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ABSTRACT

Aiming at defects such as low contrast in infrared ship images, uneven distribution of ship size, and lack of texture
details, which will lead to unmanned ship leakage misdetection and slow detection, this paper proposes an infrared
ship detection model based on the improved YOLOVS algorithm (R_YOLO). The algorithm incorporates the
Efficient Multi-Scale Attention mechanism (EMA), the efficient Reparameterized Generalized-feature extraction
module (CSPStage), the small target detection header, the Repulsion Loss function, and the context aggregation
block (CABlock), which are designed to improve the model’s ability to detect targets at multiple scales and
the speed of model inference. The algorithm is validated in detail on two vessel datasets. The comprehensive
experimental results demonstrate that, in the infrared dataset, the YOLOv8s algorithm exhibits improvements in
various performance metrics. Specifically, compared to the baseline algorithm, there is a 3.1% increase in mean
average precision at a threshold of 0.5 (mAP (0.5)), a 5.4% increase in recall rate, and a 2.2% increase in mAP
(0.5:0.95). Simultaneously, while less than 5 times parameters, the mAP (0.5) and frames per second (FPS) exhibit
an increase of 1.7% and more than 3 times, respectively, compared to the CAA_YOLO algorithm. Finally, the
evaluation indexes on the visible light data set have shown an average improvement of 4.5%.
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1 Introduction

With the advancement of the marine economy, the utilization of unmanned ship equipment
has become prevalent in various domains including disaster rescue and relief. In particular, infrared
imaging technology has gained significant application in detecting crewless ships due to its exceptional
characteristics, such as robust anti-interference capability and all-weather operability [1]. Due to the
absence of intricate texture details and the uneven distribution of sizes among infrared ships, the
task of accurately identifying targets becomes significantly complex. Therefore, the target detection’s
accuracy and detection speed are considered the primary prerequisites for improving the intelligence
of uncrewed vessels [2].
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Deep learning-based algorithms for target detection have demonstrated a significant performance
improvement in detecting infrared ships. A large number of target detection algorithms exist, such
as two-stage algorithms (region-based convolutional neural networks (R-CNN) [3]), and one-stage
algorithms (YOLO [4], Single shot multibox detector (SSD) [5]). Currently, single-stage algorithms are
extensively employed in diverse scenarios. For instance, the enhanced YOLOVS5s algorithm is utilized
to identify mushroom log pollution [6]. Additionally, the optimized YOLOvV7 algorithm is employed
to recognize traffic signs in autonomous vehicles [7], while the detection of strawberry maturity is
achieved by utilizing the YOLOVS algorithm [8]. In this paper, the YOLOvSs algorithm (https://github.
com/ultralytics/ultralytics) is selected as the foundational algorithm. This algorithm is known for its
consideration of both accuracy and inference speed. However, a significant research challenge lies in
extracting the complete set of semantic features for small targets without compromising the extraction
of semantic information for larger and medium-sized targets. In addressing this issue, a range of
approaches have been previously suggested. For instance, Chen et al. [9] introduced a lightweight
algorithm for detecting garbage on water surfaces based on improved YOLOVS5s. This approach offers
a promising solution for real-time litter detection on water surfaces. Tang et al. [10] have proposed a
method for elevator button recognition that combines YOLOVS. This approach offers a viable solution
to efficiently identifying elevator buttons by service robots. Han et al. [11] employed a bidirectional
feature pyramid network as a feature extraction network to efficiently combine high-level semantic
information with underlying spatial features. This approach aims to improve the detection accuracy
of safety helmets worn by non-motorized individuals.

The paper is organized as follows: Section 2 shows the state of the research, existing problems,
and solutions for Ship target detection. Section 3 provides a brief overview of the characteristics of
the two datasets and YOLOvVS. Subsequently, a detailed description of the improved six modules is
provided. Section 4 is an experiment and the result of the analysis. The dissertation concludes with
our conclusions and prospects for future work.

