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ABSTRACT

Analytical solutions for three different flat plate conjugate heat transfer cases are presented. The cases are as follows:transient heat transfer of a thin
plate with uniform heat generation; the Luikov problem in which one plate surface is kept in a constant temperature and the other one is cooled by
forced convection ; and a modified Luikov problem with heat generation on one surface and convection on both surfaces of the plate. All the cases are
solved for both laminar and turbulent flows with Pr & 1. The solutions in the paper are based on the superposition principle and analytical expressions
are used to couple the temperature and the heat flux distributions on the surface of the plate. The results of the Luikov problem and transient plate are
also compared to other solutions presented earlier in the literature.
Keywords: flat plate, conjugate heat transfer, Luikov problem, fractional calculus

1. INTRODUCTION

Convective heat transfer problems are difficult to solve even for fixed
boundary conditions. The solution process is even more complicated when
conduction or thermal energy storage has to be taken into account. In
these conjugated cases, analytical solutions are usually obtained only by
making rather rough approximations such as using a constant convective
heat transfer coefficient. For turbulent flows this type of assumption is
often adequate but for laminar flows this may give rise to to significant
errors.

Conjugate heat transfer, in which conduction in a plate and convection
from the surfaces are coupled together, has been discussed in a number
of papers. The concept of conjugated heat transfer was introduced by
Perelmann (1961). A very important problem in the field was formulated
by Luikov, who presented the solution when one of the plate surfaces
has a fixed constant temperature and the other one was cooled by forced
laminar flow (Luikov, 1974). Subsequently, flat plate problems have been
treated in many papers (Payvar, 1977; Karvinen, 1978a; Pozzi and Lupo,
1989; Pop and Ingham, 1993; Treviño et al., 1997; Treviño and Liñán,
1984; Mosaad, 1999). Two-dimensional analyses, in which the effect of
longitudinal and transversal conduction are included are also found in the
literature (Vynnycki et al., 1998; Chida, 2000).

The reason for the present study was to understand the cooling prob-
lem of an electroluminescence display, which consists of a plate, on the
other side of which a thin active film of different material is processed.
After the manufacturing process the display must be aged in order to obtain
the desired properties for the display. In the ageing process a uniform heat
flux greater than that in actual use is generated in an active layer and the
plate has to be cooled by forced convection from both surfaces in order to
prevent over-heating.

∗Corresponding author. Email: reijo.karvinen@tut.fi

Fig. 1 Thin plate with uniform heat generation and convectively cooled
from both surfaces.

It became evident that a similar kind of solution method as used to
solve the ageing problem of a display can also be applied to other types of
conjugate problems. Thus, analytical solutions of a transient thin flat plate
problem and the treatment of classical Luikov problem are included in the
paper.

The first specific problem discussed is transient heat transfer of a thin
plate shown in Fig. 1. The goal is to find the transient temperature of a
thin plate cooled by forced convection, when there is a step change of a
spatially uniform heat generation in the plate. The problem has been solved
previously by one of the authors both numerically and experimentally
(Karvinen, 1978b). However, to the authors knowledge no analytical
solution of the problem has earlier been presented.

The second problem to be solved is the classical Luikov problem
shown in Fig. 2. The goal is to find the temperature difference across
a plate when one surface is kept at a uniform temperature and the other
surface is cooled by forced convection.
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Fig. 2 Plate with uniform temperature Tb at lower surface and convectively
cooled at upper surface (Luikov problem).

Fig. 3 A plate with uniform heat generation φ′′ at lower surface and
convection cooling at both surfaces.

The third problem is the electroluminescence display problem already
discussed briefly above and shown in Fig. 3. The lower surface of the
plate is subject to a constant heat flux and the plate is cooled by forced
convection from both surfaces. No solution of this problem has previously
been published.

The conjugated problems above have usually been solved by starting
from the governing partial equations. In this paper a different type of
approach is adopted. Due to the linearity of the convection problem with
respect to the temperature boundary condition, the superposition principle
can be used. The heat flux distribution at the plate surface and the surface
temperature can be coupled very acccurately together with an integral
equation.

