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ABSTRACT

Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses. Early
detection of these diseases is essential for effective management. We propose a novel transformed wavelet, feature-
fused, pre-trained deep learning model for detecting olive leaf diseases. The proposed model combines wavelet
transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images. The
model has four main phases: preprocessing using data augmentation, three-level wavelet transformation, learning
using pre-trained deep learning models, and a fused deep learning model. In the preprocessing phase, the image
dataset is augmented using techniques such as resizing, rescaling, flipping, rotation, zooming, and contrasting. In
wavelet transformation, the augmented images are decomposed into three frequency levels. Three pre-trained deep
learning models, EfficientNet-B7, DenseNet-201, and ResNet-152-V2, are used in the learning phase. The models
were trained using the approximate images of the third-level sub-band of the wavelet transform. In the fused phase,
the fused model consists of a merge layer, three dense layers, and two dropout layers. The proposed model was
evaluated using a dataset of images of healthy and infected olive leaves. It achieved an accuracy of 99.72% in the
diagnosis of olive leaf diseases, which exceeds the accuracy of other methods reported in the literature. This finding
suggests that our proposed method is a promising tool for the early detection of olive leaf diseases.
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HH High–High
HL High–Low
Relu Rectified Linear Unit
TP True Positive
TN True Negative
FN False Negative
FP False Positive

1 Introduction

Artificial intelligence (AI) is one of the fastest developing fields today, and it will affect our
lives strongly. Looking at it today, AI is already being used in a number of applications, from chat
assistants to driverless cars. Deep learning is becoming increasingly popular in the AI community.
One type of machine learning, deep learning uses artificial neural networks to learn from data [1] and
[2]. Deep learning is highly proficient in these various activities, such as disease classification and facial
recognition. But there is still much we do not know about deep learning. One of the shortcomings of
deep learning, however, is that it is often hard to see what these models learn [3–5]. Agriculture is one
area where deep learning shows promise. Deep learning can be used to improve crop yields, detect
pests and diseases, and optimize irrigation. However, some challenges remain to be addressed before
deep learning can be widely adopted in agriculture [6,7]. One challenge is that deep learning models
require a large amount of data to train. The data needed can be difficult and expensive to collect.
Another challenge is that deep learning models can be computationally expensive to run. Despite
these challenges, deep learning has the potential to revolutionize agriculture.

A nation depends on plants and agriculture for its economy. But plant diseases can sharply reduce
crop yields. Because of this, diagnosing and forecasting plant diseases early is extremely important so
that they can be treated as soon as possible. Improving agricultural production requires early detection
and forecasting of plant diseases [8].

Olive trees are susceptible to a variety of pathogens, including bacteria. These pathogens can
cause leaf diseases that can significantly reduce crop yields. Early diagnosis of leaf diseases is essential
to prevent further damage. However, this can be difficult to do manually, as it requires specialized
knowledge and experience. There are a few automated methods for detecting leaf diseases. These
methods use image processing and machine learning to identify the symptoms of the disease. These
methods are more accurate and efficient than manual methods, and they can be used to screen large
numbers of trees. The use of automated methods for detecting leaf diseases is becoming increasingly
important. As olive production becomes more widespread, the need for accurate and efficient methods
for disease detection will grow. Recent advances in artificial intelligence and computer vision have led
to the increased adoption of deep learning methods for image classification tasks [7,9].

In this paper we detect disease from olive leaf images by presenting a CNN which uses wavelet
transformers to extract features. Within our CNN architecture, we use wavelet transforms along
with pre-trained deep-learning models to extract features from a variety of scales in the image. This
allows CNN to learn more discriminative features, which in turn can enhance the accuracy of disease
detection. A wavelet transform is a technique of mathematics which allows an image to be broken
down into various frequency sub-bands. Each sub-band represents a different range of frequencies in
the image. After that, CNN is used to extract features from different scales on each sub-band. All sub-
bands are subsequently combined with the features extracted. This is a more complete representation
of the image. This method can reach 99.72% in diagnosing olive leaf diseases, and it is much more
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convenient than traditional techniques. This means that when the proposed model was evaluated,
it turns out to have remarkably well-tuned perception results. The following is a summary of the
contributions made in this research:

• A transformed-wavelet, feature-fused CNN for detecting olive leaf diseases.
• A proposed CNN architecture that combines wavelet transforms with pre-trained deep learning

models to extract discriminative features from olive leaf images.
• A promising new approach to detecting olive leaf diseases. The proposed CNN architecture has

the potential to be used to develop robust automated systems for early detection of olive leaf
diseases, which can help olive growers minimize crop losses.

