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ABSTRACT 
A gas-liquid solute transfer process initiated in a closed vessel can exhibit Rayleigh-Bénard-Marangoni (RBM) convection enhanced mass transfer. 
For short exposure times experimental and theoretical results demonstrate that for deep liquid systems prior to solute penetration across the depth of 
the fluid, the stability thresholds of the system decreases with time. For thin liquid layers at longer exposure times the mass transfer enhancement 
under RBM convection can be affected  in two ways: (1) solute penetration to the bottom liquid-solid boundary causing a departure from a 
penetration type concentration profile; (2) solute penetration to the top gas-solid boundary in the gas phase resulting in deviations of  mass transfer 
Biot number from the penetration type of Biot number. These two effects have been investigated by imposing non-diffusing boundary conditions in 
the liquid phase as well as the gas phase. For short contact times, the critical thresholds of convection evaluated via a quasi-static stability analysis 
under non-diffusing boundary conditions are consistent with those under penetration type concentration profile.  However, at longer exposure times 
when solute has completely penetrated the entire liquid depth, there can only be a limited period of time when convective instability is possible. 
Within this period there is a local maximum of convective intensity, thereby opening up the possibility of optimising gas-liquid mass transfer 
operations with respect to Rayleigh and Marangoni convection. Experimental results supporting these predictions are presented.   
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1. INTRODUCTION 
Heat- and mass-transfer enhancement due to Rayleigh-Bénard (RB) 
convection and Bénard-Marangoni (BM) convection are well known 
phenomena and continue to be of importance in many engineering 
applications such as evaporators, absorbers, heat exchangers and falling 
film reactors (Rayleigh, 1916; Pearson 1959; Buffone and Sefiane, 
2004; Scheid et al., 2008). Theoretical and experimental analyses of RB 
and/or BM convection enhanced mass transfer therefore have practical 
significance. Analysis of systems which simultaneously exhibit the 
Rayleigh effect and the Marangoni effect are referred to as Rayleigh-
Bénard-Marangoni (RBM) problems (Nield, 1964; Lebon and Cloot, 
1982).  

In applications such as gas-liquid absorption or desorption, 
convective instabilities are strongly influenced by a time varying non-
linear concentration profile in the case of a stationary solute transfer 
systems or a spatially varying non-linear concentration profile in the 
case of a parallel gas-liquid flow solute transfer. The stability of such 
systems have been extensively studied (e.g., Kim et al., 2007; Pearson, 
1959; Scriven and Sternling, 1964; Sun and Fahmy, 2006; Lu et al., 
1997). Most of these studies have focused on various stability analyses 
of systems with penetration type concentration profile to determine 
critical onset time, when the system first becomes unstable. In these 
systems the penetration regime can be maintained over a large period of 
time after initial contact. In the case of parallel flow solute transfer 
systems, this allows one to study the critical behaviour on the basis of 
the gas-liquid interface velocity, since under penetration condition one 
can reasonably neglect the variation of fluid velocity across the liquid 
layer depth (Byers and King, 1967). While the treatment of fluid flow is

simplified by a penetration type solute transfer regime, their stability 
analysis is complicated in that the time rate of change of solute 
concentration gradients can be comparable or larger than the growth 
rate of disturbances (Gresho and Sani, 1971). In this situation the 
classic quasi-static analysis (Lick, 1965) based on the frozen time 
model may not be valid. Other approaches to stability, such as 
amplification theory and propagation theory are less satisfactory in that 
they retain subjective decisions on initial conditions of disturbances or 
criteria for critical onset (Gresho and Sani, 1971). However, in gas-
liquid solute transfer system with thin liquid layers, the quasi-static 
analysis is known to predict critical thresholds that are in satisfactory 
agreement with experiment if the effect of surface viscosity in the 
Gibbs adsorption layer is considered (Sun, 2006). In thin layer parallel 
flow gas-liquid solute transfer systems, a quasi-static analysis together 
with the simplification of flow velocity treatment under penetration 
conditions show that the critical Rayleigh and Marangoni numbers will 
continue to monotonically decrease with time (Sun and Fahmy, 2006). 

Analysis of RBM convection in parallel flow solute transfer 
systems beyond the penetration region in thin liquid layers is 
complicated by the fact that the velocity of the liquid layer cannot be 
assumed equal to the surface velocity and the non-linear concentration 
profile is influenced by the non-linear velocity profile (Bird, et al., 
2007). However, this difficulty can be avoided by studying the RBM 
convection in a stationary gas-liquid system, in which case the base 
velocity has a constant zero value.  A straightforward quasi-static 
analysis in a stationary gas-liquid system is therefore a feasible option 
to study the effect of solute penetration to the bottom liquid-solid. 
Furthermore it is relatively easier to make accurate measurements of 
solute transfer rates in a stationary solute transfer system, for instance 
by monitoring the pressure response to an applied pressure step. This 
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method of studying gas-liquid mass transfer, originally due to Plevan 
and Quinn (1966) will be used in this study to experimentally test the 
transient behaviour of gas-liquid mass transfer in a stationary liquid in 
thin layers. To our knowledge, the time dependent behaviour of critical 
parameters at long times when the solute has penetrated to the bottom 
boundary and the behaviour of mass transfer enhancement under these 
conditions have not been previously studied. In this paper we study the 
time dependent RBM convection enhanced mass transfer behaviour of 
unsteady gas-liquid mass transfer in thin liquid layer systems via a 
quasi-static analysis. In particular we seek to determine how the critical 
Rayleigh and Marangoni numbers point vary with time as solute 
penetrates to the bottom boundary and how this affects the mass 
transfer rates at long times by considering a gas-liquid solute transfer 
system which is initially stationary and then subject to step change in 
concentration driving force thereby initiating a transient mass transfer 
process that eventually becomes unstable with respect to Rayleigh or 
Marangoni convection. We will show how this can lead to only a 
limited time interval where RBM convection is possible.  

2. MODEL DESCRIPTION 

2.1 Unperturbed Concentration Profiles 
The solute transfer process between a stationary horizontal gas-phase is 
illustrated schematically in Fig. 1.  
 

 
Fig. 1 Physical Model  (t is the non-dimensionalised time) 
 
A thin liquid layer of thickness h , with an initial solute concentration 
of 0C , is brought into contact with a gas layer of thickness b which 
consists of a mixture of the solute and saturated vapour of the liquid 
species. The concentration of solute in each of the two phases is 
assumed to be uniform prior to contact. In such a situation, the solute 
transport across the interface for the unperturbed states of the system is 
then governed by (Bird et al., 2007). 
 