2 Related Work

Currently, there are two main categories of ship image detection methods based on Al algorithms.
The first category involves traditional neural network algorithms, which include detecting ships in
infrared images, manually screening ship texture and other features, and subsequently inputting these
feature parameters into the traditional neural network. The other approach relies on deep learning
convolutional neural network algorithms, such as Swin Transformerv2 [12]. The infrared image is
directly input into the deep convolutional neural network structure, and the network can automatically
learn the semantic features in the infrared image without manual intervention. Then, the ship’s
position in the image is determined according to the learned position information to realize end-to-
end intelligent detection and positioning from the original infrared ship image to the position of the
output ship to avoid the influence of human factors on feature screening and parameterization [13].
Therefore, this paper further explores the automated infrared ship target detection algorithm.

To address the issue of lightweight marine ship detection models, Cheng et al. [14] introduced the
improved YOLOvVS model, which aims to enhance detection speed. However, it is important to note
that its AP (0.5:0.95) is only 48%. Feng et al. [15] introduced a lightweight network of multi-scale
feature fusion Transformer by incorporating the attention mechanism. The study yielded favorable
outcomes across four different datasets. Zhang et al. [16] proposed the lightweight Yolov5l model.
Comparing the L model to the current model, it is observed that the parameter amount is reduced
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by 50%. However, the mAP (0.5) is only 92.03%. Aiming to address the issue of inadequate multi-
scale detection performance in ship detection models, Wu et al. [17] proposed a multi-scale feature
fusion module to fuse deep, shallow, local and global features to improve the accuracy of multi-
scale ship detection in complex environments. Kong et al. [18] implemented the task adaptive hybrid
migration strategy and incorporated the Space-Adjusted module into the prototype network. The
proposed methodology can enhance the precision in identifying unfamiliar categories of ships. Guo
et al. [19] incorporated the Inception branch and the Softmax function into the CNN network to
identify different types of ships. Their study yielded promising outcomes across various public datasets.
Ye et al. [20] introduced a Combined-Attention-Augmented (CAA) technique to capture long-distance
contextual information of small targets. The mAP (0.5) achieves a value of 94.81%. However, it should
be noted that the model parameters are relatively large, and the detection speed is slow. Consequently,
this may render the model unsuitable for deployment on mobile terminals in the final stage.

High detection speed and recognition accuracy are crucial in achieving the intellectualization of
uncrewed ships. Therefore, the network structure of YOLOVS is improved in the following manner:
Firstly, the introduction of the repulsion loss function aims to address the issue of occlusion in ship
detection. Furthermore, the inclusion of the small target detection head and CABlock module serves to
augment the model’s capacity to capture the semantic characteristics of diminutive targets. Finally, the
EMA attention mechanism and the CSPStage module are incorporated into the model to dynamically
fuse and extract semantic information at multiple scales.

3 Materials and Methods
3.1 Dataset Analysis and Data Processing

This paper uses the infrared maritime vessel dataset provided by Shandong Yantai Arrow
Optoelectronics Technology Co., Ltd. (China), which contains several scenarios of cruise ships, bulk
carriers, warships, sailboats, and other targets on the harbors and seashores. This dataset has a total
of 8002 images, and the resolution of each image is 640 x 512. The sample images in the dataset are
divided according to 8:1:1, i.e., 6738:632:632. The size distribution of the ship label box is depicted in
Fig. 1a, and it is evident that the dataset falls under the classification of multi-scale target detection.
The proportion of ship types is depicted in Fig. 1b, with fishing vessels accounting for the largest
proportion.
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Figure 1: Dataset analysis
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This paper also utilizes an additional dataset of visible light ship data sourced from various
publicly available datasets and contains only one category of ships [14]. The dataset comprises a total
of 3200 images. We divided our dataset into a training set, a validation set and a test set according to
the ratio of 7:1:2.

3.2 YOLOv8 Network Architecture

The YOLO algorithm is a one-stage target detection algorithm that converts object detection into
a regression problem, and its algorithm is widely used due to its high detection speed and low-cost
overhead [21]. YOLOVS has faster detection and higher accuracy than previous versions. As shown
in Fig. 2, the YOLOVS network structure includes data preprocessing, trunk network, neck network,
and detection head.
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Figure 2: Framework of YOLOvVS algorithm

