM development 
using gene expression profiling to further elucidate the 
molecular pathogenesis of MM.
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lncRNAs

The human genome mainly consists of DNA sequences. 
Of all the DNA sequences, only 2% have the function of 
protein coding whereas the other 98% cannot code pro-
tein but are transcribed into the RNA. Long noncoding 
RNAs (lncRNAs) are a type of RNA with a length longer 
than 200 nucleotides. lncRNAs locate in the nucleus or 
cytoplasm and do not have the function of protein coding 
due to a lack of an open reading frame15,16. Previously, 
lncRNAs were only considered as a structure without sig-
nificant biological function. With further study of tumor 
disease pathogenesis in recent years, lncRNAs have grad-
ually become a hot research topic. lncRNAs play a vital 
role in gene transcription and assist protein-coding genes 
in the regulation of gene expression. Regulation of gene 
expression by lncRNAs may involve epigenetic regula-
tion, transcriptional regulation, and posttranscriptional 
regulation (Fig. 1).

EPIGENETIC REGULATION BY lncRNAs

Epigenetics is the study of stably heritable pheno-
type resulting from changes in a chromosome without 
alterations in the DNA sequence, including DNA methy-
lation, histone modification, and chromatin remodeling. 

Growing evidence has shown that lncRNAs play a crucial 
role in epigenetic regulation17.

lncRNAs and DNA Methylation

In mammalian cells, DNA methylation is a crucial  
component of epigenetic modification. Methylation of  
DNA is typically restricted to the 5-position of the 
pyrimidine ring of cytosine residues that are located in 
CpG dinucleotides18. lncRNAs can recruit some specific 
modified complexes to the corresponding sites, so that 
the methylation status of DNA can be changed, thereby 
regulating the expression of genes. It is found that gene 
silencing of the X chromosome has been interpreted to 
indicate that Xist RNA recruits polycomb repressive 
complex 2 (PRC2) to repress the promoter19. lncRNAs  
also can interact with DNA methyltransferases to 
change the methylation status of DNA and regulate gene 
expression. A lncRNA named ecCEBP (extra-coding 
CEBPA) expressed from the CEBPA locus was shown 
to physically associate with DNMT1 to regulate DNA 
methylation patterns20. Moreover, other DNA methyl-
transferase enzymes, like DNMT3a and DNMT3b, may 
also display an association with lncRNAs to modulate 
enzymatic activity and regulate the patterns of DNA 
methylation20,21.

Figure 1. The mechanisms of gene expression regulated by long noncoding RNAs (lncRNAs). lncRNAs regulate gene expression 
through epigenetic mechanisms including DNA methylation, histone modification, and chromatin remodeling. lncRNAs can also 
regulate gene expression at the transcriptional level by interacting with promoters, transcription factors, and RNA polymerase. At the 
posttranscriptional level, lncRNAs regulate gene expression through interacting with miRNAs, controlling of alternative pre-mRNA 
splicing, and increasing mRNA stability, among others.
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lncRNAs and Histone Modification

The structural unit of chromatin is the nucleosome, 
which consists of 146 bp of DNA around a histone 
octamer. The N-terminal domains of the core histones 
stretch out the DNA superhelix and come under several 
epigenetic modifications, such as methylation, acetylation, 
phosphorylation, and ubiquitination22. These modifica-
tions constitute a rich histone code and play an important 
role in gene regulation. HOTAIR is a lncRNA transcribed 
from the HOXC gene cluster. Its 5¢ domain binds PRC2 
(a histone H3 lysine 27 methylase) to silence the HOXD 
gene, whereas the 3¢ domain of HOTAIR targets the LSD1/
CoREST/REST complex, which acts as a demethylase 
that mediates enzymatic demethylation of H3K4me2, to 
silence the HOXD gene cluster23,24. These results indi-
cate that lncRNAs can regulate gene expression of either  
adjacent or distal genes.

