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ABSTRACT. This paper presents different methods implemented with the aim of studying 
urban dynamics at the building level. Building types are identified within a comprehensive 
vector-based building inventory, spanning over at least two time points. First, basic 
morphometric indicators are computed for each building: area, floor-area, number of 
neighbors, elongation, and convexity. Based on the availability of expert knowledge, different 
types of classification and clustering are performed: supervised tree-like classificatory model, 
expert-constrained k-means and combined SOM-HCA. A grid is superimposed on the test 
region of Osaka (Japan) and the number of building types per cell and for each period is 
computed, as well as the differences between each period. Mappings are then performed, 
showing that building types have specific locations and dynamics. In some extreme cases, a 
specific building type can even gradually replace a type on a declining dynamic. Questions of 
data preparation, and clustering validation are also dealt with, underlining the interest of 
assessing the spatial distribution of clusters. 
RÉSUMÉ. Cet article présente différentes méthodes mises en œuvre dans le but d'étudier la 
dynamique urbaine au niveau des bâtiments. Les types de bâtiments sont identifiés dans le 
cadre d'un inventaire vectoriel complet des bâtiments, couvrant au moins deux périodes. Tout 
d’abord, des indicateurs morphométriques de base sont calculés pour chaque bâtiment : 
surface, surface au sol, nombre de voisins, allongement et convexité. En fonction des 
connaissances d’experts disponibles, différents types de classification et de regroupement 
sont effectués : modèle classificatoire supervisé de type arborescent, k-means sous contrainte 
d’experts et SOM-HCA combiné. Une grille est superposée à la région test d’Osaka (Japon) 
et le nombre de types de bâtiments par cellule et pour chaque période est calculé, ainsi que 
les différences entre chaque période. Des correspondances sont ensuite établies, montrant 
que les types de bâtiments ont des emplacements et des dynamiques spécifiques. Dans 
certains cas extrêmes, un type de bâtiment spécifique peut même remplacer progressivement 
un type dont la dynamique est en déclin. Les questions de la préparation des données et de la 
validation des regroupements sont également abordées, soulignant l’intérêt d’évaluer la 
distribution spatiale des regroupements. 
KEYWORDS: Spatial analysis, spatiotemporal data, classification, clustering, self-organizing 
map.  
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1. Introduction  

Cities are in a perpetual flow of transformations with urban areas that constantly 
make, unmake and remake themselves. Different models are discussed in the 
literature, mostly focusing on the benefits and/or drawbacks of the increase (urban 
sprawl, compact cities, regeneration, etc.) or decrease (shrinking cities, perforation, 
etc.) of building densities. If it is acknowledged that all locations do not enjoy equal 
potential to adapt and evolve to changing densities, a factor that remains overlooked 
regarding this “potential” is the role of inherited urban forms. Yet, occurrences of 
areas having difficulties in redefining themselves are often closely related in terms 
of urban form. Of course, even if the form factor is often neglected, as compared to, 
for example, economic and social factors, this issue is nothing new. The numerous 
criticisms of modernist architecture (Jacobs, 1961; Salingaros, 2005, 2006; Paquot, 
2019), which brought large-sized and specialized buildings, unable to evolve with 
the needs of the cities, are a good illustration of the link between urban life and 
urban form. What has changed more recently however, are the possibilities to 
explore this link through: (1) the ever-increasing availability of multi date large-
sized datasets related to building stocks, such as the Japanese Zenrin Maps ® or the 
French BD TOPO®, and (2) an increase of computing power that allows running 
complex algorithms on the former. New analyses in the literature include the 
classification of building footprints by a Random Forest Classifier (Hecht et al., 
2015) or unsupervised Bayesian clustering for building types identification (Perez et 
al., 2019a). This paper seeks to emphasize on different needs and precautions that 
shall be taken while working on the link between urban form and space-time 
evolutions of urban areas and, more specifically, on evolutions of building types. 
Limited, but yet interesting characteristics of buildings can be calculated using only 
building databases, whenever a vector description of footprints and heights are 
available. Based on the availability of expert knowledge, different types of 
classifications and clustering are performed to obtain building types consistent 
between different time periods. The first classification algorithm is a tree-like 
classificatory model that contains a series of conditional control statements 
implemented by the expert. The second model is a constrained k-means clustering, 
where the expert knowledge is used to split the inputs prior to the clustering. The 
last model is a self-organizing map clustering allowing classifying the inputs into 
different building family types without any expert knowledge and in an 
unsupervised fashion. Suggestions and recommendations regarding spatiotemporal 
data used as inputs within machine learning algorithms are provided throughout the 
paper. In addition, implementation of the procedures, choice of the number of 
clusters, optimization and validation are also discussed in detail.  From a thematic 
point of view, specific periods of constructions and architectural styles can 
sometimes match with identified building types, thus allowing studying the 
spatiotemporal evolutions of specific types in the urban landscape. The evolution 
patterns of building types reflect changing demographic, social and functional 
factors behind city-making. They can be quantified and used as a reliable source of 
information for understanding the recent urban history, but also for urban planning 
and policy-making institutions and authorities.  
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The paper is organized as follows. Section 2 provides a literature review on the 
evolution of building types in contemporary cities, and on the methodologies that 
focused on the spatial evolution of the urban landscape. Section 3 presents the data 
requirement to apply the different methods discussed in this paper. It also presents 
the test region and the computation of basic morphometric indicators for building 
footprint data, which are going to be used to perform the classification and 
clustering methods. Section 4 applies and details the algorithm of the three different 
models, i.e. atree-like classificatory model, a double k-means and a self-organizing 
map. Section 5 maps and analyzes the geographical results, with the help of a grid 
superimposed over the test region that counts the number of each building type per 
cell and their temporal evolution. A final algorithm that produces thematic maps is 
also detailed in this section. Section 6 concludes the paper. 

2. Spatial analysis and urban form transformations 

As an increasing percentage of the world population comes to live in urban 
areas, the massive urbanization of human societies appears as both a source of 
problems and a possible solution in building sustainable urban futures (Coutard et 
al., 2013). The key concepts in play regarding urban sustainability are expanding to 
more global issues, from environmental challenges to human-centered approaches in 
planning and architecture. The academic literature is indeed highlighting on a 
regular basis that cities, urbanization, planning models, etc. have to be more 
sustainable and more human-centered. The urban of tomorrow should be, according 
to Sennet (2018), porous and irregular, with a system yet to be designed of shell and 
type-form where “The shell is empty; the type-form is, as it were, the snail inside. 
There is a content within which both limits and encourages change” (Sennett, 2018, 
p. 92). The fight against low-density automobile-dependent residential housing 
(Newman and Kenworthy, 1999) as well as the increase of the number of cities 
sustaining processes of urban decline (e.g. shrinking cities) are no strangers to the 
fact that planners, architects, and city thinkers in general are seeking out new 
sustainable solutions from and within pre-existing urban landscapes and 
configurations rather than developing new models from the ground. Yet, the fact that 
cities are in a perpetual flow of transformations is nothing new, it is even a major 
characteristic of urban spaces according to several authors. Lynch stated in 1981 
(p.116) that a good city form is one in which “a complex ecology is maintained 
while progressive change is permitted”, while Rossi (1982, p. 55) argues that “the 
city is something that persists through its transformations”. To summarize, 
transformation is an intrinsic characteristic of what is urban and, at a global scale, 
the world is increasingly urban. Yet, the transformation potential of urban areas is 
not the same everywhere: pre-existing forms matter. Planning models and 
architectural concepts are for example often related to specific construction periods 
and needs. The most striking example of this phenomenon is undoubtedly the 
modernism period, which brought rigid geometries and layouts often criticized for 
not being able to evolve in concert with contemporary urban issues (e.g. New 
Urbanism model). It thus brings interesting questions, such as what kinds of forms 
are more likely to be transformed and adapted, namely through building 
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substitutions, as opposed to more static ones? The underlying hypothesis is that 
physical forms (single-family homes or collective, modernist or traditional 
architecture, small or large-size) impose constraints on the socioeconomic process of 
urban transformation. As geographers, we also know that space matters: where are 
those forms located within a city? Where are theydeveloping and/or disappearing? 
Urban morphology, which focuses on the study of urban forms and transformations, 
associated with quantitative approaches in spatial analysis are perfectly suited to 
shed a new light on these questions. 