3.3 R_YOLO Detection Model

The R_YOLO detection model framework is shown in Fig. 3. R_YOLO consists of three main
components: data preprocessing, network training, and model inference. The enhanced module can
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be succinctly described as follows: (a) Incorporate a small target detection layer. (b) An EMA attention
mechanism was incorporated between the torso and the neck. (c) Incorporate the repulsion loss
function. (d) The CSPStage module is being introduced. (¢) Embedding the CABlock module.
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Figure 3: Framework of R_YOLO algorithm

3.3.1 Adding the Small Target Detection Layer

Learning useful features in deep networks is difficult due to the small pixel proportion of small
target vessels. There are two main reasons: (1) During the feature extraction process, the feature map
undergoes multiple downsampling operations, resulting in a reduction of feature information. (2) With
the proliferation of network layers, certain ship characteristics may be compromised, thereby hindering
the achievement of precise positioning. The inclusion of small target detection can offer comprehensive
positional information and mitigate the issue of missed detection in ship detection.

3.3.2 EMA Attention Mechanism

This paper introduces the EMA attention module [22] to integrate multi-scale semantic informa-
tion and mitigate superficial image noise. To optimize the network’s performance, it is partitioned into
feature grouping and multi-scale structure. The EMA attention mechanism is depicted in Fig. 4.
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Figure 4: EMA attention mechanism

(1) For a feature map with input dimensions H x W x C, EMA first maps the given input features
set of types that can be represented by X, € R”/“**" The EMA attention mechanism uses three
parallel routes to extract attention weight descriptors for grouped feature graphs; two of the parallel
paths are 1 x 1 convolutional branches, and the third parallel path is a 3 x 3 convolutional branch.

(2) For a feature map with input dimension G//H x W x C, the EMA attention mechanism
first uses a pooling kernel of size to encode the coordinates of each channel along the horizontal and

vertical directions, respectively. Direction-aware attention features — > X.(j,w) and — > X.(h,1)
O<j<H O<j<w

are acquired and transformed into C through a shared 1 x 1 convolution, as in Eq. (1).

f=8(F1 [%Zx@w),%zxﬁm,n}) ()

O<j<H O<i<w

This paper aggregates the two-channel attention maps within each group by simple multiplication
and implements different cross-channel interaction functions between two parallel routesina 1 x 1
branch, as shown in Eq. (2).

he (i) = X, (@.)) x fi5 % £ 2)

f in the above equation is the intermediate feature map of spatial information in the horizontal and
vertical directions; [. , .] represents the spatial connection operation; while representing the non-linear
activation function used by the algorithm. X, (i,) is the input image.

(3) 3 x 3 branching via 3 x 3 convolution captures local cross-channel interactions to expand
the feature space, and EMA can adjust the importance of different channels. Also, the precise spatial
structure information is retained in the channel, as shown in Eq. (3).

1 1
M =f(ﬁ > X0, w)) x 8,(G(h.(i.)))) + &(E > X4, w)) % f(G(h (i, ))) (3)

O<j<H O<j<H
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(4) The final output of the EMA module, as in Eq. (4).
Y. (i,)) =8 (M x X.(i,))) “4)

In the above equation, Y. (i,)) is the output image, &, denotes the Softmax activation operation,
and G denotes group normalization.

3.3.3 Repulsion Loss

Given the significant occurrence of numerous vessels impeding each other in the dockyard setting.
To address the aforementioned issue, this study proposes using a repulsion loss function [23]. As
demonstrated in Eq. (5), it comprises three distinct elements.

L = LArter + a X LRepGT + ﬂ X LRepBox (5)

where L,,,, is the attractive term, while Ly.,¢r and Lg,z, are the repulsive terms, and the coefficients
o and B are used as weights to balance the auxiliary loss.

L ... Attractive losses are typically measured between ground truth frames by the Smooth,,
distance metric using existing bounding box regression techniques, requiring that the prediction frame
be close to its real frame. Its smoothing coefficient is set to 3 for the best results, as in Eq. (6).

> vep. Smooth,, (B', G,

L v = After) 6
" o ©

Given a proposal P, this paper assigns the ground truth frame of the largest IoU as the specified
target, where G°, = arg max,., loU (G, P), B” is the prediction frame from the proposed P regression.

Lge,cr: The exclusion loss requires that the prediction frame move away from the proposals of its
neighboring ground-truth objects, which are not its targets. As in Eq. (7).