lncRNA and Chromatin Remodeling

Chromatin remodeling is able to regulate gene expres-
sion by altering the structure of nucleosomes and the 
accessibility of regulatory DNA sequences to trans-
cription factors25. lncRNA ANRIL (CDKN2B antisense 
RNA 1) is transcribed from the INK4B–ARF–INK4A 
gene cluster in the opposite direction26, which has been 
indicated to be related to coronary disease, intracranial 
aneurysm, type 2 diabetes, and also cancers27. It has been 
shown that ANRIL is required for repressing the p15/
CDKN2B–p16/CDKN2Ap14/ ARF gene cluster in Cis 
by recruiting PRC226,28.

TRANSCRIPTIONAL REGULATION  
BY lncRNAs

lncRNAs can regulate gene transcription and expres-
sion by acting as transcription factors to interact with 
target genes at the transcriptional level. lncRNA SRG1 
is transcribed from the Saccharomyces cerevisiae SER3 
gene. Current data have indicated that the transcription 3¢ 
of SRG1 can be complementary to the corresponding se-
quence of SER3 to form an RNA–DNA complex structure, 
and SER3 transcription is significantly derepressed due 
to SRG1 overexpression29. Another endoderm-associated  
lncRNA, DEANR1, played an important role in human 
endoderm differentiation by facilitating SMAD2/3 recruit-
ment to the FOXA2 promoter30. lncRNAs also can regulate 
the activity of transcription factors and RNA polymerase. 
The lncRNA Evf2 is transcribed from a conserved distal 
enhancer region of the Dlx-5/6 gene. It cooperates with 
transcription factor Dlx2 and specifically binds to the Dlx-
5/6 enhancer to increase its transcriptional activity31,32. In 
addition, recent data indicated that lncRNA can act as a 
competing endogenous RNAs (ceRNAs) that compete for 
miRNAs and regulate gene expression33. lncRNA HULC,  

as a “sponge,” downregulates a series of miRNAs, including 
miR-372, and thus promotes liver cancer development34.

POSTTRANSCRIPTIONAL REGULATION 
BY lncRNAs

lncRNAs work not only on the regulation of tran-
scription but also on alternative splicing of pre-mRNA. 
Tripathi et al. first reported that metastasis-associated 
lung adenocarcinoma transcript 1 (MALAT1) interacts 
with the serine/arginine (SR) splicing factor to regulate 
gene expression at the posttranscriptional level35. Bernard 
et al.36 have also observed aberrant alternative splicing of 
a subset of pre-mRNAs in MALAT1-depleted HeLa cells. 
These results further confirm the regulatory function of 
lncRNAs at the posttranscriptional level. lncRNAs also 
have additional function in mRNA stability. Formation 
of RNA duplexes between lncRNAs and mRNAs can 
mask regulatory elements or provide binding sites for 
trans-acting factors37. Some antisense lncRNAs, such as 
the BACE1-antisense transcript (BACE1-AS), are able 
to regulate gene expression by increasing mRNA stabil-
ity. In Alzheimer’s disease, the upregulated expression of 
BACE1-AS increases the stability of BACE1 mRNA and 
then alters amyloid-b 1–42 production through a post-
transcriptional feed-forward mechanism38.

lncRNA EXPRESSION IN MM

lncRNAs are associated with the occurrence, develop-
ment, and prognosis of various tumors, such as breast 
cancer39, hepatocellular carcinoma (HCC)40, colon can-
cer41, and lung cancer42. Currently, it has been found 
that several hematopoiesis-related lncRNAs take part in 
proliferation, differentiation, and apoptosis of red blood 
cells, lymphocytes, and myeloid cells43,44. The abnormal 
expression of lncRNAs may lead to various malignant 
hematologic diseases, including lymphoma, leukemia, 
and MM44–46. Studies on MM have shown that many dif-
ferent abnormal expressions of lncRNAs occur at different 
stages of progress of MM. Being closely correlated with 
the MM evolution process, these lncRNAs may not only 
become the molecular evidence accounting for the occur-
rence, development, and drug resistance of MM, but also 
may serve as biomarkers for diagnosis and prognosis.