The remainder of this paper is organized as follows. Section 2 reviews the diagnosis and classifi-
cation of olive diseases in recent relevant research. Section 3 presents the proposed diagnosis model
for olive leaf diseases. Section 4 describes how our model was experimentally tested and analyses of
the results. Section 5 presents conclusions and discusses future research.

2 Related Work

Several studies have been conducted to develop methods for diagnosing diseases that affect plant
leaves, especially olive leaves [10]. These studies have used a variety of image processing and deep
learning techniques to analyze, detect, and classify various plant diseases [11,12]. Some studies have
proposed deep learning models that can be used to diagnose diseases using smartphone applications
[13]. Other studies have used CNN architectures and deep learning algorithms to diagnose diseases
from hyperspectral images, which are images that capture a wider range of wavelengths of light than
traditional RGB images [14,15].

One study [16] concerned early detection of anthracnose in olives. Anthracnose is a fungal disease
that may cause serious damage to olive trees. In this study, hyperspectral images of olive leaves were
classified through a CNN architecture called ResNet50. Others [17] have put forward methodologies
based on deep learning for the identification and classification of plant diseases, including a hybrid
model that employs both the VGG-16 machine vision architecture used by Google Images as well
as MobileNet. This was then utilized to classify sunflower disease types. In yet another study [18],
scientists put forward a new image analysis method to diagnose and classify olive diseases. The
approach was based on the image texture properties that can be seen on olive plant leaves. The first
type of analysis uses histogram thresholding and k-means segmentation to separate the infected area.
The second analytical method utilizes first- to fourth-order moments which measure the relationship
between infection and at least one textural feature.

Deep learning has become a popular approach to identifying and classifying plant diseases.
Convolutional neural networks (CNNs) are powerful tools for extracting features from images. CNNs
are effective in detection and classification tasks because they can learn features automatically and
generalize well to new data. However, CNNs require a large amount of training data and a fixed set
of parameters [19–21].

Several studies have addressed the challenges of using CNNs for plant disease detection. For
example, researchers [22] have proposed a method for classifying olive leaf diseases using transfer
learning on deep CNN architectures. The researchers tested their method on a dataset of 3,400 images
of healthy leaves. Other researchers [23] have summarized the significance of deep learning as a
current area of research in agricultural crop protection. They examined prior research on hyperspectral
imaging, deep learning, and image processing-based methods for detecting leaf illness. Based on a
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review of the literature, deep learning algorithms were judged to be the best methods for identifying
leaf diseases.

The amount of data gathered for use in model training has a substantial impact on the accuracy
of the results obtained. Data augmentation techniques, transfer learning techniques, and CNNs are
employed to alter the datasets. The problem of plant disease detection needs to be solved even when
the findings of earlier research are sufficient. This is because the lack of labels in the data can impair
the quality of the pixels used to depict disease symptoms.

Another study [24] used a deep learning architecture to classify a variety of plant and fruit leaf
diseases. The authors used a deep transfer learning model to learn features from images. They then used
radial basis function (RBF) kernels with several Support Vector Machine (SVM) models to improve
feature discrimination. The results of the study suggest that deep learning is a promising approach to
plant disease detection. However, more research is needed to address the challenges of using CNNs
for this task. Other researchers [25] have proposed a hybrid deep-learning model for identifying olive
leaf disease. The model combines three different deep learning models, including a modified vision
transformer model.

Several studies recently have proposed modifications to Inception-V3. These additions have been
made to increase the accuracy and speed of these CNNs. The use of data augmentation [26] is
perhaps the most widespread improvement. Transfer learning is also a common kind of improvement.
Transfer learning is the employment of a pre-trained CNN to seed in another new network. This
technique can improve the performance of a new CNN with less training data [27]. Experiments have
shown that applying data augmentation improves the performance of this model (Ksibi et al. [28],
Cruz et al. [29]). The effect of data augmentation was evaluated by these authors, including how it
increased performance in the model systems under study or could help to overcome closer boundaries
that had been established in genetic model cells before this intervention but were in one study [30], six
types of data augmentation and transfer learning methods were used to identify 39 classes of plant
leaf diseases. The ResNet101 CNN model was used in another study [31] to identifiable plant diseases
using hyperspectral image dataset. Another study [32] employed a genetic algorithm to determine the
best epochs, those that produced accurate detection of olive leaf diseases at highest levels with various
CNN models. The literature review showed the state-of-the art methods summarized in Table 1.