   , ,t l zzC t z D C t z    (1) 
 
with initial and boundary conditions given by, 
 
  00,C t z C   (2) 

 , iC t z h C   (3) 

 , 0 0zC t z    (4) 
 
The time dependent concentration profile is obtained from solution to 
the system (1)-(4) as (Debnath, 2005), 
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This is in contrast to the penetration concentration profile (Bird et al., 
2007), 
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obtained for short contact times, when the liquid layer can be 
considered infinitely deep.  

2.2 Governing Equations for the Perturbed States  
The governing equations describing the time evolution of the velocity 
and concentration fields for the stationary system influenced by the 
Rayleigh effect and/or Marangoni effect can be obtained via the 
continuity equation, momentum balance equation, and solute mass 
balance in the bulk phase and the interface. If we define the velocity 
fields v  as the sum of base state velocity field  , ,U V WV  and a 

small perturbation velocity field  , ,u v wv , we have, 
 
  v V v  (7) 

 
and similarly introduce the concentration field as the sum of the base 
concentration and the perturbation concentration field, 
 
C C     (8) 
   
then, after introducing the non-dimensionalising scales h  for distance, 

2 / lh D  for time and 0 iC C C    for concentration,  the linearised and 
non-dimensionalised governing equations for the perturbation fields in 
the liquid bulk phase 0 1z  , can be written as follows (here we only 
reproduce final model equations and we refer the reader to Sun and 
Fahmy (2006) for further details): 
 

2 4
1Ra 0w    (9) 

2 0t zw C       (10) 
2 2

1 0yzv w        (11) 
2 2

1 0xzu w        (12) 

 
The boundary conditions at the gas liquid interface at non-dimensional 
coordinate 1z  are 
 

0w   (13) 
Bi 0z     (14) 

2
1Ma 0zzw      (15) 

 
and at the bottom liquid-solid boundary at non-dimensional coordinate 

0z   we have, 
 

0z   (16) 
0u v w    (17) 

0zw   (18) 
 
It is noted that for brevity, the same symbols for the dimensional 
variables, e.g. concentration, time, and coordinates, have been used for 
the corresponding non-dimensionalised variables in Eqs. (9)-(18) and 
the dimensionalised variables in Eqs. (1) to (6) and the equations 
below. 

Since the main objective of this paper is to investigate the effect of 
the non-diffusing boundaries on the critical parameters and the mass 



Frontiers in Heat and Mass Transfer (FHMT), 2, 043003 (2011)
DOI: 10.5098/hmt.v2.4.3003

Global Digital Central
ISSN: 2151-8629

  3

transfer enhancement behaviour of RBM convection, Gibbs adsorption 
effects have been neglected in the present analysis (Brian, 1971; Brian 
and Ross, 1972; Palmer and Berg, 1972; Sun and Fahmy, 2006).  

The non-dimensional groups in the above equations are defined as 
follows: 

 
Rayleigh number:  
 

 3
0Ra b s

l l

g h C C
D





  (19) 

 
Marangoni number: 
 

 0Ma b s

l l
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  (20) 

 
Biot number: 
 

Bi cg

l

Hk h
RTD

  (21) 

 
In Eqs. (19) and (20),  bC  is the concentration of solute at the liquid-
solid boundary (non-dimensional coordinate 0z  ) and sC  is the 
solute concentration at the gas-liquid interface (non-dimensional 
coordinate 1z  ). 

2.3 Quasi-static Analysis and Numerical Methods  
Since the numerical solutions of the quasi-static models are 
straightforward and involve no subjective decisions on the initial 
conditions of perturbations and on the criterion for the onset time (or 
position of the onset), the quasi-static analysis technique has been used 
in this paper to determine the behaviour of critical onset of RBM 
convection where solute has penetrated to the non-diffusing solid 
bottom boundary (Sparrow et al., 1964; Vidal and Acrivos, 1966; Brian 
et al., 1967; Currie, 1967; Gresho and Sani, 1971; Davis and Choi, 
1977). Critical points of the Rayleigh and Marangoni instabilities 
obtained using the quasi-static analysis technique has been compared 
with the experimental results in absorption and desorption of carbon 
dioxide into and from shallow layers (< 3mm) of two organic solvents: 
methanol and toluene in a gas-liquid contactor with a contact length of 
11 cm by Sun (2006). Using reasonably estimated values for the surface 
viscosity and the surface dilational viscosity of the Gibbs adsorption 
layers, the calculated values of the overall-system critical concentration 
are in satisfactory agreement with the measured data (Sun, 2006). In the 
stationary gas-liquid system where convective patterns are not limited 
to rolls as is the case in parallel flow systems (Davis and Choi, 1977; 
Sun and Fahmy, 2006), one would seek normal mode solutions of the 
form, 
 
           ˆ ˆ ˆ ˆ, , , , , , exp x yu v w U z V z W z z i k x k y          (22) 

 
where xk  and yk  are the components of a horizontal plane wave 

vector,  ,x yk kk , on an x-y plane orthogonal to the z-direction and i  

is the unit imaginary number. Using this relation for the perturbed 
variables, the principle of exchange of stability has been adopted 
implicitly (Chandrasekhar, 1981; Davis and Choi, 1977; Gresho and 
Sani, 1971). The normal mode equations that completely describe the 
critical onset can be written succinctly in terms of the plane wave 
number 2 2

x yk k k   as given in Eq. (23), where the operator 

/D d dz .  
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If the gas layer can be considered infinitely deep, then with a 
penetration model of mass transfer, the gas phase mass transfer 
coefficient is given by /cg gk D t . Here gD  is the diffusivity of 

solute in the gas phase and t  is the dimensioned time. Then, from Eq. 
(21) we can obtain the mass transfer Biot number under penetration 
conditions as given in Eq. (24). 
 