MALAT1

MALAT1 is a lncRNA located on chromosome 11q13. 
It was previously found related with lung cancer metasta-
sis and prognosis, but later proved to be associated with 
MM47. Cho et al. performed qPCR detection of MALAT1 
levels in 45 samples with newly diagnosed patients, 61 
after myeloma treatment, and 18 samples with relapsed 
or advanced MM. Data showed that MALAT1 expres sion 
was higher in the newly diagnosed patients compared 
with the posttreatment patients or the healthy group.  



812 MENG ET AL.

The expression of MALAT1 strongly correlated with  
disease status, and the magnitude of change in MALAT1 
posttreatment had prognostic relevance. The patients 
with early progression had a significantly smaller change 
in MALAT1 after treatment, and the patients with a 
greater decrease in MALAT1 had a significantly longer  
progression-free survival compared with the patients 
with a smaller MALAT1 change46. In MM mesenchymal 
stem cells (MSCs), Li et al. found that MALAT1 enhanced 
the expression of the LTBP3 gene by modulating recruit-
ment of the transcription factor Sp1 to the LTBP3 gene 
promoter48. Some studies report that the LTBP3 gene can 
regulate the bioavailability of TGF-b within the bone, 
whereas abundant TGF-b in the bone marrow environ-
ment surrounding myeloma cells plays an important 
role in bone differentiation and cell growth49. Therefore, 
MALAT1 may take part in the outcome of MM, serv-
ing as a molecular predictor for the early examination 
of MM progression and probably likely to become a  
new therapeutic target for MM.

MEG3

Maternally expressed 3 (MEG3), a kind of lncRNA, 
is adjacent to the BMP4 gene, located on chromosome 
14q9. Recent studies have identified MEG3 as a tumor 
suppressor gene in various malignant tumors50. Damaged  
osteogenic differentiation of mesenchymal stromal cells  
is characteristic of MM. Zhuang et al. found lower 
expression levels of MEG3 in MM MSCs relative to 
those from normal donors during osteogenic differentia-
tion. After knocking out the MEG3 gene, the key osteo-
genic markers, such as transcription factor 2 (RUNX2), 
osterix (Osx), and osteocalcin (OCN), showed signifi-
cantly decreased expression. Additionally, MEG3 could 
specifically activate the transcription factor SOX2 from 
the BMP4 promoter to repress BMP4 transcription51. 
It is conceivable that MEG3 played a prominent role 
in osteogenic differentiation in bone marrow MSCs. 
Abnormal expression of MEG3 has also been reported 
to be associated with epigenetic regulation. Benetatos et 
al.52 found that the loss of MEG3 expression in MM was 
associated with MEG3 promoter methylation. Further 
results indicated that 64.7% of the IgG MM patients and 
100% of the IgM MM patients presented MEG3 hyper-
methylation. Moreover, compared with the earlier stage  
patients, the advanced stage patients exhibited hyper-
methylation of the MEG3 gene. These findings sug-
gested that the methylation pattern of the MEG3 gene 
was correlated with MM subtypes and stages of this dis-
ease. Other pathways have been described in order to 
elucidate the mechanism of MEG3. MEG3 might inhibit 
tumor growth by regulating p5353 and vascular endothe-
lial growth factor (VEGF)54, and the loss of MEG3 

expression in tumor cells could be used as a novel prog-
nostic marker.