2. PLATE SURFACE TEMPERATURE WITH ARBITRARY
HEAT FLUX

The surface temperature T (x) for a prescribed surface heat flux distribu-
tion q(x) can be expressed as

T (x)− T∞ =
Re−mx Pr−n

Ckf

∫ x

0

[
1−

( s
x

)γ]β−1

q(s)ds (1)

Equation (1) is obtained using an integral method for a constant surface
temperature plate with an unheated starting length, which can be extended
for any arbitrary variation in surface temperature or heat flux by applying
the method of superposition. When deriving Eq. (1) some approximations
have been done. In the case of a laminar boundary layer it is assumed that
the hydrodynamic boundary layer is thicker than the thermal boundary
layer, which means that the Prandtl number is close to 1. In the case of
a turbulent boundary layer the derivation of Eq. (1) is even more sophis-
ticated including for instance the assumption that the turbulent Prandtl
number is 1 (see e.g. Kays et al. (2005)). In spite of approximations the
accuracy of Eq. (1) is very good and it is valid for the both laminar and
turbulent boundary layers when Pr & 1. The constants C, m, n, γ and β
are given in Table 1 for laminar and turbulent flows.

3. TRANSIENT HEAT TRANSFER OF THIN PLATE

For a thin plate in Fig. 1, the temperature distribution in the plate is
constant in y-dirction. At time t = 0 the temperature of the plate equals
that of the free stream. For t > 0 there is spatially uniform heat generation
φ′′′ in the plate. It is well-known that in actual practice the time constant

Table 1 Constants in Eq. (1) for laminar and turbulent flows

Flow type C γ β m n

Laminar 1.605 3/4 1/3 1/2 1/3
Turbulent 0.293 9/10 1/9 4/5 3/5

of the thermal boundary layer is much smaller than that of the wall, the
order of magnitude being seconds for step change of surface temperature.
In that case, the problem can be as a quasi-static, i.e. convection is steady-
state but depends on the surface temperature. Thus, neglecting streamwise
conduction in the plate, the energy balance yields

2q(x, t) = φ′′′b− ρcpb
∂T (x, t)

∂t
(2)

The solution is sought for the dimensionless variable

θns(x, t) =
T (x, t)− T∞
Tss(x)− T∞

(3)

where

Tss(x)− T∞ =
B(β, 1/γ)xφ′′′b

2CkfγPr
nRemx

(4)

is the steady state temperature distribution of the thin plate. Substituting
Eqs. (2)–(4) into Eq. (1) and performing the change of variables

τ =

(
kfRe

m
x Pr

nt

xρcpb

) γ
m−1

(5)

and
τ ′

τ
=
( s
x

)γ
(6)

after algebraic calculation, yields

θns(τ) = 1− τ
1−β− 1

γ

C(m− 1)

∫ τ

0

(τ − τ ′)β−1τ
′ 2−m
γ

dθns
dτ ′

dτ ′ (7)

Using the Riemann-Liouville fractional integral operator D, defined in the
appendix by Eq. (35), the integro-differential equation (7) can be rewritten
as

θns(τ) = 1− Γ(β)τ
1−β− 1

γ

C(m− 1)
D−βτ

(
τ

2−m
γ

dθns
dτ

)
(8)

Next, the generalised Leibniz rule given by Eq. (37) is applied to Eq. (8).
It yields an ordinary differential equation of infinite order

θns(τ) = 1− Γ(β)τ
1−β− 1

γ

C(m− 1)

∞∑
i=0

(
−β
i

)(
D−β−iτ τ

2−m
γ

) di+1θns
dτ i+1

(9)

Performing the change of variables

K =
kfRe

m
x Pr

nt

xρcpb
= τ

m−1
γ

and using the chain rule for (i+ 1)th order differentiation of a composite
function (see appendix, Eq. (39)) finally yields

θns(K) = 1 +

∞∑
j=1

ajK
j−1 d

jθns
dKj

(10)

where

aj = −
Γ(β)Γ( 2−m

γ
+ 1)

C(m− 1)
×

∞∑
i=j−1

j∑
r=0

(
−β
i

)(
j
r

) (−1)r
∏0
p=−i

(
j−r
γ

(m− 1) + p
)

Γ( 2−m
γ

+ β + i+ 1)Γ(j + 1)
(11)
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Fig. 4 Thin plate transient temperature and comparison to measurements.
Laminar flow.