2 pepr Smoothy, (loG (B, Gy,))

Legor = 7
RepGT | P+| ( )

—In(l1—-x) x<o

where Smooth, = { X — 0 e o Given a proposal P € P_, the repel ground reality object is
l—0o

defined as the ground reality object with the largest IoU area in addition to its designated target. Where

BNG) . .
Gy, = arg maxloU (G, P), IoG (B, G) = M is the overlap between B and G, intersected by
6o (6, ) area (G)

the ground reality box.
L. ,5,: Since NMS can significantly affect the detection of overlapping or juxtaposition of ships,
L, 1s further proposed as shown in Eq. (8).

>, Smooth,, (IoU (B", B))

Liepsox = 8
RepBox Zi#jI[IOU(BPi,BR/) = 0] +¢ ( )

where I is a constant. It is hoped that the overlap of prediction boxes B and C will be as small as
possible, which makes the detector more robust to ship overlap scenarios.

3.3.4 CSPStaget

To facilitate the comprehensive exchange of high-level semantic and low-level spatial information
of the ship, and to meet the requirements of real-time target detection, a CSPStaget feature extraction
module is proposed [24], as illustrated in Fig. 5. CSPStaget is a feature extraction module that is based
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on the GFPN [25]. This module not only enhances the interaction between features, but also considers
the latency that is generated due to the over-complexity of the module. It is accomplished by consider-
ing the following three aspects: (1) In terms of overall feature fusion, this paper reduces floating-point
operations by flexibly controlling the number of channels at different scales under the constraint of
limited computational overhead. (2) Removing the GFPN enhances feature interactions by queen-
fusion, which brings a lot of extra up-sampling operations and reduces unnecessary delay time. (3) In
the feature fusion block, the CSPNet [25] is employed to replace the original feature fusion method that
relies on 3 x 3 convolution. This replacement is combined with the re-parameterization mechanism
and the high-efficiency layer aggregation network to enhance accuracy without significantly increasing
computational overhead.

Figure 5: CSPStage

3.3.5 CABlock

After the network has aggregated various levels of features, there remains residual local spatial
information within the feature pyramid. In previous studies, researchers have incorporated multiple
visual attention blocks within the network’s backbone to enhance the overall perceptual acuity. How-
ever, this design introduces too much useless background information, increasing the computational
overhead. Hence, the introduction of the CABlock module aims to acquire comprehensive spatial
context information at a global level, thereby further enhancing the features. Where pixel feature
information is sufficiently rich, it is inhibited from aggregating features from other spatial locations,
thus effectively fusing local and global features while reducing information confusion [26]. CABlock’s
framework is shown in Fig. 6. In each module, the pixel-by-pixel spatial contexts are aggregated in the
following way, as shown in Eq. (9).

, . J— exp (wP}) ,
=P+ WP 9
Q=F+q Z/:] [ZN" exp (Wi Py") ! } ®

m=1

exp (1,7)
o= oy,
Znil exp (W“P:l)

where o/ is shown in Eq. (10), @) and P, denote the input and output feature maps for level i in the
feature pyramid. Each feature map consists of N, pixels. j,m € {1, N,} denotes the index of each
pixel, and w, and w, are the linear transformation matrices used to project the feature map. The above
formulation simplifies the widely used self-attention mechanism by replacing the matrix multiplication
between query and key with a linear transformation that significantly reduces the computational
overhead.

(10)
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Figure 6: CABlock

3.4 Training Parameter Settings

In the training process of the YOLOvVS8 model, this study employed the stochastic gradient descent
(SGD) algorithm to optimize the loss function. Considering t the utilization of computer memory, the
batch size has been determined as 32, while the number of threads has been set to 16. To achieve the
optimal model, it is necessary to perform 220 training iterations. It is advisable to initialize the random
seed to 1 and conclude the final 20 rounds of mosaic enhancement. The computer configuration
utilized in the experiment is presented in Table 1.

Table 1: Computer configuration

Platform Configuration information

System Ubuntu 20.04

GPU NVIDIA GeForce RTX A5000(24G)

CPU 15 vCPU AMD EPYC 7543 32-Core Processor
Language Python 3.8.0

GPU calculate platform CUDA 11.8 cuDNN 8.2.0

Deep learning Pytorch 2.0.0

framework

3.5 Evaluation Indicators

Precision, Recall, and mAP serve as critical metrics for evaluating the accuracy of a network.
The precision metric denotes the ratio of accurate predictions in the prediction outcomes, while the
Recall signifies the ratio of accurate predictions among all targets. Each category’s cumulative score is
determined by the P-R curve, and the AP values of all categories are averaged to obtain mAP.