CRNDE

Colorectal neoplasia differentially expressed (CRNDE) 
gene, localized in the human chromosome 16q12.2 region, 
was initially identified as a lncRNA whose expres-
sion was markedly upregulated in colorectal cancer, but 
expression was also elevated in other solid tumors and 
leukemias55–58. Researchers revealed that CRNDE expres-
sion was increased in a chronic lymphocytic leukemia 
(CLL) sample cohort, and survival analysis indicated  
that hypermethylation of CRNDE correlated with poor 
prognosis59. Meng et al. recently found that the expres-
sion of CRNDE was significantly upregulated in serum 
from MM patients and MM cell lines and was closely 
associated with tumor progression and inferior outcome60. 
The CRNDE gene has various alternative splicings. In 
different diseases, the form of CRNDE transcript may be 
different as well61. Ellis et al.58 found that the expression 
of the CRNDE transcript can be regulated by two signal-
ing pathways (PI3K/Akt/mTOR and Raf/MAPK). After 
inhibiting the nuclear transcript GVC-IN4, the expres-
sion of many insulin/IGF-related genes can be affected. 
In ovarian cancer56, the elevated expression of CRNDE 
longer variant (FJ466685) highly improved the recur-
rence and mortality of the disease. Moreover, activation 
of the TP53 protein correlated with decreased expres-
sion of CRNDE transcripts. However, the target genes  
and signaling pathways regulated by CRNDE in these 
tumors still need to be further investigated.

GAS5

Growth arrest-specific transcript 5 (GAS5) is a type 
of lncRNA located in a small open reading frame of 
chromosome 1q25.162. It has been discovered in growth- 
arrested mouse NIH3T3 fibroblasts, attributed to its high 
expression63. GAS5 is a member of the 5¢-terminal oli-
gopyrimidine (5¢-TOP) gene family, which comprises 
12 exons and encodes 10 boxC/D small nucleolar RNAs 
(snoRNAs)64. Although GAS5 does not have protein-coding 
function, its RNA can still be spliced, polyadenylated, 
and interacted with ribosome65. Hence, the GAS5 tran-
script is upregulated during growth arrest owing to serum 
starvation or treatment with translation inhibitors. Kino  
et al. found that GAS5 bound to the DNA-binding domain 
of the glucocorticoid receptor (GR) by serving as a decoy 
glucocorticoid response element (GRE), thus competing 
with DNA GREs for binding to the GR66. Currently, it has 
been shown that the expression of GAS5 is downregu-
lated in many tumors67–69. Isin et al.62 revealed that the 
expression of GAS5 was significantly decreased in the 
serum of MM patients. Inhibiting the expression of GAS5 
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can inhibit MM cell apoptosis and accelerate cell cycle 
progress. The result is in concordance with a recent study 
indicating that GAS5 protects leukemic cells from the 
antiproliferative effects of chemotherapeutic agents70.

PCAT-1

Prostate cancer-associated transcript 1 (PCAT-1), 
located on chromosome 8q24.21 region, was originally 
observed to be involved in the progression of prostate 
cancer71. Research suggested that PCAT-1 was upregu-
lated in prostate tumor tissues and promoted prostate 
cancer cell proliferation by repressing the expression of 
BRCA272. The upregulated expression of PCAT-1 has 
also been found in other solid tumors. Yan et al. showed 
that PCAT-1 expression was upregulated in HCC tissues, 
and the increased expression was significantly associated 
with TNM stage and metastasis73. Bi et al. showed that 
PCAT-1 upregulation was associated with poor overall 
survival in gastric cancer patients. PCAT-1 knockdown 
contributed to the inhibition of cell proliferation, migra-
tion, and invasion by regulating CDKN1A, suggesting 
that PCAT-1 could be a novel biomarker of poor prog-
nosis for gastric cancer74. In hematological malignancies, 
Shen et al.75 revealed that the relative expression of serum 
PCAT-1 in MM patients was higher than that in healthy 
controls and was significantly correlated with b2M con-
centration, but not with LDH, k light, and l light chain 
concentration. Additionally, serum PCAT-1 expression in 
MM patients was significantly correlated with different 
isotypes of MM. Therefore, PCAT-1 may be an efficient 
and sensitive serum index for MM, which can be adopted 
as a key molecular marker for evaluating clinical features 
and prognosis of MM.