In the field of urban morphology, countless studies about the physical 
transformation of the cities have been conducted. Those studies follow several 
schools of thoughts, such as the one of M.R.G. Conzen, or Saverio Muratori and 
Gianfranco Caniggia, to name but just a few, and mainly focus on urban landscape, 
fabrics and typo-morphological changes at a micro level. However, the quantitative 
revolution that stepped in social sciences, notably in geography during the 1970s 
(Chorley and Haggett, 1967), did not reach the field of urban morphology until 
around the 2000s. The increase of the number of quantitative studies within the 
annual proceedings of annual International Seminar on Urban Form (ISUF, 2021) 
reflects this trend, while the recent book chapter by Larkham (2019), entitled 
Extending Urban Morphology: Drawing Together Quantitative and Qualitative 
Approaches gives a comprehensive overview of the evolution of quantitative studies 
within this field. Quantitative analytical protocols are today rapidly developing 
bringing together the fields of urban morphology and of spatial analysis within the 
encompassing approach of urban morphometrics. Beyond Larkham’s chapter, a 
more thorough presentation of some of these protocols is offered by the whole book 
edited by D’Acci (2019) as well as by the special issue on urban big data analytics 
and morphology in EPB – Urban Analytics and City Science (Behnisch et al., 2019). 
New methods are for examples proposed for the analysis of the urban fabric, 
traditionally defined by urban morphology as the combination of built-up forms, plot 
patterns and street networks (for examples Oliveira and Medeiros, 2016; Araldi and 
Fusco, 2019; Berghauser Pont et al., 2019; Fleischman et al., 2021). 

In this respect, the quantitative analyses carried out within this paper have a 
more limited focus. They will concentrate on the morphometrics of building types 
and on the spatial and temporal analysis of their distribution within a large 
metropolitan area. Related works are here Hartmann et al. (2019) on the evolution of 
German building stock or Kollwitz et al. (2022) on the evolution of building types in 
Vantaa (Finland) from an urban metabolism point of view. As defined by Case-
Scheer (2015, p. 171) “a building type is an abstraction, a pattern, where we 
observe formal similarities between one building and another even though the 
buildings may have different architectural expressions”. However, as the Italian 
school of typo-morphology shows, building types are a fundamental component of 
the urban fabric. All schools of urban morphology also agree on the fact that 
different types of the urban fabric define morphological regions, which have specific 
spatial structures (center-to-periphery gradients, sectors, etc.). We can thus assume 
that the building types we are going to identify will necessarily have a spatial 
structure and could also present different temporal dynamics. 
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In order to focus on the quantitative and spatial dynamics of building types, one 
needs spatiotemporal data which can be found within exhaustive GIS building 
inventories, such as the Japanese Zenrin Maps® or the French BD TOPO®. On the 
one hand, major transformations in urban contexts are usually observed along 
several decades, or even centuries, while accurate GIS building inventories have at 
most a multi-temporality of a few decades. For example, the Version 1.0 of the 
French BD TOPO ® only dates back to 1994, and to 1997 for the Japanese Zenrin 
Maps®. On the other hand, the lifespan of a given building depends on several 
factors, such as the function for which it was constructed, while the average lifespan 
for all types also reflects cultural preferences regarding how the urban landscape is 
conceived and maintained. In certain cultures, such as in western and northern 
Europe, buildings are renovated, while in others, such as in Japan, the privileged 
model is the destruction-reconstruction of new buildings. For example, single-family 
houses have a lifespan of only 30 years in Japan (MLIT, 2007), which is in sharp 
contrast with most studies that assume a building lifespan within a range of 35 to 
120 years in Europe, North America and Australia (e.g. Islam et al., 2015; Marsh, 
2016). For both these reasons, quantitative studies in urban morphology that make 
use of GIS building inventories are mostly focusing on identifying patterns at a 
given point in time (Hecht et al., 2015; Perez et al., 2019a; Araldi et al., 2023), the 
exception being researches making use of buildings or lots to identify growth or 
decline patterns (Lee and Newman, 2017; Sakamoto et al., 2017; Usui and Perez, 
2019; Perez et al., 2020; Kollwitz et al., 2022). Algorithmic techniques, coupled 
with spatiotemporal data and thematic knowledge related to urban form, have the 
capability to support urban planning. This kind of approach will be increasingly 
relevant in the future as accurate multi-temporal GIS building inventories become 
available. The following section presents a spatiotemporal dataset, a test region, and 
prerequisites and recommendations while working on building evolutions with such 
data. 

3. Data preparation 

3.1. Minimum data requirement  

The bare minimum dataset required to implement different algorithmic 
techniques to work on building type evolutions is a GIS layer of building footprints 
with multiple years of consistency (at least two different periods). The gap in years 
between the layers is dependent upon the scope of the analysis, but also upon the 
specificities of the location under study. A gap of 10 years is enough in countries 
following a deconstruction/reconstruction model of buildings (e.g. discussion in 
section 2) while in countries where buildings are usually renovated or rehabilitated, 
a longer time depth may be required to observe structural changes in the distribution 
of building types. Each building shall be digitized as a single unit. Corrections 
should thus be made to GIS layers which aggregate contiguous buildings (like row 
houses) into single units. In addition, one attribute is required: building height, and 
another one is valuable, but not mandatory: building specialization. Specialization 
attribute allows filtering non-residential buildings, if one were to solely focus on 
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residential patterns. Yet, due to mixed-use buildings, the distinction between 
residential and non-residential buildings is hardly ever straightforward. Thus, 
according to the source of data, attention should be paid to how specialization is 
encoded.  

3.2. Test region and data presentation 

The test region is an area of 15 by 18 km in Japan containing central Osaka and 
its surroundings (Figure 1a). As stated in section 2, the peculiarities of Japan are that 
houses and small collective residential complexes are easily demolished to be 
reconstructed or to make way to new urban projects (Shelton, 2012) and that urban 
areas are experiencing urban shrinkage phenomena (Fujii, 2008; Buhnik, 2010). A 
short lifespan for buildings is an undeniable advantage for the study of the evolution 
of building types. Indeed, even now, high-quality datasets of building footprints are 
uneasy to access and, if they are, historic data of equivalent quality are usually not. 
Regarding urban shrinkage, demolitions without reconstructions is another 
interesting phenomenon to monitor over time, since the non-replacement of building 
could indicate perforation dynamics.  

 

 

 

 

 

 

Figure 1. a. Osaka, openstreetmap. b) buildings in Osaka in 2013-14  
(zmap town ii) 

ZENRIN Residential Maps (Zmap TOWN II1), which are digital maps focusing 
on the building footprints throughout Japan, are extracted and compiled into a 
GeoPackage file for the extent of the test region in 2003/04 and in 2013/14 
(Figure 1b). The original GeoPackage file only contains the two aforementioned 
building layers. There are 760.067 inputs in 2003/04 and 739.536 in 2013/14, thus 
showing a decrease of 2.7% of the raw number of buildings in 10 years. ZENRIN 

                                                 
1 ZENRIN is a private map information company that holds the top share in the Japanese 
market for local residential and car navigation maps. 
https://www.zenrin.co.jp/product/category/gis/basemap/zmaptown/index.html 

https://www.zenrin.co.jp/product/category/gis/basemap/zmaptown/index.html
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Residential Maps possess several attribute data from which two are of interest in this 
research: the height of the buildings, expressed in number of floors, and building 
specialization. However, no distinction is made between one- and two-story 
buildings(the count starts from three-story buildings). Building specialization is an 
attribute, encoded as follows: 1363 for collective housing, 1364 for single-family 
homes, 1365 for private offices and mixed-use buildings, 1200 for official and 
religious buildings (schools, administrative buildings, temple, etc.), etc. In this 
paper, we focus on residential buildings, both collective and individual housings 
(1363 and 1364), which concern 469.519 buildings in 2003/04 and 428.875 in 
2013/14. Each layer within the GeoPackage file thus only retain the following 
attribute variables: an identifier, the number of floors and specialization. 

3.3. Indicator computation 

The first step consists in computing a basic series of morphometric indicators for 
each building made of: the building footprint surface (area), the total amount of 
usable floor area, elongation, convexityand the number of adjoining neighbors. 
Elongation, convexity and the number of adjoining neighbors are detailed in Perez et 
al. (2019a). They respectively provide a measure of how buildings are elongated 
compared to the most compact equivalent shape (a circle), how buildings have 
intricated or squared shapes, and if buildings are free-standing detached structures or 
possess adjoining neighbors. Finally, in order to smooth the lack of difference 
between one- and two-story buildings, floor is removed in favor of floor-area, which 
simply is the surface area multiplied by the number of floors for each building. The 
final set of variables is made of the newly calculated morphometric indicators plus 
specialization.  

Appendices algorithm IC (Indicators Computation) shows how indicators can 
be easily computed within R for a standard GIS building inventory. For the number 
of adjoining neighbors, we operate a small buffer (algorithm IC,# neighbors 1/2) 
with the aim of correcting buildings that shall be considered as adjoining, but are not 
due to low geolocation accuracy. Even if such occurrences are negligible within the 
ZENRIN Residential Maps, this precautionary step ought to be taken before 
computing the number of adjoining neighbors. 