1 1
22 21Bi g

p
l l

DH h
RT D D t

         
    

 (24) 

 
In a real experiment involving gas-liquid solute transfer, the 

assumption of infinite depth for the gas phase is unlikely to be valid for 
long times since the diffusivity of solute in the gas phase is significantly 
larger than the diffusivity of solute in the liquid phase. Under these 
conditions the solute would penetrate to the top solid boundary in gas 
phase significantly faster than the solute penetration to the bottom 
boundary in the liquid phase. Once the solute has penetrated the entire 
depth of the gas phase, Eq. (24) would no longer describe the mass 
transfer Biot number. Therefore, to investigate the effects of solute 
penetration to the bottom liquid-solid boundary, it is also necessary to 
consider effects of solute penetration to the top gas-solid boundary on 
the Biot number. To obtain the appropriate expression for gas phase 
mass transfer coefficient in a finite depth gas phase, one must solve a 
diffusion problem analogous to Eqs. (1) through (4), for the gas phase 
to yield the gas phase concentration distribution, from which one can 
determined the gas phase mass transfer coefficient. Carrying out this 
procedure, we have obtained the gas phase mass transfer coefficient as 
(see Appendix A for additional detail), 
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where the factor g  describing the deviation from penetration type 
mass transfer conditions is given by, 
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and where 
 

2 2
l

n
g l

D b hZ
D h D t

              
 (27) 

 
The Biot number for both short and long exposure times , Bi f , is 

obtained by substituting for the gas phase mass transfer coefficient from 
Eq. (25) into the definition Eq. (21). Thus we have, 
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Introducing the non-dimensionalising scales h  for coordinates 

and 2 / lh D  for time, Eq. (28) can be written as, 
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 (29) 

 
where the term in square brackets can be identified as the Biot number 
in the penetration regime, Bi p , given by Eq.(24). Thus, the Biot 
number for both short and long exposure times is related to the Biot 
number in the penetration regime by, 
 
Bi Bif p g  (30) 

 
We solve the eigenvalue problem defined by Eqs. (23) using a 

Chebyshev spectral method (Trefethen, 2000; Weideman and Reddy, 
2000)  to obtain the critical Rayleigh and Marangoni numbers. Namely 
the system on 0 1z   shown in Fig. 2 is linearly scaled to 1 1z    
and the solutions  W z  and  z  are approximated on  N  
Chebyshev collocation points given by, 
 

 1
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and represented by the discretised interpolant function, 
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The operator D defined by    /df z dz Df z  can then be 
approximated by an N N  matrix as described in Trefethen (2000) and 

Weideman (2000), with higher order operators given by     1 nnD D .  

The differential eigenvalue problem in Eqs. (23)  is thereby transformed 
into a matrix eigenvalue problem which can be readily solved. The grid 
size N  was incremented until the calculated eigenvalues converged to 
a solution and further increasing N  leaves the solution unchanged. The 
implementation of the Chebyshev spectral method was validated 
against the method of variational principles reported in Sun and Fahmy 
(2006), under penetration concentration profile conditions. The spectral 
method has the advantage in that it is easy to implement and that an ad 
hoc selection of basis functions with special analytical properties is not 
required (Feit et al., 1982). 

3. THEORETICAL RESULTS 

3.1 Effect of Mass Transfer Biot Number 
Figure 2 contrasts the penetration concentration profile (PEN) with 
non-diffusing bottom boundary (NDBB) profile of Eq. (5). In Fig. 2, for 

the purpose of illustration the dimensionless concentration iC  is 
assumed to be equal to unity and the dimensionless bulk concentration 

0C  is assumed to be zero at the beginning of the process. For short 
exposure times under penetration concentration profile conditions in the 
liquid phase, which corresponds to the dimensionless times less than 
approximately 0.03 (Sun and Fahmy, 2006), the concentration of solute 
at the bottom liquid-solid boundary is 0bC C . For 0.03t  , according 
to the penetration concentration profile, bC  is greater than 0C  and the 
vertical concentration gradient is no longer zero at the bottom liquid-
solid boundary as would be required by the existence of the solid non-
diffusing bottom boundary, and therefore penetration model for mass 
diffusion no longer applies and the concentration profile of Eq. (5) must 
be used instead. In the limiting case of large t , the NDBB profile is 
seen to approach the equilibrium condition where the solute 
concentration is uniform across the depth of the liquid layer. The 
penetration profile, on the other hand, approaches a constant gradient 
profile. This is a physically invalid situation since this predicts a 
sustained solute flux across the liquid layer for an indefinite period of 
time from a constant interface concentration. Since we have a non-
diffusing rigid boundary at the bottom of the liquid phase, the solute 
accumulation must necessarily oppose further addition of solute and 
evolve towards an equilibrium state with no further solute flux into the 
liquid.  
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Fig. 2 Comparison between penetration and non-diffusing bottom 

boundary concentration profiles  (z and t are dimensionless) 
 
In Fig. 3 we consider the effect of finite gas phase thickness on 

mass transfer Biot number.  The solid lines represent the variation of 
Biot number in a finite thickness gas phase under a non-diffusing top 
boundary condition as calculated from Eq. (30) at a constant gas-liquid 
diffusivity ratio / 5000g lD D  . In Fig. 3 the circle, square and triangle 
points on the solid lines represent the marginal point between a 
perfectly diffusing top boundary and a non-diffusing top boundary in 
the gas phase corresponding to gas-liquid thickness ratios /b h  = 10, 
15 and 25 respectively. These points correspond to a non-dimensional 
time of approximately  20.03 ( / ) /l gb h D D . As can be expected the 

departure from penetration conditions happens sooner for small values 
of gas-liquid thickness ratio /b h . The dashed line represent the Biot 
number as obtained from the penetration model of mass transfer (Eq. 
(24)) in the gas phase. Since, for the values of /b h  presented in Fig 3, 
we have 2( / ) /g lb h D D , the effects of solute penetration to the top 
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solid boundary of the gas phase become pronounced well before the 
liquid phase marginal time of approximately 0.03.  
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Fig. 3 Variation of mass transfer Biot number with gas-liquid thickness 

ratio and dimensionless time. 
 

Figure 4. shows the effect of the diffusivity ratio on the finite 
thickness gas phase Biot number at a constant gas-liquid thickness ratio 
of / 20b h  . In Fig. 4 the circle, square and triangle points on the solid 
line represents the marginal point where the penetration model of the 
mass transfer for the gas phase correspond to gas-liquid diffusivity 
ratios /g lD D  6000, 5000 and 4000 respectively.  
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Fig. 4 Variation of mass transfer Biot number with gas-liquid 

diffusivity ratio and dimensionless time. 
 
The dashed line represents the Biot numbers evaluated under 
penetration conditions in gas phase. Figures 3 and 4, taken together 
show that effect of a finite gas phase on the Biot number is that after a 
non-dimensional time of approximately 20.03 ( / ) ( / )l gb h D D , the Biot 
number decreases more slowly than would be the case under 
penetration mass transfer conditions, at a rate determined by the gas-
liquid thickness ratio and the gas-liquid diffusivity ratio. 