Table 1: Summary of the state-of-the-art methods

Ref. Model Dataset Accuracy

[26] AlexNet Collected 0.84
VGG-16 0.85
VGG-19 0.82
VIT 0.95
Proposed model 0.96

[27] LBP with RBF-SVM Collected 0.8834
RBF-SVM 0.6306
AlexNet 0.9734
Proposed model 0.989

[28] ResNet50 Collected 0.9286
MobileNet 0.9463

(Continued)
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Table 1 (continued)

Ref. Model Dataset Accuracy

MobiRes-Net 0.9708
[29] VGG-16 PlantVillage 0.986

ResNet 0,975
[30] AlexNet PlantVillage 0.8734

VGG16 0.9287
Inception-V3 0.9432
ResNet 0.9256
Proposed model 0.9787

[31] ResNet101 Plantillage 0.9646
[32] AlexNet Collected 0.9012

ResNet 0.9625
DenseNet 0.9835

[33] VGG-16 Olive 0.8912
VGG-19 Leaf 0.885
Proposed model Images 0.9563

[34] Modified ResNet50 Collected 0.9712
[35] AlexNet Collected 0.9906

AlexNetOWTBn 0.9944
GoogleNet 0.9727
Overfeat 0.9896
VGG 0.9948

[36] Inception Collected 0.9591
AlexNet 0.899
REsNet50 0.9412
ResNet-V2 0.9181

Our proposed model aims to achieve higher accuracy in diagnosing olive leaf diseases than
methods proposed by other researchers by combining a discrete wavelet transform with EfficientNet-
B7, DenseNet-201, and ResNet-152-V2, added as a feature layer in the model, and fusing all features
to a CNN to determine which yields the best accuracy.

3 Materials and Methods

The proposed model is shown in Fig. 1. It has two main stages: data augmentation prepro-
cessing and feature fusion from a discrete wavelet transform and pre-trained deep learning models
(EffiecientNet-B7, DenseNet-201, and ResNet-152-v2).
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Figure 1: Proposed feature fusion model

3.1 Data Augmentation

Data augmentation is a technique whereby new data points are created from existing ones to
artificially increase the size of your dataset. By performing such transformations as cropping, flipping,
and rotating the data or by adding noise to them it is possible to humanize. There are two reasons why
data augmentation is important. Second, it can promote the generalizability of deep learning models
by solving overfitting problems. Overfitting is where a model learns the training data too well and
cannot generalize to new data. Diverse data from which to learn: To prevent overfitting, a technique
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known as “data augmentation” can be used. Third, using data augmentation can enable us to further
improve the accuracy of deep learning models, by making our dataset larger. This matters since deep
learning models tend to be more accurate when trained on bigger datasets [37].

Many different data augmentation techniques can be used. Some of the most common techniques
are the following:

• Cropping a portion of the image.
• Flipping the image horizontally or vertically.
• Rotating the image by a certain angle.
• Adding noise to the image.

Our model used some data augmentation techniques, specifically: (1) resizing the images to 224
× 224, (2) rescaling the images, (3) flipping the images horizontally, i.e., from left to right, (4) rotating
the images clockwise 0.1 radians, (5) zooming the images out by 10%, and (6) increasing the image
contrast by 10%.

3.2 Discrete Wavelet Transforms

An approximation image was extracted by means of a discrete wavelet transform (DWT). DWT
is a versatile tool that enables the analysis of signals in both time and frequency. It does this by means
of a windowing technique employing variable sizes, so that it is able to pick up both low-frequency
and high-frequency information. A major advantage of the DWT is that it employs scale rather than
frequency. This means that it can be used to analyze signals on a variety of levels. DWT, for example,
can extract coarse features of an image (such as overall shape and brightness) or fine details (like
individual edges and textures) [38].

DWT was used in this study to decompose a two-dimensional (2D) image into four sub-bands
at each level: low–low (LL), low–high (LH), high–high (HH), and high–low (HL). The LL sub-band
contains the low-frequency components of the image, while the LH, HH, and HL sub-bands contain
the high-frequency components [39]. A three-level decomposition was performed, as shown in Fig. 2.
The Harr wavelet was used to approximate the solid information in the image [40–43]. The original
224 × 224 image was divided into four bands: LL1 (112 × 112), LH1 (112 × 112), HH1 (112 × 112),
and HL1 (112 × 112). The LL1 band was further decomposed into LL2 (56 × 56), HL2 (56 × 56),
HH2 (56 × 56), and HL2 (56 × 56). The LL2 band was decomposed into LL3 (28 × 28), HL3 (28 ×
28), HH3 (28 × 28), and LH3 (28 × 28). The LL3 at the lowest level contained the approximate image,
which was used for further processing.