4. Residential buildings: classification of types 

Once a basic set of indicators has been calculated for each input layer, the next 
step is to perform a classification of building types that can be applied to the 
different time points. To be more specific, with such a basic set of morphometric 
indicators, we are rather classifying types of building hulls, i.e. geometrical 
envelopes of buildings, since an accurate classification of architectural types should 
include data about building materials, periods of construction, internal distribution 
of housing units and rooms, etc.For the obtention of class labels, three options arise. 
First, reliable expert knowledge is available, and as such, the number and the 
characteristics of the relevant building types are known in advance. Second, limited 
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expert knowledge is available, which leads to partial information known in advance, 
such as the number of types sought, but not their characteristics. Lastly, no expert 
knowledge is available, thus leading to a situation in which both the number and the 
content of the building types are unknown.  

4.1. Classification with expert knowledge 

When expert knowledge is available, a simple and efficient method of 
classification is found in a supervised tree-like classificatory model. Successive tests 
on attributes split the original dataset into different class labels that have been 
defined by the expert. When the corresponding label outputs are deemed valid by the 
expert, the conditional control statements can be used as benchmarks for other 
datasets possessing similar attributes. Appendices algorithm CEK (Classification 
with Expert Knowledge) is a user defined function named DTs which allows 
classifying each row of a dataset using given variables (var1, var2 and var3). Each 
test follows aif condition then outcome structure. Several conditions per test are 
possible, and the outcome is always a label attribution. The DTs function is then 
applied to each row of a given dataset. In the case of the test data, the DTs function 
is applied on each row of both Zenrin® layers using the aforementioned 
morphometric indicators. 

Figure 2 is a flowchart visualization of the successive tests implemented for the 
Zenrin® layers. The relevance of these building types in Japanese urban areas is 
derived from expert knowledge and literature (e.g. Shelton, 2012; Bonnin et al., 
2014; Perez et al., 2019b). They are 9 different outcomes, in which 4 are for 
collective housings (C1 to C4) and 5 are for single-family homes (S1 to S5). C1 are 
high rise residential buildings following a “tower in the park” model. They have 
been identified by their lack of neighbors, a large floor-area surface and a limited 
elongation ratio. C2 are elongated residential complexes representative, amongst 
other structures, of Danchi housing (団地 ) which are complexes of apartment 
buildings built following western standards after the Second World War, C3 are 
adjoining narrow towers, while C4 are small-size residential complexes which often 
host the famous Japanese micro-apartments. S1 are very small and elongated row 
houses, with thresholds that have been set to precisely extract traditional wooden 
Nagaya (長屋), and their modern counterparts. S2 are small-size adjoining intricated 
houses, S3 are the compact counterpart of S2, which, as compared to S2, also 
include large-size compact townhouses. S4 are large-size detached houses, typical, 
amongst other things, of large-size villas and traditional Japanese wooden houses, 
and finally, S5 are small-size detached houses. The thresholds are applied for each 
period. Detailed thematic results based on a similar tree-like classificatory model are 
cross-analyzed with population evolution, academic literature, building bye-laws, 
planning regulations and fieldwork related to the metropolitan area of Osaka in 
Perez et al. (2023). 
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Figure 2. Visualization of the tests implemented for the Zenrin ® layers 

4.2. Classification with limited expert knowledge 

If expert knowledge is limited, but still available to some extent, it is possible to 
subset the data in a supervised fashion prior to a series of unsupervised cluster 
analyses. It amounts to performing a form of constraint-based clustering. For 
example, we could know that some inputs must not be grouped together. This could 
for instance be the case for collective and single-family homes, for specialized and 
residential buildings, or for building possessing large and small footprints. In such 
cases, standard unsupervised clustering techniques that minimize intra-cluster 
distances and maximize inter-cluster distances can be independently performed for 
each subset, such as K-Nearest Neighbors, hierarchical clustering, k-means, 
classification trees, random forests, neural networks, etc. Regarding the multi-
temporality of the data, three possibilities appear: (1) clustering are performed 
independently for each time point and compared between one another using, for 
example, similarity indexes, (2) the underlying model of one time point is used for 
the training of the others time points, (3) a test sample is drawn and merged 
altogether from different time points, thus avoiding giving more weight to one 
period over the others. Finally, expert knowledge can be used to fix the number of 
required clusters (otherwise see Section 4.3). To illustrate the aforementioned 
discussion, one of the simplest techniques, k-means clustering, which aims at 
partitioning inputs into clusters such that the sum of squares from inputs to the 
assigned cluster centers is minimized, is applied in Appendices algorithm CLEK 
(Clustering with Limited Expert Knowledge). This algorithm performs a k-means 
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with a predefined number of clusters using a sample made of two random subsets 
from two time points. The trainings of the initial datasets are subsequently made 
using a k-nearest neighbor searching algorithm. 

 

Figure 3. Cluster Map and Profiles for individual Clusters for Collective Housing 
(top) and Single-Family Homes (bottom) 

Using the structure of algorithm CLEK, two different k-means are performed 
on the Zenrin® data, one for collective (attribute 1663) and one for single-family 
homes (attribute 1664). Two random subsets are draw and merged from each period 
for collective buildings only (sample size of 60% of the inputs), and, once again, 
from each period for single-family homes only (60% again). The k-means clustering 
are then performed for each subset (collective housing and single-family homes), 
with a number of clusters per model chosen a priori. We selected the same number 
of clusters as within the DTs model (section 4.1: 4 clusters for collective housing 
and 5 clusters for single-family homes). Before running the algorithm, data are 
scaled, normalized and symmetrized. The two clustering are performed on 
convexity, elongation, number of direct neighbors and floor-area. Once the two 
models are trained, for both periods, collective inputs that have not been trained are 
mapped to the nearest clusters of the collective model and single-family homes 
inputs to the nearest clusters of the single-family homes model.  



Classification and clustering of buildings     313 

 

The left side of Figure 3 is a possible representation of the two clustering within 
two-dimensional spaces made by extracting the first two principal components 
(package “factoextra”) along which the variation in the data is maximal. The right 
side of Figure 3 shows radar charts for each variable (package “fmsb”). In order to 
obtain striking radar charts, minimum and maximum values of the radar chart axes 
must be calculated independently for each model (collective housing and single-
family homes). It is possible to add variables in the radar charts that have not been 
used during the clustering processes, such as area and floor in Figure 3.  

The charts point at highly differentiated profiles within each model. Regarding 
collective housing, C1 are compact small-size complexes, including the Japanese 
micro-apartments, C2 are mid-to-high-rise compact complexes, C3 are high-to-mid-
rise adjoining residential buildings, while C4 are regrouping both large-size and 
intricate buildings, typical of contemporary collective housing models, and Danchi 
housings. Regarding single-family homes, S1 are adjoining elongated houses, 
typical of traditional wooden Nagaya, S2 are large-size modern villas, S3 are 
intricated detached houses, S4 is close to S1, although less convex and elongated, 
and finally, S5 is characterized by adjoining compact houses, typical of modern 
townhouses. Thematically, this clustering seems robust, but it is always possible to 
improve the results. For example, S1 and S4, although different, share several 
similarities. 

4.3. Classification with no expert knowledge 

Finally, in the case of a total lack of expert knowledge, any widely known 
unsupervised clustering algorithms can be used, such as those mentioned in section 
4.2. The main issues with unsupervised clustering are the assessment of the quality 
of the partitions, as well as the number of “interesting” partitions (Haldiki et al., 
2001). Since there is no way, in the absence of expert knowledge, to a priori 
determine the most suitable number of clusters, researchers tend to use heuristics, 
such as looking at a cutoff point regarding the improvement of the explained 
variance (or log-likelihood in the case of Bayesian clustering) for each additional 
partition (elbow method), looking at the similarity coefficients between inputs and 
their own clusters (silhouette), comparing the within-cluster dispersion with a null 
hypothesis (gap statistic), etc. However, these methods often yield different results. 
To cope with this issue, it is possible to look at the consensus of different methods 
regarding the most suitable number of clusters for partitional clustering methods 
(Charrad et al., 2014).  

Figure 4 displays the consensus results (n_clusters function from the parameters 
package, Lüdecke et al., 2020) of a random sample made of 10% of the inputs from 
both periods of the Zenrin® data. Since 30 indexes are compared (Elbow, Silhouette 
index, Duda index, Scott, etc.; Charrad et al., 2014), a small sample is mandatory to 
avoid too much computing time. Figure 4 hints at a consensus for 2, 3, 9 and 12 
cluster-solutions. An unsupervised Bayesian clustering on the Zenrin® building 
layer of 2013-14 only, based on the indicators detailed in section 3.3 (plus 
specialization) has been performed in Perez et al. (2019a). This clustering used an 
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expectation-maximization algorithm (Dempster et al., 1977) to perform one 
thousand clustering analyses and a MDL score (combining log-likelihood and a 
penalization function for the growing number of clusters) to define the optimal 
number of partitions. In what follows, we will propose an alternative approach to 
unsupervised clustering based on the Self-Organizing Maps (SOM) (Kohonen, 
1982) neural network. Bayesian and SOM clustering have already been compared in 
unsupervised approaches (Fusco and Perez, 2019). 