Eq. (10) is still an ordinary differential equation of infinite order. Its
solution can be expressed in the form of a power series as

θns(K) =

∞∑
i=1

ciK
i (12)

Substituting Eq. (12) into Eq. (10) and taking into account the initial
condition θns(0) = 0 results in an iterative formula for ci

c1 = −a−1
1

ci+1 =

(
i+1∑
j=1

Γ(i+ 2)

Γ(i+ 2− j)aj

)−1

ci, i = 1, 2, 3, ... (13)

In Fig. 4 the results from the present calculation for the transient heat
transfer are compared to the measurements (Karvinen, 1978b), when the
boundary layer is laminar. The numerical solution of Eq. (2) also gives the
same result. In Fig. 4 the result (lower curve) is shown if use is made of a
steady state heat transfer coefficient h for a uniform heat flux distribution
from Nu = hx/k = 0.46Re

1/2
x Pr1/3. It can be seen that for a laminar

boundary layer the effect of varying surface temperature is significant.
For a turbulent boundary layer, the effect is very small. The measured
results are obtained using a step change in heat generation in very thin
aluminum (b = 0.019mm) and stainless steel (b = 0.5mm) sheets. The
series solution was found to be well convergent at least up to the value
K = 10. For values K > 10 there is no need for computation since
θns practically equals 1. The present results prove that the quasi-static
approach is valid in practical applications where walls are much thicker
than in measurements above in Fig. 4.

4. CONJUGATE HEAT TRANSFER WITH CONSTANT
TEMPERATURE ON ONE SURFACE

The classical steady state conjugated problem in Fig. 2 can be treated in
a very similar way to that described for a thin plate above. Eq. (1) still
holds for the upper surface of the plate. For a relatively thin plate, the
temperature distribution in the y-direction can be assumed to be linear
(Luikov, 1974). Thus, the heat flux density from the upper surface of the
plate can be assumed to be

q(x) =
ks
b

(T (x)− Tb) (14)

In the case of a short and thick plate the leading edge region should be
treated as a two-dimensional problem where stagnation point convection
is also included. The solution is sought in terms of the dimensionless
variable

θT (τ) =
Tb − T (x)

Tb − T∞
(15)

An asymptotic series solution for the θT has been found previously by
Payvar (1977). The solution can be found by expanding θT as power series
in the reciprocal of Brx. The solution is

θT (Brx) =

∞∑
i=0

diBr
−i
x (16)

where d0 = 1 and

di+1 = −di
B
(
β, 1+i(1−m)

γ

)
Cγ

(17)

However, the applicability of Eq. (16) is limited because the series diverges
for small Brx. The solution presented below overcomes this limitation.
Substituting Eq. (14) into Eq. (1) and performing the change of variables

τ = Br
γ

m−1
x (18)

and
τ ′

τ
=
( s
x

)γ
(19)

one obtains

θT (τ) = 1− Γ(β)τ
1−β−m

γ

Cγ
D−βτ

[
τ

1
γ
−1
θT
]

(20)

Manipulating Eq. (20) as in Section 3, the following differential equation
results

θT (Brx) = 1 +

∞∑
j=0

ajBr
j−1
x

djθT
d(Brx)j

(21)

where

aj = −
Γ(β)Γ( 1

γ
)

Cγ
×

∞∑
i=j

j∑
r=0

(
−β
i

)(
j
r

) (−1)r
∏0
p=−i+1

(
j−r
γ

(m− 1) + p
)

Γ( 1
γ

+ β + i)Γ(j + 1)
(22)

The solution can again be expressed in the power series form as

θT =

∞∑
i=1

ciBr
i
x (23)

Substituting Eq. (23) into Eq. (21), the following iterative formula for ci
can be obtained

c1 =
−1

a0 + a1

ci+1 =

(
i+1∑
j=1

Γ(i+ 2)

Γ(i+ 2− j)aj

)−1

ci, i = 1, 2, 3, ... (24)

The series solution in Eq. (23) can be used for small Brx but it diverges
for large Brx.