Considering solute penetration in the liquid phase, it can be seen 
from Fig 2, that the solute concentration at the bottom liquid-solid 
boundary is time dependent. If the gas phase can be considered to have 
an infinite thickness, then from Eq. (5), the normalized concentration 
difference between  the bottom boundary and the interface is given by, 
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which rapidly decreases when the non-dimensionalised time is greater 
than approximately 0.03. If the gas thickness is finite, the absorption or 
desorption process will give rise to a variation in pressure with time. 
This in turn will result in a variation of interface concentration  sC t  
with time. In systems where the solute transfer is liquid phase 
controlled, the variation in system pressure (and hence the variation in 
interface concentration) can be estimated by employing a mass balance 
at the interface, based on the liquid phase mass transfer coefficient.  For 
a sufficiently large gas thickness, one finds that variation in interface 
concentration is small so that the variation in system driving force 

b sC C is dominated by the variation in bC  as given by Eq. (34). 
Consequently, the absolute values of the system operation Rayleigh and 
Marangoni numbers decrease with increasing contact time. As is 
evident from Eqs. (19) and (20) we see that Rayleigh and Marangoni 
numbers are proportional to b sC C  and the signs of the Rayleigh and 
Marangoni numbers depend on whether the fluid physical properties 

0 and 0  are positive or negative, and whether the solute transfer is an 
absorption or desorption process.  For the purpose of illustration, we 
have chosen operating parameters such that the proportionality constant 
is positive in Eqs. (19) and (20). The bottom boundary and interface 
concentrations are non-dimensionalised by taking 0 iC C  as a unit of 
concentration and the diffusivity of the liquid phase has been taken as a 
typical value of 9 2 -110  m slD  . With these parameters a unit of 
dimensionless time corresponds to approximately 1 hour in a typical 
physical system with a typical organic liquid absorbing or desorbing a 
solute such as carbon dioxide with a liquid thickness of the order of a 
few millimetres.  

3.2 Transient Bénard-Marangoni Problem 
To compare the present theory against predictions based on the 
penetration model, we first look at the special case where Ra 0 , the 
Bénard-Marangoni (BM) problem (as would the case for solute transfer 
in microgravity conditions). We consider a test system for which 

/ 5000g lD D   and / 0.5H RT  . In addition we consider the solute 
transfer process to be a desorption process with test conditions 0sC  , 

0 10C  , 6
0 10  2 -1Nm mol , 45 10l

  -2N s m  and 
31 10  mh   . In all of the following analysis, it is assumed that after 

the critical point, BM and RB effects do not significantly change the 
concentration profile predicted by Eq. (5). The instantaneous system 
operation Marangoni number can then be evaluated from Eqs. (20) and 
(34). The time evolutions of the critical Marangoni number and the 
system operation Marangoni number are illustrated in Fig. 5. The 
dashed lines in Fig. 5 have been evaluated for three different values of 
gas-liquid thickness ratio, as indicated in the figure.  

In the initial penetration regime up to the marginal point 
(dimensionless time 0.03t   represented by the black circle point) 
between a perfectly diffusing wall  0 0z    and a non-diffusing 

wall  0 0D z    for the liquid phase, the solute has not penetrated 
to the bottom. As would be expected within this penetration region the 
predicted critical Marangoni number based on the penetration boundary 
condition and non-diffusing bottom boundary condition are almost the 



Frontiers in Heat and Mass Transfer (FHMT), 2, 043003 (2011)
DOI: 10.5098/hmt.v2.4.3003

Global Digital Central
ISSN: 2151-8629

  6

same. However, shortly after the solute has penetrated to the bottom 
boundary, the decrease in the critical Ma slows down and reaches a 
minimum value and thereafter increases with increasing time, 
eventually exceeding the system operation Marangoni number.  
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Fig. 5. Variation of critical Ma , k , and the system operation Ma  

with dimensionless contact time and gas-liquid thickness ratio 
for the BM problem. 
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Fig. 6. Variation of critical and system operation Ma , with 

dimensionless contact time and gas-liquid diffusivity ratio for 
the BM problem. 

 
Immediately after initial gas-liquid contact the Marangoni number 

has a very large initial value (orders of magnitude larger than the 
system operation Marangoni number). In this region the system is 
stable with respect to the Marangoni effect. Once the critical Ma  falls 
below the system operation Ma , Marangoni convection begins. 
Immediately after critical onset, the system over criticality parameter 

 Ma Ma / Mac c  increases approximately linearly with time. Some 
time after critical contact, the over criticality parameter is further 
reduced since the system operation Ma  is no longer constant but varies 
as    b sMa C t C t    . We therefore get a local maximum of 

 Ma Ma / Mac c  where Marangoni convection is expected to be most 
intense, and when mass transfer rate is a maximum. With further 
increase in time, the system approaches its phase equilibrium conditions 
with the system operation Ma  approaching zero. Thus a consequence 
of solute penetration to the non-diffusing boundaries is that we get a 
single restricted time interval when Marangoni convection occurs and 
mass transfer is enhanced.  For long contact times, the convective 
motion can initiate and then dissipate within a certain time interval and 
the width of the interval increases with increasing driving force. The 
convective time interval is strongly dependent on gas-liquid thickness 
ratio, with the interval decreasing with thickness ratio. The width of the 
convective time interval is also strongly dependent on the gas-liquid 
diffusivity ratio as show in Fig. 6. Large gas-liquid diffusivity ratios 
results in a longer convective time interval. Finite thickness of the gas 
phase and liquid phase was found to have negligible effect on the 
critical wavenumbers ck . That is the size of the convective cells is not 
sensitive to solute penetration to the solid boundaries in either the gas 
phase or the liquid phase. 

3.3 Transient Rayleigh-Bénard Problem 
A behaviour similar to the case of the pure BM convection was 
observed with pure Rayleigh convection where Ma 0 . This is 
illustrated in Fig. 7. In this instance the system-operation Rayleigh 
number varies as    Ra b sC t C t    , and  once again this gives rise 
to a single restricted time interval where Rayleigh convection occurs 
and mass transfer is enhanced. 
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Fig. 7. Variation of critical Ra , critical k , and the system operation 

Ra  with dimensionless contact time for the BM problem 
( Ma 0 ). 