 
 
 

 

 

 

 

 

 

 

Figure 4. Consensus between 30 indexes looking at the Optimal Number of Clusters 
for a sample of the Zenrin ® data 

Appendices algorithm CNEK (Clustering with No Expert Knowledge) 
performs SOM clustering using, once again, a training sample made of two random 
subsets from two time points each possessing 60% of the initial inputs. This time, 
we do not distinguish collective from single-family homes buildings. The same four 
indicators than for the k-means clustering are used. SOM use a neighborhood 
function for each input to find the Best Matching unit (competitive training). Units, 
also called nodes, are distributed on a two-dimensional space (map). Once the best 
matching unit is found, a radius parameter allows updating the neighboring nodes, 
thus giving topological properties to the output space. This output space, and the 
proximity of the nodes, can be visualized and investigated through a 2D 
representation of the SOM map. There are two ways to identify clusters within a 
SOM. First, the number of nodes within the two-dimensional space can be set to a 
small value. Each node is then considered as a cluster on its own. The second 
approach, which is the one used in algorithm CNEK, is to parameterize a large 
number of nodes for the map (225, i.e. 15 by 15 in our application) before 
segmenting the Euclidian distance matrix between all the couples of nodes with a 
simple hierarchical clustering (HCA). The distances between couples of nodes form 
a distance matrix (U-Matrix). The advantage of this approach is that it allows 
visualizing each variable distribution across the map. Depicted by colors, these 
graphical representations are called heatmaps. Since similar values are aggregated in 
the same areas, heatmaps provide relevant information that can be used prior to the 
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segmentation by the HCA. Algorithm CNEK also provides the mapping to the test 
data, and extracts the cluster correspondences between the SOM nodes and the final 
clusters segmented by the HCA. 
 

 

 

 

 

 

 

 

 

 

 

Figure 5. Self-Organizing Map outputs using a sample from both periods of the 
Zenrin ® dataa. Training Progress b. Heatmap for direct neighbors c. Heatmap for 
floor-area d. Heatmap for Elongation e. Heatmap for Convexity f. Clustering results 

Figure 5 displays the outputs of a SOM clustering performed on a Zenrin® 
sample made of 60% of the initial inputs merged together from each period. As for 
the k-means clustering, data have been scaled, normalized and symmetrized. The 
first thing to control is that the training curve flattens, as in Figure 5a. The rlen 
parameter in algorithm CNEK sets the number of iterations. Figure 5b to 5e are the 
different heatmaps, showing that similar values are aggregating in the same areas. 
Each map shows clear patterns of minimum and maximum optima, thus clearly 
demonstratingthat greater weights have not been given to some variables over 
others. If some heatmaps do not show a clear gradient, e.g. if the differences in the 
range of valuesarelocated only in a reduced number of nodes, it is usually due to 
scaling/symmetrizing issues between the input variables. Local minimum and 
maximum optima of each heatmap are not located within the same nodes, thus 
demonstrating that a large number of clusters could be a relevant solution. A fully 
unsupervised clustering would have taken 3 as the final solution for the number of 
clusters (Figure 4). Yet, in order to compare the output spaces of the three methods 
performed in this paper, we set the number of clusters to nine, which was also a 
consensus possibility hinted by Figure 4. Figure 5f is the final cluster map, where 
each color is a different building type. The black lines are the cluster boundaries, 
which have been retroactively mapped to the heatmaps after running the HCA. 
Cluster 1 (“blue” in Figure 5f) is mostly made of different kinds of detached small 
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buildings, cluster 2 (“orange”) regroups adjoining compact buildings, cluster 3 
(“green”) is made of small, elongated and adjoining buildings, which appears to be 
the characteristics of the wooden Nagaya, cluster 4 (“red”) is for small and compact 
buildings, cluster 5 (“purple”) displays the characteristics of mid-size detached 
villas, cluster 6 (“brown”) is an average cluster for mid- to large-size buildings, 
cluster 7 (“pink”) displays characteristics of large-size buildings, somewhat 
elongated and with neighbors, cluster 8 (“yellow”) is probably for high and narrow 
buildings (high values of floor-area, compacts and with neighbors), and finally, 
cluster 8 (“light green”) are detached large-size buildings, and could correspond, 
amongst other things, to Danchi (団地) housing. Test data, for both periods, are then 
mapped to the trained SOM.  

5. Validation and spatial analysis 

5.1. Validation 

In supervised classification applications, such as for the tree-like classificatory 
model performed in section 4.1, quality metrics are of little use regarding the 
evaluation of the class label attributions. For classification, a good way to check the 
validity of the building types is to draw random samples and use a street-based 
urban imagery (such as Google Street View) to verify that the objects are classified 
as expected by the expert. We consider as true positives (TP) the buildings assessed 
by the expert as belonging to the class label proposed by the algorithm. Remaining 
buildings are considered as false positives (FP). It is then possible to calculate the 
usual classificationprecision metrics as (TP / (TP + FP)) * 100. Using a random 
sample of 100 buildings for each class label, the overall precision reaches 92.77%. 
The lowest score is of 85.56% for S4 (large-size detached houses), with wrongly 
classified outputs mostly due to digitization issues within the Zenrin® data, with a 
lack of neighbors when some should be present, and vice versa. If a class label 
accuracy is low, with no digitization issues in the input data, the conditional control 
statements have to be modified in the tree-like classificatory model.  

Cluster validity for unsupervised clustering is a complex task extensively 
discussed in the literature (Halkidi et al., 2001; Charrad et al., 2014). It focuses on 
evaluating to which extent clusters are compact and well-separated. Yet, those 
values have to be compared to others in order to be appraised and, as a result, the 
same metrics are often used for both finding the number of clusters and cluster 
validity. For this reason, we recommend using clustering algorithms that allow 
obtaining information about the structure of the data prior to fix the number of 
clusters. This is exactly what SOM coupled with HCA does thanks to the heatmaps. 
The usual quality metrics (consensus methods in Section 4.3) can then help for both 
the number of clusters and cluster validity, but something far more important for 
cluster validity can be found in traditional spatial analysis. As stated by Halkidi et 
al. (2001), validation is based on external, internal or relative criteria. External 
validation is based on a “pre-specified structure, which is imposed on a data set and 
reflects our intuition about the clustering structure of the data set”. To illustrate this 
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statement, Halkidi et al. (2001) test whether the points within the clusters are 
randomly distributed or not (Null Hypothesis). Yet, since we are dealing with spatial 
data, the emergence of well-known spatial structures (monocentricity, polycentricity, 
aggregation, dispersion, etc.) for each class label, spatially mapped, can serve as a 
form of cluster validity. In this respect, minor changes can often improve the quality 
and the robustness of a clustering, such as (1) Adding/removing variables (e.g. 
newly computed morphometric indicators for the case of our test region);  
(2) Partitional clustering algorithms are sensitive to random initialization. As such, 
re-running the procedure with a different seed sometimes improve the results. In this 
regard, running several clustering with different pseudo-random seeds and 
computing similarity indexes (Fowlkes-Mallows, Rand, etc.) on the output spaces is 
even more effective, since it allows identifying a clustering robust to random 
initialization (Fusco and Perez, 2019). (3) Instead of partitional algorithms, other 
categories of algorithms could be tested, such as hierarchical, density-based or grid-
based clustering.  

5.2. Correspondences and spatial analysis 

In the previous section, we performed three different methods that have been 
applied to the different periods associated to the Zenrin® data. To summarize, 
algorithm CEK, CLEK and CNEK are individually able to provide a class label, 
that can be compared between two periods. This is the only input required for 
running algorithm GSC (Grid Superimposition and Count): a class label associated 
to at least two spatial datasets describing the same study area at different time points. 
Algorithm GSC creates a grid with predetermined cell sizes, 250 meters in this 
example (closest size to the Japanese population grid census), that are superimposed 
on the extent of the test region. Cells that are not intersecting any inputs are filtered 
out of the grid. Then, an intersect is performed for each remaining cell to count the 
number of inputs grouped by labels. A final line of code groups the results of both 
periods into a single dataframe. For each cell, the input differences between the 
different periods are also calculated.  