Results of the conjugated problem with a constant temperature at the
lower surface are compared to those of other authors in Fig. 5. The present
results were computed from Eqs. (22)-(24) for Brx values below 1. It can
be seen that the transition to large Brx results of Payvar computed from
Eqs. (16)-(17), happens smoothly. In the figure the small Brx asymptotes
of Luikov (1974) and Payvar (1977) are also shown.
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Fig. 5 Comparison of present solution with others (Luikov problem). The
Payvar solution shown for Brx > 1.

5. ELECTROLUMINESCENCE DISPLAY

The problem in Fig. 3 can also be solved using similar techniques to the
two cases above. Assuming a linear temperature profile in the y-direction
and using Eq. (1), the temperature distribution of the upper surface of the
plate can be written as

T2(x)− T∞ =
Re−mx Pr−n

Ckf
×∫ x

0

[
1−

( s
x

)γ]β−1 ks
b

[T1(s)− T2(s)] ds (25)

On the other hand, for the lower surface temperature one obtains

T1(x)− T∞ = A
Re−mx Pr−n

Ckf
×∫ x

0

[
1−

( s
x

)γ]β−1
(
φ′′ − ks

b
[T1(s)− T2(s)]

)
ds (26)

where

A =

(
Re−mx Pr−n

Ckf

)
1(

Re−mx Pr−n

Ckf

)
2

(27)

The parameter A obtains the value A = 1 in the usual case of identical
flows on both surfaces.

It is relatively straightforward to obtain an asymptotic series solution
for large Brx. The solution is

θq(Brx) =

∞∑
i=0

diBr
−i
x (28)

where d0 = 1 and

di = −di−1
(A+ 1)

C
B

(
β,

1 + i(1−m)

γ

)
(29)

The analysis to obtain a solution suitable for small values of Brx is again
slightly more involved. After substracting Eq. (25) from Eq. (26) and
performing similar operations as in the previous section, one obtains the
ordinary differential equation

θq(Brx) = A− (1 +A)

∞∑
j=0

ajBr
j−1
x

djθq
d(Brx)j

(30)

where

θq(Brx) =
CkfγRe

m
x Pr

n (T1(x)− T2(x))

B(β, 1
γ

)xφ′′
(31)
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Fig. 6 Results for electroluminescence display (A = 1).

is the dimensionless temperature difference across the plate, which is
defined so that θq = 1 in the limit as Brx → ∞ and all the heat leaves
the plate from the lower surface. The constants aj in Eq. (31) are given by

aj =
Γ(β)Γ( 2−m

γ
)

Cγ
×

∞∑
i=j

j∑
r=0

(
−β
i

)(
j
r

) (−1)r
∏0
p=−i+1

(
j−r
γ

(m− 1) + p
)

Γ( 2−m
γ

+ β + i)Γ(j + 1)
(32)

The solution of Eq. (30) can be found in the form

θq(Brx) =

∞∑
i=1

ciBr
i
x (33)

in which the coefficients ci are found from the following formula

c1 =
A

(1 +A)(a0 + a1)

ci+1 = −

(
(1 +A)

i+1∑
j=0

Γ(i+ 2)

Γ(i+ 2− j)aj

)−1

ci ,

i = 1, 2, 3, ... (34)

The solution in Eq. (34) is again only suitable for small values ofBrx.
The results for the last conjugated problem, uniform heat generation at
lower surface and convective cooling on both surfaces of the plate (Fig. 3),
are shown in Fig. 6. The results shown are for the parameter value A = 1,
which corresponds to the most common case of identical boundary layers
on both sides of the plate. The transition from the small Brx asymptote to
the largeBrx asymptote happens again smoothly. The smallBrx solution
in Eqs. (32)–(34) is used for Brx < 3.2 and the large Brx solution in
Eqs. (28)–(29) is used for Brx > 3.2.

6. CONCLUSIONS

Analytical solutions for a class of conjugated convective heat transfer
problems have been developed. Some of the results have also been com-
pared with those existing in the literature.The solutions are based on the
superposition method in which an analytical exspression is used to couple
together an arbitrarily varing surface heat flux and surface temperature in
a stream-wise direction. This type of approach leads to integral equations
which have been solved with the help of the Riemann- Liouville integral
operator.