UCA1

One lncRNA that has received significant attention 
is urothelial carcinoma-associated 1 (UCA1), which is 
located on chromosome 19p13.12 and contains three 
exons encoding two transcripts. It is reported that UCA1 
is highly expressed in bladder cancer76, colorectal can-
cer77, breast cancer78, and other tumors, suggesting that 
UCA1 may serve as a biomarker for the diagnosis of 
these cancers. Moreover, upregulated UCA1 contrib-
uted to promote bladder cell proliferation and metastasis 
through the PI3K, Wnt, or Akt signaling pathway79–81. In 
addition, miR-1 inhibited cell growth and induced cell 
apoptosis through downregulating UCA1 expression in 
bladder cancer82. These results indicate that there is a 
mutual accommodation between UCA1 and miRNAs in  
tumor cells. Instead, Sedlarikova et al.83 found that UCA1 
expression was downregulated in MM by microarray 
screening, and UCA1 expression levels correlated with 
albumin and monoclonal immunoglobulin serum levels, 

cytogenetic aberrations, and prognosis of MM patients. 
The results indicated that lncRNAs may play different 
roles in different tumors, and UCA1 was arising as a 
highly specific biomarker with potential clinical applica-
tion for MM.

FURTHER IMPLICATIONS

To date, over 15,000 lncRNAs have been character-
ized in the human genome84,85, and they can be found in 
exons, introns86, and intergenic regions of genes87. lncRNAs 
are involved in a number of biologic and pathologic pro-
cesses including cell proliferation, apoptosis, differentia-
tion, and metabolism. Given the diversity of the function 
of lncRNAs and the specificity of their cell distribution, 
the functional properties of such ncRNA molecules are 
being challenged. Numerous studies have shown that 
lncRNAs may play an important regulatory role like 
miRNAs and may serve as potential molecular markers 
for clinical applications. Here we reviewed the recent 
research progress of lncRNAs involved in MM and dis-
cussed its potential relevance on the diagnosis, prognosis, 
and treatment of MM.

Compared with normal hematopoiesis and other 
tumors, the role of lncRNAs in hematologic malignan-
cies has not been extensively described. Recent data have 
provided evidence that a small number of lncRNAs have 
been found participating in MM initiation and develop-
ment. MEG3 expression was downregulated in MM 
MSCs, and expression of osteogenic markers, such as 
RUNX2, Osx and OCN, were significantly decreased 
by its absence51. Epigenetic regulation can also regulate 
the expression of lncRNAs. The lower expression level 
of MEG3 in MM was associated with MEG3 promoter 
methylation52. Interestingly, p53 binding sites are required 
for MEG3 to stimulate transcription, and MEG3 functions 
as a transcriptional coactivator to stimulate expression of 
proteins that modify p53 and/or mouse double minute 2  
homolog (MDM2)53. Another finding is that lncRNAs 
can function as ceRNAs by competitively combining 
with an miRNA response element (MRE) to regulate tar-
get gene expression. GAS5 overexpression suppressed 
cervical cancer cell proliferation, whereas it induced cell 
apoptosis through sponging miR-196a and miR-20588.  
MALAT1 accelerated TGF-b1-induced EMT progression 
via the MALAT1–miR-145–TGFBR2/SMAD3 signaling 
pathway89. Therefore, the association between lncRNAs 
and epigenetic modifications, tumor suppressor p53, and  
miRNAs may provide important clues to the mecha-
nism of MM. A key objective in the future is to look for 
MM-specific lncRNAs and explore the complex biologi-
cal function. It would not only help us understand the 
molecular mechanism of MM development but could 
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also provide a new basis for early diagnosis and treat-
ment of MM.
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