Using the structure of algorithm GSC, we calculate the number of building 
types per cell, per period, and the temporal evolutions of each type. To map the 
count and evolution of building types, we use the “tmap” package, which allows 
building thematic maps following a layer-based structure. Appendices algorithm 
LSM (Layered Spatial Mapping)shows a layered structurewhich can be used to 
produce any of the map within Figure 6 and Figure 7. Before setting the maps, we 
first import an OpenStreetMap background. The variable (count or evolution) is 
discretized into several categories, sequentially added as new layers to the map. 
Algorithm LSM allows dissolving each discretized category into a single multipart 
polygon. It allows plotting a single geometry per category, associated to colors (e.g. 
reversed magma color ramp for Algorithm LSM), thus substantially reducing 
computation time.  
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Table 1. Rand index scores between the 3 models (random sample of 9000 inputs 
with classified labels for each method, 1/9 per cluster) 

2003-2004 20013-2014 

 
tree-
likem
odel* 

k-means * 

self-
organizi
ng map 
* 

2013-
2014 

tree-like 
model* 

k-
means* 

self-
organizin
g map* 

tree-
like 
model 

1 0.37 0.25 
tree-
like 
model 

1 0.39 0.29 

k-
means 0.47 1 0.46 

double 
k-
means 

0.49 1 0.49 

self-
organiz
ing 
map 

0.28 0.41 1 

self-
organi
zing 
map 

0.26 0.42 1 

* output space from which the random sample is taken 

Various measures for comparing classification and clustering similarities exist 
such as the Rand (Rand, 1971) or the Jaccard index (Jaccard, 1901). Table 1 
provides the Rand index scores between the models, which vary between 0 (no 
correspondence between clusters) and 1 (identical clusters). As expected, Table 1 
highlights a decreasing similarity of the output spaces between supervised 
classification, constrained clustering and fully unsupervised clustering (e.g. 0.49 to 
0.26 for 2013-14). No output space is better than another, the models focus on 
different building characteristics. Furthermore, similarity indexes are consistent 
between 2003-04 and 2013-14, thus showing that the statistical mappings of the 
training datasets were rather accurate (random initialization also impacts inputs that 
have different possibilities of cluster attributions). Appendices Table A1 provides 
additional information about cluster correspondences.  

Figure 6 shows the count of building types per cell in 2013-14 for four selected 
class labels of each of the three classification and clustering models performed in 
section 4. For each and every cluster, different localized aggregates and/or 
dispersion patterns stand out, thus contributing to cluster validation for the 
unsupervised clustering (k-means and SOM). Osaka, like most cities in Japan, 
possesses a complex polycentric structure (Hanes, 2002; Perez et al., 2019b). C3 
(DTs), C4 (k-means) and Cluster 7 (SOM), which are mostly tall and/or large-size 
collective buildings, show clear patterns of aggregation in the central part of Osaka 
and around the satellite centers. This is especially true for C3 (DTs), which are 
strictly adjoining tall and narrow buildings, with aggregate patterns that stand out 
where the urban structure is already the most dense and compact, such as in and 
around the main train and JR stations (Shin-Osaka, Kyobashi, Ōsaka Abenobashi, 
etc.). S1 (DTs and k-means) and Cluster 3 (SOM) are in all three models small-size 
and elongated townhouses, which are, amongst other things, the characteristics of 
the wooden Nagaya. This building type has a spatial structure opposed to the former 
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clusters of tall-narrow buildings, since they are aggregated in peripheral areas. These 
areas are usually residential neighborhoods, dense in term of quantity of buildings, 
but nonetheless less compact than in the aforementioned central parts of Osaka. S3 
(DTs), S5 (k-means) and Cluster 4 (SOM) will be discussed in the next paragraph. 
Finally, S4 (DTs), S2 (k-means) and Cluster 5 (SOM) are mid to large-size detached 
houses, including modern intricate villas, traditionalJapanese wooden houses, etc., 
mostly located in the outskirts of Osaka, particularly in the southern part. 

 
 

Figure 6. Count of building types per cell in 2013-14 for selected profiles of each 
model (tree-like classificatory model, double k-means and self-organizing map; 

class titles available in Table A1) 

Figure 7 shows the evolution of building types per cell in between 2003-04 and 
2013-14 for the very same class labels than those mapped in Figure 6. The evolution 
maps for tall and/or large-size buildings show hot and cold spots within and around 
the central part of Osaka, thus pointing at a building type which is self-regenerating 
according to local urban projects. The maps for elongated row houses, typical of 
traditional wooden Nagaya, point at a gradual disappearance of this traditional 
building type, even perhaps at a replacement if we link this disappearance with the 
increase of other building types in the same locations. At first sight, the clusters S3 
(DTs), S5 (k-means) and Cluster 4 (SOM) appear to have some characteristics in 
common, such as the fact that these buildings are mostly compact, and located on 
similar locations. However, the evolution maps highlight a disappearance of S3 
(DTs) and an increase of S5 (k-means) and Cluster 4 (SOM). This is because S1 
(DTs) solely focuses on identifying very small-size traditional Nagaya (Appendices 
Table A1). As a result, mid-size and/or intricate single-family homes, but elongated, 
are classified within other clusters in the tree-like classificatory model, while all 
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small to mid-size buildings with elongated characteristics are clustered with S1 (k-
means) and Cluster 3 (SOM). Thus, what is disappearing is the elongated micro-
tomid-size townhouses, which are also sometimes compact and intricate, to the 
benefit of small to mid-size compact houses, which is consistent with the literature 
pointing at mini developments of detached houses on small land parcels of 50-70 m² 
(Asami and Niwa, 2008) and spread of small-size prefabricated homes (Buntrock, 
2017). 

 

Figure 7. Evolution of building types per cell between 2003-04 and 2013-14 for 
selected profiles of each model (tree-like classificatory model, double k-means and 

self-organizing map; class titles available in Table A1) 

Finally, large-size detached houses are also gradually disappearing (S4 DTs and S2 
k-means), while mid-size detached houses (Cluster 5) show hot and cold spots 
according to the locations.  

6. Conclusion and discussion 

This paper puts forward several recommendations and suggestions while 
processing spatiotemporal data on building stock with machine learning algorithms. 
Based on the availability of expert knowledge, supervised tree-like classificatory 
model, constrained clustering and fully unsupervised clustering have been 
performed. Regardless of the method, we stressed the importance of spatial analysis, 
which has to be coupled with the usual quality metrics for cluster validation, or with 
a verification of the class label attributions through random samples and street-based 
urban imagery for supervised classification. For unsupervised clustering, we also 
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stressed the importance of using training samples made of inputs drawn from 
different periods altogether and highlighted the interest of using algorithms that 
allow obtaining information about the structure of the clustering before deciding the 
number of clusters.  

More specifically, we made use of the Japanese Zenrin® GIS building inventory 
at two different dates for studying the spatial location and temporal evolution of 
building types. The first and most important condition is that high quality GIS layers 
of building footprints with heights (or floors) as attribute data are available for at 
least two different time points. Another attribute is valuable, but not mandatory: 
building specialization. Attention should be paid to the time depth between the 
layers, as it must be sufficient to analyze structural changes in the spatial 
organization of building types. The temporality behind these structural changes is 
also dependent on cultural specificities regarding planning, building norms and 
urban development traditions (deconstruction, dismantlement, renovation, etc.). If 
the prerequisites are fulfilled, then it is possible to compute a basic set of indicators 
for each building, such as the one presented in Section 3.1. and runs the 
aforementioned classification and clustering algorithms with subset merging the 
different periods altogether. An automated superimposition of a grid then allows 
counting occurrences of each type, as well as quantify the difference per cell 
between the different time points. For each category, mappings are performed, with 
cells that are discretized in the same category, dissolved into a single multipart 
polygon, thus highlighting localized aggregates and patterns of disappearance and 
self-regeneration of building types.  

Regarding the clustering applications, the methodological propositions could be 
improved, especially by focusing on maintaining output coherence over different 
settings or initializations. A matrix of similarity indexes can for example be 
calculated among the clustering results to evaluate the robustness of the protocols to 
pseudorandom number generation (seed), and cross-validation methods, such a k-
fold or Jackknife resampling, can be used to evaluate the robustness of the outputs to 
the training samples.Finally, algorithms such as k-means or self-organizing maps are 
efficient for the detectionof spherical and well-separated clusters (minimization of 
intra-cluster distances and maximization of inter-cluster distances). Other algorithms 
could be better suited for the detection of other structures (axial, annular, etc.) such 
as density-based methods, or for the detection of clusters following a similar 
behavior for a subset of variables only, such as Bayesian networks. 