3.3 DenseNet-201

DenseNet, a deep learning architecture introduced by Kumar et al. [44], has connections from
every layer to every other layer. This offers several advantages, including the following:

• Elimination of the vanishing-gradient problem: The vanishing-gradient problem is a common
challenge in training deep neural networks, as it can cause the network to lose its ability to
learn from the data. DenseNet’s dense connectivity helps to alleviate this problem by ensuring
that all layers have access to all previous feature maps.

• Improved feature propagation: DenseNet’s dense connectivity also improves feature propaga-
tion, which is the process of passing features from one layer to the next. By allowing each layer
to access all previous feature maps, DenseNet can learn more complex and informative features.
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• Feature reuse: DenseNet’s dense connectivity also promotes feature reuse, which means that
the same features can be used by multiple layers in the network. This can help to reduce the
number of parameters required in the network, which can improve performance and reduce
computational cost.

Figure 2: Three-level DWT model

DenseNet is a deep learning architecture with several advantages that make it well-suited for fruit
recognition tasks. Its dense connectivity helps to alleviate the vanishing gradient problem, improve
feature propagation, and promote feature reuse. This allows DenseNet to learn more complex and
informative features, even for fruits with very similar features.

DenseNet-201 is a CNN with 201 layers. It belongs to the DenseNet family of models, which is
known for being capable in learning rich feature representations for image classification. DenseNet-
201 has been demonstrated to attain state of the art in several image classification benchmarks. As
its accuracy and efficiency are both very high, it is a popular choice for image classification tasks.
DenseNet-201 is a deep learning model that has been trained on the ImageNet dataset. This data
set contains more than 1.2 million images from 1,00-dimension object categories and On a collection
of image classification tasks (like object detection, scene classification and image retrieval) currently
considered state-of-the-art, DenseNet-201 attains the best accuracy to date. DenseNet-201 compares
to other CNN models in that it can attain the same rate of accuracy with fewer parameters and lower
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computational overhead. Just this fact makes it a suitable choice for mobile devices and other resource-
constrained applications like image classification or object detection [45]. The CNN model, DenseNet-
201 is very good at learning complex features from images and can function errorless even if the images
are noisy or objects in them have been moved around. It is because it connects every layer to all the
other layers and uses a special technique for reducing the number of parameters.

3.4 ResNet-152-V2

ResNet-152-V2 is the name of a 152-layer convolutional neural network (CNN) model. It
belongs to the ResNet family of models, which are celebrated for their ability to learn deep residual
representations suitable for image classification. It has been trained on the ImageNet dataset, which
includes over 1.2 million images of objects in about a thousand different object categories. It achieves
state-of-the art accuracy on several image classification tasks: object detection, scene classification and
image retrieval. ResNet-152-V2 is also known for its efficiency. It is one of the most accurate CNN
models (with high efficiency) [46].

3.5 EfficientNet-B7

EfficientNet-B7 is an accurate and efficient convolutional neural network (CNN) model. It is
significantly faster and more memory-efficient than other CNN models of equal or better accuracy,
achieving state-of-the art results on numerous image classification tasks. The family of EfficientNet
models include Estimate-B7 and are all based on the same compound scaling method which uniformly
scales depth, width and resolution. The scaling method allows EfficientNet models with high accuracy
but not compromising efficiency. The ImageNet dataset on which EfficientNet-B7 is trained contains
1.2 million images in 1,000 different object categories. Trained EfficientNet-B7 is capable of handling
a number of different image classification tasks, such as object detection, scene recognition and
similarity searching [47].