 
In Fig. 7, the test conditions are / 0.5H RT  , 0 0C  , 1sC  , 

6
0 10   2 -1Nm mol , 45 10l

  -2N s m  and 32 10 mh   . Since 
the variations in /g lD D  and /b h  have very little effect on the critical 
Rayleigh number of the RB problem, in Fig. 5, we only show the 
critical curve using constant values / 5000g lD D  , and / 30b h  . 
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A comparison of the critical wavenumber evaluated under 
penetration and non-diffusing boundary conditions indicate that the 
presence of a non-diffusing solid boundary at the bottom of liquid layer 
would result in a slightly increased size of convective cells in the pure 
RB problem. 

3.4 Transient Rayleigh-Bénard-Marangoni Problem 
Figure 8 compares the concentration fluctuations at the marginal point 

0.03t   using the penetration boundary conditions and the non-
diffusing boundary condition for the BM problem. For the plots in Fig. 
8, the test conditions are / 0.5H RT  , 0 1C  , 0sC  , 

6
0 10  2 -1Nm mol , 45 10l

  -2N s m  and 32 10 mh   , 
/ 5000g lD D  , / 30b h   and Ra 0 . 
As expected the penetration boundary condition enforces zero 

fluctuations at 0z   with 0    and 0z    and the NDBB model 
enforces 0z    with 0  . The result is that the predicted 
concentration fluctuation differs significantly between the two models 
as z  approaches zero, with the penetration model underestimating the 
fluctuation near 0z  .  A similar comparison of the velocity 
fluctuation (not shown in this paper) gave no significant difference 
between the velocity fluctuations computed using the two models for 
entire domain 0 1z  . Nevertheless the difference in the 
concentration fluctuations can be expected to have some effect on the 
convective mass transfer enhancement predicted from the two models, 
at least close to a critical point. 
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Fig. 8. Variation of concentration perturbations with dimensionless z,  

( Ra 0 ,  dimensionless 0.03t  ). 
 

From weakly non-linear analyses, it is known that in the slightly 
overcritical region the mass transfer Sherwood number increases 

linearly (Sun and Yu, 2006) with the quantity    
1

0

z W z dz ,  which 

is the area bounded between the curve of    z W z  and the 

    0z W z   line shown in Fig. 9.  Since there is contribution to 
mass transfer enhancement from across the entire depth of the liquid, 
this suggests that the true mass transfer enhancement due to convection 
would be underestimated by penetration theory as dimensionless time t  
approaches 0.03  from zero. For systems that become critical at larger 
times, Fig. 9 (which has been evaluated under non-diffusing boundary 

conditions) indicates that the convective mass transfer intensity would 
decrease with the critical time as solute penetrates to the bottom 
boundary. 
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Fig. 9. Variation of the product of concentration and velocity 

perturbations with dimensionless z ( Ra 0  and t is 
dimensionless). 

 

 
Fig. 10. Variation of critical Ma and Ra with contact time for the RBM 

problem ( t is dimensionless). 
 
In Fig. 10 we look at the effect of the non-diffusing bottom 

boundary for the more general case where both Rayleigh and 
Marangoni convection occur simultaneously. In a real physical process, 
even though the system operation Ra and Ma both decrease with 
contact time (similar to that shown in Fig. 6 and Fig. 7), the ratio 
Ma/Ra  is fixed by the fluid physical properties and by the process: 
absorption or desorption. Thus a straight line, e.g. line P in Fig. 10, on 
which Ma  constant Ra  , depicts the system operation line on the 
Ma-Ra  plane. The system follows along the arrow direction on the 
operation line from an initial contact time represented by I to the final 
point represented by E. Depending on the values of  and  and C , 
RBM convection can only occur in either the first, second or fourth 
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quadrants. It can also be noted that similar to the behaviour for the 
cases of the BM problem and the RB problem we have the possibility 
that the critical threshold first decreases and then increases in the 
general RBM problem. Along the operation line Q shown in Fig. 10, 
the points 1, 2, 3, 4, and 5 correspond to non-dimensional contact times 
t  = 0.03, 0.1, 0.23, 0.45 and 0.8, respectively. 

Under typical conditions with a solute such as carbon dioxide and 
an organic liquid such as methanol with a thickness of a few 
millimetres, these non-dimensional times correspond to contacting 
dimensioned times of approximately 2, 5, 15, 30, and 50 minutes. The 
critical Ra-Ma  curves at  t = 0.002, 0.005, 0.03 and 0.8 correspond to 
approximately 0.1, 0.5, 2 and 50 minutes from initial contact 
respectively. These critical curves show that the critical values of Ma 
and Ra decrease with contact time and then increase, similar to the 
behaviour shown in Figs 5, 6 and 7. For time less than about 2 minutes, 
the system operating point remains approximately fixed at point 1, 
taking approximately 3 minutes to go from point 1 to point 2, while the 
critical parameters Ra and Ma , starting from very large values, rapidly 
approach and then fall below the system operation Ra and Ma values. 
Thus the curves shown in Fig. 10 indicate that system instability will 
start within 0.5 minutes of contact. In the remaining time of the contact 
process, the system operation Ra  and  Ma approach the equilibrium 
value of zero. By the time the system reaches point 5 on the operation 
line corresponding to approximately 50 minutes, the values of the 
system operation Ra and Ma have fallen below the critical values and 
Rayleigh and Marangoni convection subsides. Therefore, it is the 
competition between these two effects, the variation of the critical 
threshold and the variation of the system operation Ra and Ma that will 
determine the bounds of the time interval when convective instability 
can occur. This behaviour is the main difference between the present 
study and the results reported by Sun and Fahmy (2006), where only 
short contact times were investigated. 

4. EXPERIMENTS 

4.1 Experimental Setup and Procedure 
The prediction of restricted time intervals for convective instability in 
gas-liquid contactors for long contact times has yet to be confirmed

experimentally. Nevertheless the collapse of mass transfer enhancement 
factor, which was defined by Brian and Ross (1972) as the ratio of 
experimentally measured mass transfer coefficient to that predicted by 
penetration model of mass transfer, after a long exposure time has been 
observed in wetted-wall columns (Hozawa et al., 1984). In particular 
the mass transfer coefficient measurements by Hozawa et. al. (1984)  in 
the methanol-CO2 system are consistent with a local maximum of mass 
transfer enhancement. While strictly speaking, the flow system would 
require special treatment of base state velocity profile variations (Bird 
et al., 2007) one would expect similar behaviour between the flow 
system and stationary system. 

The collapsing of mass transfer enhancement has been observed in 
our laboratory with mass transfer processes in stationary gas-liquid 
systems. Here we report some initial measurements of mass transfer 
enhancement factors in a stationary liquid associated with the physical 
absorption of carbon dioxide using an apparatus similar to that of 
Plevan and Quinn (1966) in their study of the effect of monomolecular 
films on gas absorption into quiescent liquids and Blair and Quinn 
(1969) in their study of cellular convection. The apparatus used is 
illustrated schematically in Fig. 11. 