Yet, interesting preliminary results already stand out regarding specific locations 
and evolution trajectories of certain building types in Osaka, Japan. It shows that the 
ongoing transformations that characterize urban areas are linked, at least to some 
extent and to different degrees, to the inherited urban forms. The supervised tree-like 
classificatory model is the model that provides the greatest contributions in term of 
thematic knowledge. Indeed, provided the thresholds are established by an expert, 
there is little room for mistakes with the exception of data accuracy. By contrast, 
many unknowns remain in cluster analysis, for which the usual quality metrics are 
barely able to provide answers. Eventually, expert knowledge is not required to 
perform unsupervised clustering, but it becomes mandatory to evaluate the quality of 
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the partitions. This research opens interesting perspectives, such as the study of the 
disappearance of some building types, or the gradual replacement of some types by 
other. Several methods, from standard correlation matrices to geographically 
weighted regressions, as well has the addition of other indicators, could allow 
exploring these dynamics in conjunction with other factors, such as population 
evolution, socio-demographic characteristics, planning policies, etc. We will also 
remark that building substitution through destruction-reconstruction is particularly 
relevant in Japanese cities. In other contexts, and more particularly in European 
cities, building renovation should also be included when studying sociodemographic 
dynamics in conjunction with building types. For the interested reader, detailed 
thematic results for the case study of Osaka arepresented and discussed in Perez et 
al. (2023). 
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Appendices 

R session: information and package versions 
1: R version 4.2.0 (2022-04-22 ucrt) 
2: Platform: x86_64-w64-mingw32/x64 (64-bit) 
3: Running under: Windows 10 x64 (build 19044) 
4: kohonen_3.0.11      exactextractr_0.8.2 tmap_3.3-3          raster_3.5-15       sp_1.5-0            
5: forcats_0.5.1       stringr_1.4.0       dplyr_1.0.9         purrr_0.3.4         readr_2.1.2         
6: tidyr_1.2.0         tibble_3.1.7        ggplot2_3.3.6       tidyverse_1.3.1     lwgeom_0.2-8        
7: sf_1.0-7        fmsb_0.7.3             factoextra_1.0.7            FNN_1.1.3.1        tmaptools_3.1-1  
8: tmap_3.3-3           OpenStreetMap_0.3.4 
 

Algorithm IC: Indicators computation on a GIS inventory named “DATA” 
1:     DATA_BUFFER <- st_buffer(DATA, 0.1) # neighbors 1/2                                2:     DATA <- cbind(DATA, lengths(st_intersects(DATA _BUFFER)) - 1) # neighbors 2/2    3:     DATA$area<- st_area(DATA) # area 1/1 4:     DATA$floor_area<- DATA$floor* DATA$area# floor area 1/1          5:     DATA$perimeter<- st_perimeter(DATA) # elongation 1/2  6:     DATA$elongation<- (pi*(2*(sqrt(DATA$area/pi))))/DATA$perimeter# elongation  2/2 7:     DATA_HULL <- st_convex_hull(BU0304) # convexity 1/2  8:     DATA$convexity<- DATA$area/st_area(DATA_HULL) # convexity 2/2  

 

Algorithm CEK: Asupervised decision tree function with 3 classes applied on a GIS inventory named “DATA”  
1: DTs <- function(row) {                                              
2:    X1 <- row[['var1']]                                         
3:    X2 <- row[['var2']]                                            
4:    X3 <- row[['var3']] 
5:    if(X1 == 1363& X2 >1000 & X2 == 0) {   # condition examples 
6:      class <- 'C1'# label attribution 
7:    }                                                                        
8:    else if(conditions) { 
9:      class <- 'C2' 
10:  } 
11:   else if(conditions) {  
12:     class <- 'C3' 
13:  } 
14:    return(class)                                                          
15: } 
16: DATA$class<- as.factor(apply(DATA, 1, DTs)) 
 
 

Algorithm CLEK: k-means with multi-temporal subset made of DATA 1 and 2, collective and single-family homes and 
test data mapping 
1: sample <- rbind(subset(DATA1, var == condition)[sample(1:100, round(nrow(subset(DATA1, var ==  
condition))*0.6), replace=TRUE),], subset(DATA2, var == condition)[sample(1:100,  
round(nrow(subset(DATA2, var == condition))*0.6), replace=TRUE),])# condition shall be collective OR single-family 
homes 
2: kmeans.sample<- kmeans(as.matrix(sample[,c(5:8)]), 4) # 5:8 variables used for clustering; 4: number of clusters 
3: kmeans.mapping<- cbind(subset(DATA1, var == condition), cl.kmeans = get.knnx(kmeans.sample$center, 
subset(DATA1, var == condition)[,c(5:8)], 1)$nn.index[,1]) # mapping example for DATA 1 
 

Algorithm CNEK: SOM with multi-temporal subset made of DATA 1 and 2 and test data mapping 
1: sample <- data.matrix(rbind(subset(DATA1, var == condition)[sample(1:100, round(nrow(subset(BUILDING1,  
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var == condition))*0.6), replace=TRUE),], subset(DATA2, var == condition)[sample(1:100,  
round(nrow(subset(DATA2, var == condition))*0.6), replace=TRUE),])# condition shall be collective AND single-
family homes 
2: som.grid<- somgrid(xdim = 15, ydim = 15, topo = 'hexagonal', toroidal = F) # setting the map to 225 nodes 
3: som.model<- som(sample, maxNA.fraction = 1, grid = som.grid, keep.data = T, rlen = 500) # SOM clustering 
4: som.hc.cluster<- as.data.frame(cbind("nodes_IDS" = 1:225, "hc_clusters" =  
cutree(hclust(dist(som.model$codes[[1]])), 9))) # hierarchical clustering with 9 clusters 
5: map.DATA1 <- kohonen::map(som.model, DATA1) # test data mapping example for DATA1 
6: DATA1.clsom <- cbind(DATA1,"nodes_IDS" = map.DATA1[[1]]) # add SOM nodes ID to original data 
7: DATA1.clhcsom <- DATA1.clsom %>%  
left_join(som.hc.cluster, by = "nodes_IDS") # get correspondences between SOM nodes ID and hierarchical clustering  
clusters ID  
 

Algorithm GSC: Grid superimposition and count of inputs DATA1 and 2 per cell 
1:     mesh <- st_sf(st_make_grid(DATA1, cellsize = 250)) # 250 meters grid creation and superimposition over the test 
region DATA1 2:     mesh<-mesh[lengths(st_intersects(mesh, DATA1)) >0,] # filter cells with no overlap with buildings 3:     DATA1_C <- tapply(st_geometry(DATA1), DATA1$class, FUN = function(x) lengths(st_intersects(mesh, x))) # 
count inputs per cell for DATA1 4:     res.temp<- cbind(mesh, data.frame(sapply(DATA1_C, function(x) x[1:max(lengths(DATA1_C))]))) # df with 
DATA1 5:     DATA2_C <- tapply(st_geometry(DATA2), DATA2$class, FUN = function(x) lengths(st_intersects(mesh, 
x))) # count inputs per cell for DATA2 6:     MESH.DAT <- cbind(res.temp, data.frame(sapply(DATA2_C, function(x) x[1:max(lengths(DATA2_C))]))) # df 
with DATA1 and DATA2 
 

Algorithm LSM: Spatial mapping, example for a class label aggregated with MESH.DAT 
1:       osm_test_region<- read_osm(MESH.DAT, ext=1) # import basemap 2:       tm_shape(osm_test_region) + tm_rgb(alpha = 0.6) + # plot basemap with transparency tm_shape(st_geometry(st_union(subset(MESH.DAT, class == discretization values)))) + tm_fill("palegoldenrod", alpha 
= 0.6) +  tm_shape(st_geometry(st_union(subset(MESH.DAT, class >= discretization values)))) +               
tm_fill("coral", alpha = 0.7) +   tm_shape(st_geometry(st_union(subset(MESH.DAT, class >= discretization values)))) +   
tm_fill("violetred", alpha = 0.5) +  tm_shape(st_geometry(st_union(subset(MESH.DAT, class >= discretization values)))) +              tm_fill("darkorchid4", 
alpha = 0.5) +  tm_shape(st_geometry(st_union(subset(MESH.DAT, class >= discretization values)))) +                      tm_fill("gray1", 
alpha = 0.5) +           tm_layout("title", frame = F, legend.frame = T, title.bg.color = T) +           tm_scale_bar(position = c("right", "bottom")) +           tm_add_legend('fill', labels = c("discretization values"),                    col = c("palegoldenrod","coral","violetred","darkorchid4","gray1"), alpha = 0.8, title = ' ') +           tm_legend(position=c("left", "bottom")) 
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Table A1. Cluster counts, evolution and characteristics 

Tree C1 C2 C3 C4 S1 S2 S3 S4 S5 
Count 2013-20114 9.908 6.855 6.139 42.366 132.691 38.422 115.827 5.742 70.925 
Evolution (%) 37.24 13.28 11.17 18.09 -18.54 -19.48 -16.95 -32.26 26.03 
Common 
characteristics Collective Single family home 