3.6 Feature Fusion Model

Fig. 1 shows the proposed model, which includes a six-layer feature fusion model with merged
inputs, three dense layers, and two dropout layers. The feature fusion model takes the outputs of three
pre-trained models as inputs and reduces the number of output neurons to 256 and 128 in the first two
dense layers using the Relu (rectified linear unit) activation function (Eq. (1)). After each dense layer,
a dropout layer with a 0.2 rate is used to prevent overfitting. The last dense layer uses the softmax
activation function (Eq. (2)) to reduce the number of neurons to three outputs. This feature fusion
model allows the proposed model to learn more complex and informative features from the outputs
of the three pre-trained models. Table 2 introduces the summary of the fusion model. The model
has three input layers are DenseNet201 input layer, EfficientNetB7 input layer, and ResNet152-V2
input layer. In DenseNet152, the input layer has images with shape (28, 28, 3) augmented by some
methods such as rescaling, normalization, batch normalization, activation and applying the CNN for
DenseNet152. In EffiecientNetB7, the input layer consists of the images with shape (28, 28, 3) and
Conv2D of DenseNet152 model. In ResNet152-V2 the input layer consists of the images with shape
(28, 28, 3) and Conv2D of EfficientNetB7 model.

Relu (z) = max (0, z) (1)

σ (zi) = ezi

∑k

j=1 ezj
for i = 1, 2, . . . , k (2)
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Table 2: Summary of fusion model

DenseNet201 EfficientNet B7 ResNet152-v2
Layer Output shape Param# Layer Output shape Param# Layer Output shape Param#
Input (28, 28, 3) 0 Input (28, 28, 3) 0 Input (28, 28, 3) 0
Rescaling (224, 224, 3) 0 Conv2D (1, 1, 288) 3744 Batch

normalization
(14, 14, 128) 512

Normalization (224, 224, 3) 7 ZeroPadding2D (230, 230, 3) 0 Conv2D (28, 28, 80) 38400
Rescaling (224, 224, 3) 0 Multiply (56, 56, 288) 0 ZeroPadding2D (230, 230, 3) 0
ZeroPadding2D (225, 225, 3) 0 Conv2D (112, 112, 64 ) 9408 Activation (None, 14, 14, 128) 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
Conv2D (1, 1, 12) 3468 Multiply (28, 28, 480) 0 Conv2D (7, 7, 32) 36864

3.7 Evaluation Metrics

Traditional classification metrics are accuracy, precision, recall, and the F1 measure, which are
calculated using Eqs. (3)–(6). These metrics are based on the values of true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN). Fig. 3 displays the testing model.

Accuracy = TP + TN
TP + TN + FP + FN

(3)

Precision = TP
TP + FP

(4)

Recall = TP
TP + FN

(5)

F1 measure = 2 ∗ TP
2 ∗ TP + FP + FN

(6)

Figure 3: Testing model
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4 Experimental Results and Discussion

The results of the experiments conducted using the proposed model are summarized in this section.
We also evaluate the outcomes of various deep learning strategies using our own customized deep
learning model. The data science server at Kaggle allowed the deployment of this model, which was
created using Python. We carried out tests of EffiecientNet-B7, DenseNet-201, REsNet-152-v2, and
our proposed model to gauge the applicability of the proposed model. The three subcategories that
best describe our dataset are “healthy,” “peacock spot,” and “Aculus olearius”.

4.1 Dataset Description and Evaluation Metrics

The computer used for the experiments has a 64-bit operating system, an x64-based processor, an
AMD Ryzen 7 7730U 2.00-GHz CPU with Radeon Graphics, and 16 GB of RAM. We evaluated the
performance of our suggested ideal deep learning model using a dataset drawn from an open dataset
[48]. With the help of an agricultural engineer with extensive field experience, images of 6,961 olive
leaves were divided into three unique groups: healthy leaves, leaves infected with Aculus olearius, and
leaves infected with olive peacock spot. Sample images of healthy and diseased olive leaves are shown
in Fig. 4.

Figure 4: Dataset image samples
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Table 3 shows how the dataset was split into two groups, with 70% of each group used for training
and 30% used for testing. Anomalies in the distribution of datasets when they are divided into training
and testing groups can have negative impacts on the CNN model’s predictions.

Table 3: Dataset description

Label Training set Testing
set

Total

Aculus olearius 1245 533 1778
Peacock spot 2280 977 3257
Healthy 1348 578 1926

4.2 Results and Discussion

The experiment used to evaluate the proposed model had the hyperparameters shown in Table 4.