The apparatus consists of a cylinder of 99.98% purity instrument 
grade carbon dioxide (1) which is saturated with the solvent vapour in 
the saturator (2). The mixture of saturated vapour and carbon dioxide is 
then introduced into a pressure vessel (3) by keeping valve V1 open and 
valves V2 and V5 closed until a predetermined pressure in the 
approximate range 100 kPa to 200 kPa, read out from pressure gauge 
(4) is reached. The items (6) and (10) are two identical cylindrical cells 
made of aluminium and closed at both ends with 1 cm thick BK7 
optical glass. The glass windows and the aluminium cylinder seal 
against Teflon O rings. Each cell has an internal diameter of 
4.984 0.002  cm. The height of each cell measured from glass 
window to glass window is 6.016 0.002  cm. The cell (6) serves as 
the absorption test cell into which the liquid sample is introduced by 
removing the top glass window.   

After introducing a small amount of degassed liquid into the test 
cell, both cells are evacuated using the vacuum pump (12) by opening 
V6, V7 and keeping all other valves closed to remove air that may have 
been  introduced during the liquid transfer. After degassing the vacuum 
is  disconnected  by  closing  V7  and both cells are slowly  brought to a 

 
 

 

 
 
Fig. 11. Schematic of the apparatus used for mass transfer measurement 
 
 

 
. 



Frontiers in Heat and Mass Transfer (FHMT), 2, 043003 (2011)
DOI: 10.5098/hmt.v2.4.3003

Global Digital Central
ISSN: 2151-8629

  9

predetermined initial pressure 0P  by introducing gas from the pressure 
vessel via control valve V5. The system is then allowed to equilibrate 
for approximately 12 hours at a constant room temperature.  Observing 
a steady pressure at the end of this equilibrating process serves as a leak 
test for the system. 

Valves V2, V3, V4 and V6 are high speed, pneumatically actuated 
and can be triggered electronically in the sequence shown in Fig. 11. As 
can be seen from the Fig. 11 this sequence simultaneously and 
momentarily connects both the test cell and the reference cell to the 
pressure vessel thereby applying a pressure step starting with an initial 
equilibrium pressure 0P  and terminating at a final pressure iP . The 
entire pressure stepping operation takes approximately three seconds.  
The applied pressure step shifts the equilibrium of the gas-liquid system 
and initiates an absorption process. The ensuing absorption of the 
gaseous solute into the liquid phase in the confined cell results in a 
pressure decay from which the solute transfer rate can be determined 

4.2 Mass Transfer Rates and Enhancement Factors 
The analysis of the pressure decay to measure mass transfer rates in a 
gas-liquid system essentially consists of an initial-boundary value 
problem. Specifically we consider the one dimensional diffusion of 
solute in the quiescent liquid contained within the test cell such that the 
liquid bottom boundary is located at the vertical coordinate 0z   and 
the gas-liquid interface at z h . Diffusion within the liquid can then be 
described by Eq. (1). We suppose that the equilibrium concentration of 
solute in the liquid before the pressure step is applied is 0C , so that 

initial condition is   0,0C z C . We further assume that an 
instantaneous equilibrium exists between the gas phase and the liquid 
interface at all times. Then, immediately before the pressure step, the 
partial pressure of CO2 in the gas phase is related to the concentration 
of CO2 at the interface via Henry’s law as 0 0P HC , and immediately 
after the pressure step we have i iP HC . That is, at the gas liquid 
interface we have a time varying boundary condition 
   , /gC t h P t H . The instantaneous solute balance at the gas-liquid 

interface then requires that (Plevan and Quinn, 1966; Farajzadeh et al., 
2007) 
 

l

z h z h

dC ZARTD C
dt VH z 

          
 (35) 

 
where Z  is the compressibility of the gas phase, A  is the interface 
area, R  is the molar gas constant, T  is the system temperature, and V  
is the gas volume.  Eq. (35) and the following equations pertaining to 
experimental analysis have been given in dimensioned variable. Plevan 
and Quinn (1966) obtained an expression for the pressure response by 
assuming that the liquid phase was semi infinite. Since we wish to 
study the behaviour of the system when the solute has penetrated to the 
bottom, it would be prudent to obtain an equivalent expression for the 
pressure response for the finite-depth liquid, namely with a boundary 
condition  ,0 0zC t  . The time dependent boundary condition 
however complicates the solution to the problem. Sheika et al. (2005) 
in their estimates of diffusivity of gases in Bitumen using the pressure 
decay method obtained an expression for the finite-depth model in the 
Laplace transformed domain and used numerical Laplace transform 
inversion to obtain the pressure response. We however seek a more 
convenient analytic solution similar to that of Plevan and Quinn as a 
means of better defining of the initial contact time 0t   which is 
important in accurately determining short critical contact times for 
RBM convection. The accurate determination of short critical contact 
times can be extremely difficult in transient gas-liquid solute transfer 
due to difficulties in precisely defining the initial contact time in any 
given experiment. In order to obtain an analytical solution to the 

expected pressure response we follow the approach of Zhang et al. 
(2000) where they assume that once the initial interface concentration is 
specified, the concentration in the liquid phase and hence the 
concentration gradient at the interface at all future times is closely 
approximated by the solution to the diffusion equation with the 
appropriate boundary conditions, which in the present case is given by 
(5). The pressure response is then assumed to be dictated by the 
requirement of instantaneous solute balance at the interface as given by 
(27). This approach of determining the pressure response using an 
equilibrium boundary condition has been compared with more 
sophisticated quasi-equilibrium and non-equilibrium boundary 
conditions by Tharanivasan et al. (2004) where they conclude that the 
relative agreement between prediction and experiment for the various 
boundary conditions depends on the particular solute-solvent system. 
According to Etminan et. al., (2010), this indicates that the physics of 
time varying interface mass transfer is not well understood. Using the 
equilibrium boundary condition, we obtained the following pressure 
response which corresponds to Eq. (6) of Plevan and Quinn for the 
infinite-depth liquid.  
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Fig. 12. Typical pressure response curve and definition of iP  

(absorption of CO2 into isobutanol) 
 