Adjoining Detached 

Individual 
characteristics Large Elongat

ed 
Adjoining 
& narrow Small Verys mall 

& elongated Intricate 
Elongated 
&/or 
compact 

Large Small to 
mid-size 

K-MEANS C1 C2 C3 C4 S1 S2 S3 S4 S5 
Count 2013-2014 7.959 32.458 14.590 10.261 65.929 17.987 64.572 97.164 117.955 
Evolution (%) -15.04 29.19 23.45 22.78 -58.16 -11.15 22.02 -15.41 70.34 
Common 
characteristics Collective single family home 

Individual 
characteristics 

Very 
small & 
compact 

Large & 
compact 

Adjoining, 
large & 
compact 

Tall, 
intricate &
/or 
elongated 

Adjoining & 
elongated Large Intricate & 

detached 

Compact, 
mostly 
detached 
& elong 
ated 

Small 
(mostly 
compact/adj
oining) 

SOM 1 2 3 4 5 6 7 8 9 
Count 2013-2014 120.465 8.559 83.727 131.032 22.074 42.261 5.712 9.086 5.959 
Evolution -13.53 -57.46 -47.17 69.03 14.04 9.54% -10.09 102.18 12.63 

Individual 
characteristics 

Detached
& 
compact 

Adjoini
ng& 
compact 

Elongated, 
adjoining 
& small 

Adjoining, 
compact 
&small 

Detached & 
mid-size Average 

Tall, 
narrow & 
elongated 

Adjoining, 
large & 
compact 

Tall, narrow 
&/or 
elongated 
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	1. Introduction
	Cities are in a perpetual flow of transformations with urban areas that constantly make, unmake and remake themselves. Different models are discussed in the literature, mostly focusing on the benefits and/or drawbacks of the increase (urban sprawl, co...
	The paper is organized as follows. Section 2 provides a literature review on the evolution of building types in contemporary cities, and on the methodologies that focused on the spatial evolution of the urban landscape. Section 3 presents the data req...
	2. Spatial analysis and urban form transformations
	As an increasing percentage of the world population comes to live in urban areas, the massive urbanization of human societies appears as both a source of problems and a possible solution in building sustainable urban futures (Coutard et al., 2013). Th...
	In the field of urban morphology, countless studies about the physical transformation of the cities have been conducted. Those studies follow several schools of thoughts, such as the one of M.R.G. Conzen, or Saverio Muratori and Gianfranco Caniggia, t...
	In this respect, the quantitative analyses carried out within this paper have a more limited focus. They will concentrate on the morphometrics of building types and on the spatial and temporal analysis of their distribution within a large metropolitan...
	In order to focus on the quantitative and spatial dynamics of building types, one needs spatiotemporal data which can be found within exhaustive GIS building inventories, such as the Japanese Zenrin Maps® or the French BD TOPO®. On the one hand, major...
	3. Data preparation
	3.1. Minimum data requirement
	The bare minimum dataset required to implement different algorithmic techniques to work on building type evolutions is a GIS layer of building footprints with multiple years of consistency (at least two different periods). The gap in years between the...
	3.2. Test region and data presentation
	The test region is an area of 15 by 18 km in Japan containing central Osaka and its surroundings (Figure 1a). As stated in section 2, the peculiarities of Japan are that houses and small collective residential complexes are easily demolished to be rec...
	/
	Figure 1. a. Osaka, openstreetmap. b) buildings in Osaka in 2013-14  (zmap town ii)
	ZENRIN Residential Maps (Zmap TOWN II0F ), which are digital maps focusing on the building footprints throughout Japan, are extracted and compiled into a GeoPackage file for the extent of the test region in 2003/04 and in 2013/14 (Figure 1b). The orig...
	3.3. Indicator computation
	The first step consists in computing a basic series of morphometric indicators for each building made of: the building footprint surface (area), the total amount of usable floor area, elongation, convexityand the number of adjoining neighbors. Elongat...
	Appendices algorithm IC (Indicators Computation) shows how indicators can be easily computed within R for a standard GIS building inventory. For the number of adjoining neighbors, we operate a small buffer (algorithm IC,# neighbors 1/2) with the aim o...
	4. Residential buildings: classification of types
	Once a basic set of indicators has been calculated for each input layer, the next step is to perform a classification of building types that can be applied to the different time points. To be more specific, with such a basic set of morphometric indica...
	4.1. Classification with expert knowledge
	When expert knowledge is available, a simple and efficient method of classification is found in a supervised tree-like classificatory model. Successive tests on attributes split the original dataset into different class labels that have been defined b...
	Figure 2 is a flowchart visualization of the successive tests implemented for the Zenrin® layers. The relevance of these building types in Japanese urban areas is derived from expert knowledge and literature (e.g. Shelton, 2012; Bonnin et al., 2014; P...
	/
	Figure 2. Visualization of the tests implemented for the Zenrin ® layers
	4.2. Classification with limited expert knowledge
	If expert knowledge is limited, but still available to some extent, it is possible to subset the data in a supervised fashion prior to a series of unsupervised cluster analyses. It amounts to performing a form of constraint-based clustering. For examp...
	/
	Figure 3. Cluster Map and Profiles for individual Clusters for Collective Housing (top) and Single-Family Homes (bottom)
	Using the structure of algorithm CLEK, two different k-means are performed on the Zenrin® data, one for collective (attribute 1663) and one for single-family homes (attribute 1664). Two random subsets are draw and merged from each period for collectiv...
	The left side of Figure 3 is a possible representation of the two clustering within two-dimensional spaces made by extracting the first two principal components (package “factoextra”) along which the variation in the data is maximal. The right side of...
	The charts point at highly differentiated profiles within each model. Regarding collective housing, C1 are compact small-size complexes, including the Japanese micro-apartments, C2 are mid-to-high-rise compact complexes, C3 are high-to-mid-rise adjoin...
	4.3. Classification with no expert knowledge
	Finally, in the case of a total lack of expert knowledge, any widely known unsupervised clustering algorithms can be used, such as those mentioned in section 4.2. The main issues with unsupervised clustering are the assessment of the quality of the pa...
	Figure 4 displays the consensus results (n_clusters function from the parameters package, Lüdecke et al., 2020) of a random sample made of 10% of the inputs from both periods of the Zenrin® data. Since 30 indexes are compared (Elbow, Silhouette index,...
	/
	Figure 4. Consensus between 30 indexes looking at the Optimal Number of Clusters for a sample of the Zenrin ® data
	Appendices algorithm CNEK (Clustering with No Expert Knowledge) performs SOM clustering using, once again, a training sample made of two random subsets from two time points each possessing 60% of the initial inputs. This time, we do not distinguish co...
	/
	Figure 5. Self-Organizing Map outputs using a sample from both periods of the Zenrin ® dataa. Training Progress b. Heatmap for direct neighbors c. Heatmap for floor-area d. Heatmap for Elongation e. Heatmap for Convexity f. Clustering results
	Figure 5 displays the outputs of a SOM clustering performed on a Zenrin® sample made of 60% of the initial inputs merged together from each period. As for the k-means clustering, data have been scaled, normalized and symmetrized. The first thing to co...
	5. Validation and spatial analysis
	5.1. Validation
	In supervised classification applications, such as for the tree-like classificatory model performed in section 4.1, quality metrics are of little use regarding the evaluation of the class label attributions. For classification, a good way to check the...
	Cluster validity for unsupervised clustering is a complex task extensively discussed in the literature (Halkidi et al., 2001; Charrad et al., 2014). It focuses on evaluating to which extent clusters are compact and well-separated. Yet, those values ha...
	5.2. Correspondences and spatial analysis
	In the previous section, we performed three different methods that have been applied to the different periods associated to the Zenrin® data. To summarize, algorithm CEK, CLEK and CNEK are individually able to provide a class label, that can be compar...