TP

Precision = ———— (11)
TP+ FP

TP
Recall = ——— (12)
TP+ FN



10 CMC, 2024

AP = / pr)dr (13)
mAp = 2 AP (14)
N

where TP is True Positive, FP is False Positive, FN is False Negative, p(r) is the function of the P-R
curve, and K is the number of categories. In this paper, we also use the number of parameters, floating
point operations (FLOPs), and FPS to evaluate the model complexity. Where FLOPs denotes the
amount of computation required by the model and FPS is the number of frames per second to fill the
image.

4 Materials and Methods
4.1 Experimental Settings

In order to demonstrate the superiority of the R_YOLO model, three sets of experiments were
conducted to validate the model (Table 2). (1) Ablation experiments were performed to assess the
effects of five improved protocols (M1-MS5). (2) The proposed R_YOLO model is compared with
YOLOVS [2], YOLOVG6 [27], YOLOv7 [28], and YOLOVS algorithms. This article solely focuses on
comparing the models of N, S, M, and L sizes with the consideration of their potential deploy-
ment on mobile terminals. (3) Furthermore, the R_YOLO model is compared with eight popular
target detection algorithms such as SDD, DAMOYOLO [25], YOLO NAS (https://github.com/Deci-
Al/super-gradients/), RetinaNet [29], Faster R-CNN [4], EfficientDet-D3 [30], YOLOX [31], and
CAA_YOLO [20]. (4) Finally, a comparison is conducted between the R_YOLO algorithm and the
YOLOVS algorithm using various datasets.

Table 2: Configuration of the three experiments used for model comparison

Experiments Settings

Ablation M1: Small target detection head
M2: EMA attention mechanism
M3: CABIlock

M4: Repulsion loss

M5: CSPStaget
YOLO series algorithm comparison experiment S0: YOLOVS
(N,S,M, L) S1: YOLOv6

S2: YOLOvV7

S3: YOLOvVS
Different methods NO: SDD

NI1: DAMOYOLO

N2: YOLO NAS

N3: Faster-RCNN

N4: EfficientDet-D3

NS5: RetinaNet

N6: YOLO X

(Continued)
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Table 2 (continued)

Experiments Settings

N7: CAA_YOLO
N8&: R_YOLO

Different datasets Infrared ship dataset
Ship dataset

4.2 Ablation Experiment

To assess the efficacy of the R_YOLO model, ablation experiments were conducted and compared
with the original YOLOWVS8s algorithm (S0). The results of the ablation study are presented in Table 3.
The table displays six scenarios (S0-Si), each representing different combinations of five improved
strategies (M1-MS5). No strategy is implemented in SO (the reference method), whereas all five
strategies are implemented in Si (the proposed method).

Table 3: Ablation experiments

Models M1 M2 M3 M4 M5 mAP (0.5) mAP (0.5:0.95) GFLOPs P R Parameters

SO 0.927 0.664 27.4 0.923 0.875 11110853
S1 1 0.940 0.674 37.8 0.926 0911 11132732
S2 1 1 0.947 0.681 37.6 0.923 0.914 11146412
S3 1 1 1 0.950 0.680 37.6 0.922 0.931 11146412
S4 1 1 1 1 0.952 0.681 384 0.925 0.902 11846580
S5 1 1 1 1 1 0958 0.686 55.2 0.934 0.927 17813482

In this study, we employ the sequential stacking module for comparison. Firstly, incorporating a
small target detection layer (M1) into the network yields the most substantial enhancement in mAP.
Compared to the SO (basic model), the mAP exhibits an approximate increase of 1%. Secondly, the
EMA attention module (M?2) is incorporated to enable the adaptive fusion of multi-scale semantic
features. Compared to the initial values of SO and S1, the observed increase was 2% and 0.7%,
respectively. Furthermore, the Repulsion Loss function (M3) has been incorporated, and it should
be noted that mutual occlusion of ships is only observed in the port scene. Compared to S2, the mAP
only exhibited a marginal increase of 0.3%. The integration of local and global features is further
enhanced by embedding the CABlock module (M4). Due to the interplay among modules, the mAP
(0.5) only slightly improves. Finally, the CSPStaget module (M5) has been replaced to enhance the
model’s capability to extract multi-scale features. Compared to S4, the mAP exhibited an increase of
approximately 0.6%. At the same time, there are improvements observed in both accuracy and recall
rate to varying extents.