Three specific examples are solved: transient temperature of a thin
plate with a step heat input, the traditional Luikov problem and the mod-
ified plate problem with a uniform heat generation on one plate surface
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and convectively cooled at both surfaces.The last problem is a practical
application of an electroluminescence display production process.

As to the importance and generality of the results following can be
mentioned: The transient solution of a thin plate with a uniform step
heat flux shows that these types of problem can be solved using a quasi-
steady approach in which convection is treated as a steady-state but the
stream-wise variation of the surface temperature is taken into account.
The solution presented is correct for every practical application, because
the solution is given using a non-dimensional variable which includes all
thermal,physical and geometrical properties.The same is also true for the
solutions of the Luikov problem and the modified problem.

If the boundary layer is turbulent a fixed heat transfer coefficient
based on an isothermal surface can be used but for a laminar boundary
layer, the effect of surface temperature distribution must be taken into
account.
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NOMENCLATURE

A ratio of boundary layer properties, given by Eq. (26)
aj coefficients in differential equations
b plate thickness
B Beta function
Brx Brun number, kf

ks

b
x
Remx Pr

n

C constant in Eq. (1)
c coefficients in power series solutions
cp heat capacity of the plate
D Riemann-Liouville fractional integration operator
d coefficients in power series solutions
i, j summation indices
k thermal conductivity
K dimensionless variable, kfRe

m
x Pr

nt

xρcpb

m,n parameters in Eq. (1)
Pr Prandtl number
p product index
q convective heat flux
r summation index
Rex Reynolds number, U∞x/ν
s dummy variable in integral Eq. (1)
T temperature
t time
U∞ free steam velocity
x streamwise coordinate
y coordinate normal to plate
z general variable
Greek Symbols
β, γ constants in Eq. (1)
φ′′ heat generation per surface area
φ′′′ heat generation per volume
Γ Gamma function
λ general exponent
ρ density of the plate
θns dimensionless transient temperature defined by Eq. (3)
θq dimensionless temperature difference across the plate defined
by Eq. (31)
θT dimensionless temperature difference across the plate defined
by Eq. (15)
τ variable used to simplify solution, defined by Eqs. (5) and (18)
τ ′ dummy variable defined by Eqs. (6) and (19)
Subscripts
1 lower surface of plate

2 upper surface of plate
f fluid
s solid
ss steady state
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APPENDIX: FRACTIONAL CALCULUS AND
DIFFERENTIATION OF COMPOSITE FUNCTIONS

Certain type of integrals can be presented with the help of the Riemann-
Liouville integral operator D, which is defined as (Osler, 1970b; Tu et al.,
2001):

D−βz f(z) =
1

Γ(β)

∫ z

0

f(ξ)dξ

(z − ξ)1−β (35)

The definition in Eq. 35 is valid for every positive real number β. The
definition can easily be extended for negative or even complex values of
β but it is not necessary for purposes of this paper. Fractional calculus
is a generalisation of ordinary differential calculus. For positive integer
values of β the definition in Eq. 35 reduces to βth-order integration of
the function f(z). This fact can easily be proven by repeated partial
integration.

The Riemann-Liouville integral of a power function is given by

D−βz xλ =
Γ(λ+ 1)

Γ(λ+ β + 1)
zλ+β (36)

The Riemann-Liouville operators have several properties that make it
easier to handle the integral equations. One of the most important of them
is the generalised Leibniz rule, (Osler, 1970b; Tu et al., 2001):

D−βz (f(z)g(z)) =

∞∑
i=0

(
−β
i

)
D−β−jz {g(z)} d

i

dzi
{f(z)} (37)

where (
−β
i

)
=

Γ(1− β)

Γ(1− β − i)Γ(1 + i)
(38)

is the generalised binomial coefficient.
In Eq. (37) there exists ith order differentiation of the function f(z),

where i is a positive integer. It frequently occurs that the function f(z)
is a composite function, that is f(z) = F (h(z)). In this case the dif-
ferentiation can be carried out with the help of the following chain rule
formula (Osler, 1970a):

di

dzi
f(z) =

i∑
j=0

Uj(z)

j!

dj

d(h(z))j
f(z) (39)

where

Uj(z) =

j∑
r=0

(
j
r

)
(−h(z))r

di

dzi
(h(z))j−r (40)
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