	Using the structure of algorithm GSC, we calculate the number of building types per cell, per period, and the temporal evolutions of each type. To map the count and evolution of building types, we use the “tmap” package, which allows building thematic...
	Table 1. Rand index scores between the 3 models (random sample of 9000 inputs with classified labels for each method, 1/9 per cluster)
	* output space from which the random sample is taken
	Various measures for comparing classification and clustering similarities exist such as the Rand (Rand, 1971) or the Jaccard index (Jaccard, 1901). Table 1 provides the Rand index scores between the models, which vary between 0 (no correspondence betw...
	Figure 6 shows the count of building types per cell in 2013-14 for four selected class labels of each of the three classification and clustering models performed in section 4. For each and every cluster, different localized aggregates and/or dispersio...
	/
	Figure 6. Count of building types per cell in 2013-14 for selected profiles of each model (tree-like classificatory model, double k-means and self-organizing map; class titles available in Table A1)
	Figure 7 shows the evolution of building types per cell in between 2003-04 and 2013-14 for the very same class labels than those mapped in Figure 6. The evolution maps for tall and/or large-size buildings show hot and cold spots within and around the ...
	/
	Figure 7. Evolution of building types per cell between 2003-04 and 2013-14 for selected profiles of each model (tree-like classificatory model, double k-means and self-organizing map; class titles available in Table A1)
	Finally, large-size detached houses are also gradually disappearing (S4 DTs and S2 k-means), while mid-size detached houses (Cluster 5) show hot and cold spots according to the locations.
	6. Conclusion and discussion
	This paper puts forward several recommendations and suggestions while processing spatiotemporal data on building stock with machine learning algorithms. Based on the availability of expert knowledge, supervised tree-like classificatory model, constrai...
	More specifically, we made use of the Japanese Zenrin® GIS building inventory at two different dates for studying the spatial location and temporal evolution of building types. The first and most important condition is that high quality GIS layers of ...
	Regarding the clustering applications, the methodological propositions could be improved, especially by focusing on maintaining output coherence over different settings or initializations. A matrix of similarity indexes can for example be calculated a...
	Yet, interesting preliminary results already stand out regarding specific locations and evolution trajectories of certain building types in Osaka, Japan. It shows that the ongoing transformations that characterize urban areas are linked, at least to s...
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	Appendices
	R session: information and package versions
	1: R version 4.2.0 (2022-04-22 ucrt)
	2: Platform: x86_64-w64-mingw32/x64 (64-bit)
	3: Running under: Windows 10 x64 (build 19044)
	4: kohonen_3.0.11      exactextractr_0.8.2 tmap_3.3-3          raster_3.5-15       sp_1.5-0
	5: forcats_0.5.1       stringr_1.4.0       dplyr_1.0.9         purrr_0.3.4         readr_2.1.2
	6: tidyr_1.2.0         tibble_3.1.7        ggplot2_3.3.6       tidyverse_1.3.1     lwgeom_0.2-8
	7: sf_1.0-7        fmsb_0.7.3             factoextra_1.0.7            FNN_1.1.3.1        tmaptools_3.1-1
	8: tmap_3.3-3           OpenStreetMap_0.3.4
	Algorithm IC: Indicators computation on a GIS inventory named “DATA”
	1:     DATA_BUFFER <- st_buffer(DATA, 0.1) # neighbors 1/2
	2:     DATA <- cbind(DATA, lengths(st_intersects(DATA _BUFFER)) - 1) # neighbors 2/2
	3:     DATA$area<- st_area(DATA) # area 1/1
	4:     DATA$floor_area<- DATA$floor* DATA$area# floor area 1/1
	5:     DATA$perimeter<- st_perimeter(DATA) # elongation 1/2
	6:     DATA$elongation<- (pi*(2*(sqrt(DATA$area/pi))))/DATA$perimeter# elongation  2/2
	7:     DATA_HULL <- st_convex_hull(BU0304) # convexity 1/2
	8:     DATA$convexity<- DATA$area/st_area(DATA_HULL) # convexity 2/2
	Algorithm CEK: Asupervised decision tree function with 3 classes applied on a GIS inventory named “DATA”
	1: DTs <- function(row) {
	2:    X1 <- row[['var1']]
	3:    X2 <- row[['var2']]
	4:    X3 <- row[['var3']]
	5:    if(X1 == 1363& X2 >1000 & X2 == 0) {   # condition examples
	6:      class <- 'C1'# label attribution
	7:    }
	8:    else if(conditions) {
	9:      class <- 'C2'
	10:  }
	11:   else if(conditions) {
	12:     class <- 'C3'
	13:  }
	14:    return(class)
	15: }
	16: DATA$class<- as.factor(apply(DATA, 1, DTs))
	Algorithm CLEK: k-means with multi-temporal subset made of DATA 1 and 2, collective and single-family homes and test data mapping
	1: sample <- rbind(subset(DATA1, var == condition)[sample(1:100, round(nrow(subset(DATA1, var ==
	condition))*0.6), replace=TRUE),], subset(DATA2, var == condition)[sample(1:100,
	round(nrow(subset(DATA2, var == condition))*0.6), replace=TRUE),])# condition shall be collective OR single-family homes
	2: kmeans.sample<- kmeans(as.matrix(sample[,c(5:8)]), 4) # 5:8 variables used for clustering; 4: number of clusters
	3: kmeans.mapping<- cbind(subset(DATA1, var == condition), cl.kmeans = get.knnx(kmeans.sample$center,
	subset(DATA1, var == condition)[,c(5:8)], 1)$nn.index[,1]) # mapping example for DATA 1
	Algorithm CNEK: SOM with multi-temporal subset made of DATA 1 and 2 and test data mapping
	1: sample <- data.matrix(rbind(subset(DATA1, var == condition)[sample(1:100, round(nrow(subset(BUILDING1,
	var == condition))*0.6), replace=TRUE),], subset(DATA2, var == condition)[sample(1:100,
	round(nrow(subset(DATA2, var == condition))*0.6), replace=TRUE),])# condition shall be collective AND single-family homes
	2: som.grid<- somgrid(xdim = 15, ydim = 15, topo = 'hexagonal', toroidal = F) # setting the map to 225 nodes
	3: som.model<- som(sample, maxNA.fraction = 1, grid = som.grid, keep.data = T, rlen = 500) # SOM clustering
	4: som.hc.cluster<- as.data.frame(cbind("nodes_IDS" = 1:225, "hc_clusters" =
	cutree(hclust(dist(som.model$codes[[1]])), 9))) # hierarchical clustering with 9 clusters
	5: map.DATA1 <- kohonen::map(som.model, DATA1) # test data mapping example for DATA1
	6: DATA1.clsom <- cbind(DATA1,"nodes_IDS" = map.DATA1[[1]]) # add SOM nodes ID to original data
	7: DATA1.clhcsom <- DATA1.clsom %>%
	left_join(som.hc.cluster, by = "nodes_IDS") # get correspondences between SOM nodes ID and hierarchical clustering
	clusters ID
	Algorithm GSC: Grid superimposition and count of inputs DATA1 and 2 per cell
	1:     mesh <- st_sf(st_make_grid(DATA1, cellsize = 250)) # 250 meters grid creation and superimposition over the test region DATA1
	2:     mesh<-mesh[lengths(st_intersects(mesh, DATA1)) >0,] # filter cells with no overlap with buildings
	3:     DATA1_C <- tapply(st_geometry(DATA1), DATA1$class, FUN = function(x) lengths(st_intersects(mesh, x))) # count inputs per cell for DATA1
	4:     res.temp<- cbind(mesh, data.frame(sapply(DATA1_C, function(x) x[1:max(lengths(DATA1_C))]))) # df with DATA1
	5:     DATA2_C <- tapply(st_geometry(DATA2), DATA2$class, FUN = function(x) lengths(st_intersects(mesh, x))) # count inputs per cell for DATA2
	6:     MESH.DAT <- cbind(res.temp, data.frame(sapply(DATA2_C, function(x) x[1:max(lengths(DATA2_C))]))) # df with DATA1 and DATA2
	Algorithm LSM: Spatial mapping, example for a class label aggregated with MESH.DAT
	1:       osm_test_region<- read_osm(MESH.DAT, ext=1) # import basemap
	2:       tm_shape(osm_test_region) + tm_rgb(alpha = 0.6) + # plot basemap with transparency
	tm_shape(st_geometry(st_union(subset(MESH.DAT, class == discretization values)))) + tm_fill("palegoldenrod", alpha = 0.6) +
	tm_shape(st_geometry(st_union(subset(MESH.DAT, class >= discretization values)))) +
	tm_fill("coral", alpha = 0.7) +
	tm_shape(st_geometry(st_union(subset(MESH.DAT, class >= discretization values)))) +    tm_fill("violetred", alpha = 0.5) +
	tm_shape(st_geometry(st_union(subset(MESH.DAT, class >= discretization values)))) +              tm_fill("darkorchid4", alpha = 0.5) +
	tm_shape(st_geometry(st_union(subset(MESH.DAT, class >= discretization values)))) +                      tm_fill("gray1", alpha = 0.5) +
	tm_layout("title", frame = F, legend.frame = T, title.bg.color = T) +
	tm_scale_bar(position = c("right", "bottom")) +
	tm_add_legend('fill', labels = c("discretization values"),
	col = c("palegoldenrod","coral","violetred","darkorchid4","gray1"), alpha = 0.8, title = ' ') +
	tm_legend(position=c("left", "bottom"))
	Table A1. Cluster counts, evolution and characteristics
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