4.3 YOLO Series Algorithm Comparison Experiment (N, S, M, L)

To demonstrate the efficacy of R-YOLO, the R-YOLO algorithm is exclusively compared to four
distinct-sized models (N, S, M, L) from the YOLO series algorithms. R-YOLO outperforms YOLOVS,
YOLOV7, YOLOV6, and YOLOVS across all versions on four metrics, i.e., Precision, Recall, mAP (0.5),
and mAP (0.5:0.95).
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Fig. 7 compares the R_YOLO algorithm with other YOLO algorithms in terms of precision,
recall, and mAP. The graph’s horizontal axis represents the number of parameters, while the vertical
axis represents the performance indicators being compared. The proximity of a point in the graph to
the upper left corner directly correlates with the effectiveness of the comparison for this particular
indicator. As the number of parameters increases, there is no positive correlation between the two
types of mAP values depicted in Figs. 7a and 7b. The enhanced R YOLO algorithm outperforms other
algorithms in terms of both mAP (0.5) and mAP (0.5:0.95) values. This observation also underscores
the intricacy of the dataset, as it is unable to improve the mAP values through parameter stacking.
Figs. 7c and 7d depict the graphs comparing precision and recall. The disparity in precision between
the R_YOLO algorithm and other algorithms may not be readily apparent. However, in terms of
recall, the R_YOLO algorithm surpasses all others significantly. As demonstrated in Table 4, the four
indicators of R _ YOLO outperform other algorithms within an accepted range of parameters. This
superiority is primarily attributed to incorporating the CSPStaget module and the EMA attention
mechanism.
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Table 4: Comparison of YOLOVS, YOLOvV7, YOLOv6 and YOLOvS5 models

Models Precision Recall Parametes mAP (0.5) mAP (0.5:0.95) GFLOPs
M)
YOLOvV8n 0.920 0.857 2.50 0.915 0.636 6.7
YOLOVS8s 0.923 0.875 11.11 0.927 0.664 27.4
YOLOv8m  0.926 0.887 24.68 0.934 0.670 61.3
YOLOvVSI 0.920 0.901 43.61 0.937 0.679 164.8
YOLOvV7n 0.878 0.844 1.77 0.897 0.587 4.3
YOLOV7s 0.919 0.879 9.34 0.932 0.633 26.7
YOLOv/m  0.905 0.909 20.96 0.941 0.638 59.5
YOLOv7I 0.906 0.919 37.3 0.942 0.647 105.2
YOLOv6n 0.740 0.798 4.70 0.903 0.617 11.4
YOLOv6s 0.918 0.798 19.40 0.918 0.645 45.3
YOLOvbm  0.912 0.804 36.60 0.912 0.635 85.8
YOLOv61 0.929 0.820 59.60 0.929 0.650 150.7
YOLOvV5n 0.912 0.868 1.77 0.920 0.597 4.2
YOLOVS5s 0.922 0.896 7.03 0.933 0.631 15.8
YOLOv5Sm  0.921 0.907 20.88 0.942 0.652 47.9
YOLOvVSI 0.925 0.923 46.5 0.947 0.66 107.7
R_YOLO 0.934 0.927 17.5 0.958 0.686 56.8

4.4 Different Deep Learning Detection Algorithms

Compared with other algorithms such as CAA-YOLO and YOLO NAS, the R_YOLO algorithm
shows better performance in terms of mAP (0.5), FPS, and model size. As depicted in Fig. 8, the x-axis
represents the FPS of the model, the y-axis represents mAP (0.5), and the size of the circle in the figure
corresponds to the number of model parameters. It can be seen that the comprehensive performance
of the R_YOLO algorithm is the best, followed by the YOL_NAS algorithm.