To illustrate the analysis of the pressure response, consider the 
typical pressure response curve shown in Fig. 12, for the case of 
absorption of solvent saturated carbon dioxide into a non-aqueous 
isobutanol layer of 3.5 0.1 mm thickness. In Fig. 12, the initial 
pressure iP  immediately after the pressure step is estimated by 
extrapolating the penetration regime (which is a straight line in a plot of 
pressure against square-root of time) to 0t  . In this particular 
experiment 169.0 0.6iP    kPa and initial equilibrium pressure just 
before the pressure step was 0 131.8 0.6P    kPa. The diffusivity of 
CO2 in liquid isobutanol is then estimated by least square fitting the 
normalized pressure     0/n g i iP P t P P P    to Eq. (36).
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Table 1. Operating conditions for tests A, B and C 

Test 
310

[m]
h  

310
[Pa]

iP   
3

0 10
[Pa]

P   /b h  
9

2 -1

10

[m s ]
lD 

 /g lD D  
o[ C]
T

 
20.03 /

[s]
lh D  

[ ]
ct
s

 

A 2.6 137.0 179.8 22.1 2.18 1994 24.5 93 103 
B 3.1 106.6 159.5 18.4 2.12 2279 24.0 135 239 
C 3.5 131.8 168.6 16.1 2.07 2201 22.9 176 253 

 
The measured diffusivity also provides an additional check for 

possible defects in the experiment run. In this particular experiment the 
diffusivity was estimated as   92.21 0.04 10   m2s-1 with the system 

operating at o22.9 C . This is comparable with the value of 
9 2 -12.20 10  m s  at o25 C  obtained by Hozawa et. al. (1984) . 

Assuming an instantaneous equilibrium, the true molar flux across the 
interface is calculated as 
 

gdPVN
ZART dt

   (39) 

 
from which the liquid-phase mass transfer coefficient can be 
determined as 
 

exp
b i

Nk
C C

 


 (40) 

 
Since the pressure change in the gas phase is small, we assume that the 
gas compressibility does not vary appreciably during the course of the 
experimental runs, and is taken to be a constant value estimated as the 
compressibility of pure carbon dioxide evaluated at the mean 
temperature and pressure. 

In the situation where the solute has penetrated to the bottom, the 
penetration theory mass transfer coefficient /p lk D t  has to be 
modified to take into account the variation in the bottom boundary 
concentration bC  which is now obtained from Eq. (34). In the finite 
liquid layer limit, the liquid phase mass transfer coefficient is defined 
by, 
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z h

f
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For the finite layer liquid mass transfer coefficient we obtain, 
 

f p lk k   (42) 
  
where, 
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The mass transfer enhancement factor is then calculated as  
 

exp

f

k
k

   (44) 

 

 

10
0

10
1

10
2

10
-6

10
-5

( t [s] )1/2
k 

[m
 s

-1
]

 

 

measured
kf

 
 
Fig. 13. Variation of mass transfer coefficient with time 
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Fig. 14.  Collapse of convective mass transfer enhancement 
 
The measured mass transfer coefficients of CO2 into liquid isobutanol 
are shown in Fig. 13. The circle points in Fig. 13 are the mass transfer 
coefficients calculated from the measured pressure response using Eq. 
(40). The measured response clearly shows mass transfer enhancement 
beginning when 20t   and  a collapse of mass transfer enhancement 
when t is larger than approximately 25. The mass transfer 
enhancement factors measured in three similar experiments are shown 
in Fig. 14. All three tests are for the physical absorption of pure CO2 
into analytical grade liquid isobutanol. The operation conditions for 
these tests are summarised in Table 1. 

4.3 Comparison with Theoretical Predictions 

In Table 1 the quantity 20.03 / lh D  is the dimensioned time 
corresponding to the marginal point where the solute has just penetrated 
to the bottom boundary and ct  is the experimentally estimated critical 
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contact time for the onset of convection. Tests A, B and C reported here 
have been chosen such that the measured critical contact time is either 
close to or larger than the marginal point to ensure that the effects of 
non-diffusing bottom boundary will be significant in these tests. In all 
three tests a local maximum of mass transfer enhancement factor was 
observed. The theoretical RBM convection driving force, 

   Ra Ra / Ra Ma Ma / Mac c c c     , under operating conditions 
of tests A, B and C are shown in Fig. 15.  
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Fig. 15.  Theoretical RBM driving force for tests A, B and C 

 
The theoretical critical contact times for test A, B and C were 

found to be approximately 57 s, 58.5 s and 63.5 s respectively. The 
theoretical critical contact times are expected to be lower than measured 
contact time shown in Fig. 14 since there needs to be a time lag 
between the critical threshold and the growth of disturbances above the 
threshold of detection in experiments, and because the effect of surface 
viscosity has been neglected in the present analysis. However, 
comparing Fig. 14 and Fig. 15 it is seen that the relative positions of the 
mass transfer enhancement maxima measured in the experiments (160 
s, 410 s  and 530 s for tests A, B and C respectively) are in reasonable 
agreement with those predicted by the effects of solute transfer to the 
bottom non-diffusing boundary (301 s, 429 s and 546 s for tests A, B 
and C respectively). In addition the relative value of the mass transfer 
enhancement maxima are consistent with the expected RBM driving 
force, with the measured enhancement maxima increasing from tests A 
to C.  
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Fig. 16: Collapse of mass transfer enhancement with absorption of 
CO2 by water. 

Figure 16 shows the cumulative moles transferred Q  in the 
absorption of pure carbon dioxide into a water layer approximately 4 
mm thick. The purely diffusive mass transfer close to the initial gas-
liquid contact time is indicated by the linear relationship between  Q  

and t . The mass transfer rate peaks (maximum slope) at 
approximately 150 s from initial contact time which corresponds to a 
non-dimensionalised contact time 0.02t  . The carbon dioxide 
absorption rates measured by Plevan and Quinn (1966) with the water-
CO2 system do not show such a collapse. This can be expected since the 
water depth used by Plevan and Quinn was approximately 1 cm deep, 
with the reported data terminating at a contact time of approximately 
300 s. This corresponds to a non-dimensionalised contact time of 

0.006t   which is well before 0.03t  , the approximate time after 
which the effect of the non-diffusing boundary conditions would 
become apparent. 