Table 4: Sample of hyperparameter values

Hyperparameter name Value

Batch size 32
Seeds 42
min_lr 1e-6
Epochs 20

In this experiment, the training dataset images were preprocessed and augmented with several
types of data augmentation. The images were resized to 224 × 224, rescaled to [0,1], flipped
horizontally, rotated by 0.1 radians, zoomed in by 0.1, and contrasted by 0.1. The discrete wavelet
transform (DWT) was applied to the augmented images to obtain four types of images: approximation,
horizontal detail, vertical detail, and diagonal detail. The approximation images were then submitted
to three pre-trained deep-learning models. The average pooling 2D layer took the outputs of the three
pre-trained models as inputs and reduced the number of neurons to 512. The outputs of the pre-
trained deep learning models were then merged and sent to the feature fusion model. Fig. 5 shows that
the accuracy score of the validation test was 99.72% and that the loss score of the validation test was
0.0115. Fig. 6 shows that the precision score of the validation test was 0.9972. Fig. 7 shows that the
recall score of the validation set was 0.9972.

Table 4 shows the confusion matrices for the feature-fusion pre-trained deep learning model. The
test dataset had three classes: Aculus olearius, peacock spot, and healthy. Table 5 shows the feature-
fusion pre-trained model with 532 samples correctly predicted out of a total of 533 samples for the
Aculus olearius class. The model predicted 975 of 977 samples correctly for the peacock spot class and
576 of 578 samples correctly for the healthy class.

Table 5 shows the experiments’ results for the feature fusion pre-trained deep learning model. The
model was applied to the collected olive leaf dataset for multiclassification. We distinguished between
Aculus olearius, peacock spot, and healthy leaf images. Table 6 shows that the model had accuracy,
precision, recall, and F1 measure averages of 99.72%, 99.72%, 99.72%, and 99.72%, respectively.
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Figure 5: Accuracy and loss vs. no. of epochs

Figure 6: Precision vs. no. of epochs

All of the experiments were conducted with a learning rate = 0.001, the various epoch values
discussed before, a batch size = 32, and an image size = 224 × 224. The study’s dataset is available
from [48]. There has been surprisingly little research on the olive plant that has been the focus of our
research.
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Figure 7: Recall vs. no. of epochs

Table 5: Confusion matrix of testing set

Label Aculus olearius Peacock spot Healthy

Aculus olearius 532 0 1
Peacock spot 1 975 1
Healthy 1 1 576

Table 6: Evaluation metrics of the testing set for each label

Label Precision Recall F1 measure Accuracy

Aculus olearius 0.9970 1.00 0.9985 0.9981
Peacock spot 0.9980 0.9980 0.9980 0.9980
Healthy 0.9966 0.9936 0.9951 0.9955
Average 0.9972 0.9972 0.9972 0.9972

This study involved the classification of three distinct types of olive leaf diseases. The success ratio
is anticipated to drop if the trials conducted on the olive leaf plant are expanded to include other
illnesses that need to be detected, because diseases that affect the same type of plant may display
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similar symptoms. Because of the difficulties in achieving a high success rate, studies to be conducted
in this field are regarded as valuable.

Our model faces three primary hurdles: complexity, overfitting, and trade-offs. Combining
EfficientNet-B7, DenseNet-201, and ResNet-152-v2 leads to inherent complexity, potentially increas-
ing computational cost, training time, and memory demands. While Kaggle’s GPU-P100 servers
mitigated memory bottlenecks, addressing the remaining computational and time constraints remains
an ongoing effort. Overfitting also poses a challenge, particularly with smaller datasets. To address
this, we implemented data augmentation to artificially enrich the training data and combat overfitting.
Finally, while ensembling models often improves accuracy, it can come at the cost of increased
complexity, necessitating careful consideration of these trade-offs.

5 Conclusion

A novel deep-learning model for detecting olive leaf diseases from images using wavelet transforms
and pre-trained models was developed in this study. The proposed approach leverages wavelet
transforms to decompose olive leaf images into three frequency sub-bands, focusing on the third level
for feature extraction. Subsequently, pre-trained deep learning models (EfficientNet-B7, DenseNet-
201, and ResNet-152-v2) extract features from this sub-band, capturing information at different
scales. These extracted features are then fused to create a comprehensive representation of the image,
enabling the classification of olive leaf diseases into three categories: aculus olearius, peacock spot,
and healthy. The experimental results demonstrate the effectiveness of the proposed model, which
achieves a 99.72% testing accuracy score in disease detection. However, a limitation of this study is
that the dataset involved the classification of three distinct types of olive leaf diseases. The proposed
model’s performance was compared to other techniques and showed potential for enhancing other
CNN architectures that warrant further investigation. Ultimately, this research aims to contribute to
the development of efficient plant leaf disease detection methods, culminating in the ability to predict
and select infected areas for targeted intervention.
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