As indicated in Table 5, R_YOLO achieved the highest mAP (0.5). Both Faster R-CNN and
RetinaNet employ Resnet 50 as the underlying feature extraction layer. However, the feature maps
generated by Resnet 50 are single-layered and possess a relatively low resolution. Consequently,
these feature maps are unable to adequately capture the intricate details of small objects, leading
to a significant number of missed detections. Compared to CAA_YOLO, R_YOLO demonstrates
a significant reduction in model complexity, with a remarkable decrease of 82.2% in the number of
parameters. Additionally, R_YOLO exhibits an improvement of 1.7% in mAP (0.5) and a notable
enhancement in model recognition speed, surpassing CAA_YOLO by more than three times and
EfficientDet-D3 by more than nine times. The present paper introduces the R_YOLO model as a
solution to address the challenges associated with the large number of parameters in CAA_YOLO,
slow detection speed, and high cost of mobile deployment.
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Figure 8: Comparison of different target detection algorithms

Table 5: Different target detection algorithms

Model Framework mAP (0.5) Parameters (M) FPS
Faster-RCNN ResNet50+FPN 87.0 165 21
RetinaNet ResNet50+FPN 79.3 146 22
EfficientDet-D3 EfficientNet+BiFPN 80.7 48.5 14
SDD ResNet50+FPN 74.5 59 100
DAMOYOLO damoyolo_tinynasL.20_T_436.pth  92.4 8.19 80
YOLO X YOLOX_S 65 8.94 49
YOLO NAS YOLO_NAS_S 90.2 11.9 83
CAA_YOLO CAA_YOLO 94.1 98.5 41
R_YOLO R_YOLO 95.8 17.5 128

To further substantiate the efficacy of the enhanced algorithm, several images have been chosen
from the Infrared Ship dataset to visualize heat maps. Fig. 9a represents the original dataset, and
Figs. 9b and 9c respectively show the heatmap visualization results of the YOLOvSs and the R_YOLO
algorithm used for ship detection. The figure illustrates that the YOLOvS8s algorithm network does not
effectively capture the features of ships. In contrast, the R_YOLO algorithm demonstrates the ability
to effectively suppress the impact of background information on object detection, thereby enhancing
the network’s focus on the distinctive characteristics of various ship types.

4.5 Different Datasets

In the present study, two ship datasets have been selected to evaluate the proposed model’s
dependability and efficacy. The primary distinction lies in the contrasting environmental conditions,
with one being situated in the visible light spectrum and the other operating within the infrared
range. As depicted in Figs. 10 and 11, the comparison primarily focuses on the mAP (0.5) and mAP
(0.5:0.95). The red curve illustrates the R_YOLO algorithm, while the blue curve corresponds to the
YOLOVSs algorithm. The R_YOLO algorithm demonstrates superior performance compared to the
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basic YOLOVS algorithm in terms of mAP (0.5) and mAP (0.5:0.95). Among them, on the visible light
dataset, the average increase is 4.5 %.

(c) Visualization results of R_YOLO algorithm features

Figure 9: Comparison of infrared ship feature visualization results
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Figure 10: Infrared ship dataset
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Figure 11: Ship dataset

5 Conclusion

In this paper, we present a novel approach for the identification of unmanned ships utilizing the
R_YOLO algorithm. The proposed method integrates the CSPStaget and EMA attention modules,
introduces a small target detection head and CABlock module, and incorporates an occlusion loss
function. Based on the aforementioned experimental findings, the R_YOLO algorithm, as proposed
in this study, has the potential to substantially enhance both the precision of model recognition and the
speed of model inference. Compared to the CAA_YOLO algorithm, the proposed method achieves a
1.2% increase in mAP (0.5) while reducing the number of parameters by 82%. This trade-off effectively
balances target detection accuracy and the need for faster reasoning speed, achieving a significant
milestone in developing unmanned ship intelligence. However, it is important to acknowledge that
this method does have certain limitations. In the future, we must address the following issues: (1)
Considering the economic implications of model deployment, it is necessary to further compress the
model. For instance, the implementation of pruning techniques [2] can be employed as illustrative
examples. (2) Enhancing the recognition rate of occluded targets is crucial to achieve improved results.
One effective approach is to incorporate an occlusion attention module [24].
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