5. CONCLUSIONS 
In a transient gas-liquid solute transfer system, consisting of a thin 
liquid layer, the stability threshold decreases after initial gas-liquid 
contact. For short contact times, employing a penetration profile in the 
stability analysis produces critical Rayleigh and Marangoni in good 
agreement with that obtained by employing a non-diffusing boundary 
condition at the bottom interface. During the penetration period both 
the critical Rayleigh and Marangoni numbers decrease with time, while 
the system operation Rayleigh and Marangoni numbers remain 
approximately constant. This behaviour persists for a non-dimensional 
time greater than approximately 0.03, provided the gas-liquid thickness 
ratio is sufficiently large. At longer times when the solute has 
penetrated to the bottom boundary and penetration theory is no longer 
valid, a new behaviour is observed in that the critical Rayleigh and 
Marangoni numbers reach a minimum and thereafter increase. If the 
time varying concentration at bottom liquid-solid boundary is not 
severely altered by the onset of convection, then system Rayleigh and 
Marangoni numbers would also decrease. The onset of convection is 
then determined by the competition between system operation Rayleigh 
and Marangoni numbers and critical thresholds. As a result, within 
certain operation regimes of the system, there can only be a limited 
period after initial contact when convective instability is possible and 
within which there is a transient maximum of convective intensity.  

Experimental measurement of time varying mass transfer rates in 
stationary gas-liquid solute transfer supports the theoretical prediction 
that the Rayleigh-Bénard-Marangoni convection enhanced solute 
transfer rates should peak and then collapse after longer contact times 
when penetration theory breaks down and a non-diffusing bottom 
boundary is in effect. Further experimental verification of the predicted 
behaviour in this latter regime is required. It is expected that a 
corresponding flow system would exhibit similar features as the 
stationary system, which in turn suggests that in a flow system, only a 
restricted region in the gas-liquid contactor would produce RBM 
enhanced mass transfer. This opens up the possibility of optimising gas-
liquid contactors with respect to Rayleigh and Marangoni convection 
enhanced mass transfer, for instance, by paralleling a limited contact 
area rather than cascading.  

NOMENCLATURE 

b  thickness of gas layer (m) 
Bi   mass transfer Biot number 
C  unperturbed concentration of solute in liquid phase  (mol m-3) 
C  perturbed concentration (mol m-3) 

0C  liquid phase bulk concentration before gas-liquid contact 
(mol m-3) 

bC  concentration at liquid-solid bottom boundary (mol m-3) 
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iC  interface concentration at 0t   (mol m-3) 

sC  interface concentration for 0t  (mol m-3) 

gD  diffusivity of solute in gas phase (m2 s-1) 

lD  diffusivity of solute in liquid phase (m2 s-1) 
g  gravitational acceleration (m s-2) 
h  thickness of liquid layer (m) 
k  wave number (m-1) or liquid phase mass transfer coefficient 

(m s-1) 
k  horizontal wavevector  ,x yk k  (m-1) 

cgk  gas-phase mass transfer coefficient (m s-1) 

xk  x-component of wavevector (m-1) 

yk  y-component of wavevector (m-1) 

Ma  Marangoni number 
N  solute flux across the gas-liquid interface (mol m-2 s-1) 
H  Henry law constant for solute (Pa m3 mol-1) 

gP  partial pressure of solute in the gas phase (Pa) 
Q  cumulative solute transferred (mol) 
R  ideal gas law constant (N m mol-1 K-1) 
Ra  Rayleigh number 
t  dimensionless time or time (s) 
T  temperature (K) 
u  x-component of  velocity disturbance (m s-1) 
U  x-component of unperturbed velocity (m s-1) 
v  y-component of  velocity disturbance (m s-1) 
V  y-component of unperturbed velocity (m s-1) 
v  perturbed velocity vector  , ,u v w    (m s-1) 

V  unperturbed velocity vector  , ,U V W  (m s-1) 
w  z-component of  velocity disturbance (m s-1) 
W  z-component of unperturbed velocity (ms-1) 
Û  amplitude of x-component of velocity disturbance 
V̂  amplitude of y-component of velocity disturbance 
Ŵ  amplitude of z-component of velocity disturbance 
z  z-coordinate (m) 

nZ  parameter defined by Eq. (27) 
 
Greek symbols 
  RBM driving force 

0  solutal expansion coefficient of liquid phase (m3 mol-1) 

g  function defined by Eq. (26) 

l  function defined by Eq. (43) 
  mass transfer enhancement factor 
  viscosity (N m-2 s) 
  kinematic viscosity (m2 s-1) 
  density (kg m-3)  

0  negative of the slope of the curve of surface tension versus 
solute concentration (N m2 mol-1) 

  a small disturbance in concentration (mol m-3) 
  amplitude of concentration disturbance 
Subscripts 
c  critical value 
exp  experimental value 
f  finite depth 
g  gas phase 
i  gas-liquid interface or conditions immediately after a 

pressures step 

s  gas-liquid interface conditions for 0t   
l  liquid phase 
p  penetration model 
0  conditions immediately before a pressure step 
 
Operators 

D  d
dz

 

  , ,
x y z

   
    

 

2
1  ,

x y
  
   

 

 
Abbreviations 
BM Bénard-Marangoni 
PEN penetration theory 
RB Rayleigh-Bénard 
RBM Rayleigh-Bénard-Marangoni 
NDBB non diffusing bottom boundary 
NDTB non-diffusing top boundary 
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APPENDIX A: GAS PHASE MASS TRANSFER 
COEFFICIENT 

To obtain the concentration profile of solute in the gas phase, consider a 
vertical coordinate axis gz  with the origin placed at the top gas-solid 
boundary of the system shown in Fig. 1, and the positive gz  direction 
pointing vertically downward. Then, by analogy with Eqs. (1) to (5), 
the solute concentration profile in the gas-phase is given by, 
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 (45) 

 
where gD  is the diffusivity of solute in the gas phase consisting of 
solute and the vapour of the liquid phase species, b  is the gas phase 
thickness, ,0gC  is the initial uniform solute concentration in the gas 
phase and ,g iC  is solute concentration at the gas-liquid interface 

gz b . The solute concentration at the gas-solid boundary

 , ,g b gC C t b , is then given by, 
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and the solute flux  /

g
g g g z b

N D C z


     across the gas-liquid 

interface is given by, 
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The gas-phase mass transfer coefficient is defined by (Bird, et al., 
2007), 
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Substituting Eqs. (46) and (47) into Eq. (48), we obtain, 
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 (49) 

 
Since the solute flux at the interface determined from the gas side must 
balance the solute flux as determined from the liquid side, it is 
convenient to introduce the non-dimensionalising distance scale h  and 
time scale 2 / lh D . This can be achieved by defining the parameter 

2 2( / )( / ) ( / )n l g lZ D D b h h D t  as given in Eq. (27). Then, the second 

factor in  Eq. (49), immediately becomes the term g   as given by Eq. 
(26). 


