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CHAOTIC NATURAL CONVECTION IN AN ANNULAR CAVITY
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ABSTRACT

The stability of free convection in an annulus is governed by the boundary conditions on the inner and outer walls of the annulus and the upper and
lower boundaries. This paper explores the effect of free convection on the inner surface of the annulus, where the boundary conditions for the outer
wall and the upper and lower boundaries are controlled. The temperature is measured in the center of the air cavity and just below the surface of
the inner annular boundary. Experimental results are shown for a radius ratio of 0.40, aspect ratio of 20.7. These more recent experimental results
are compared to prior work for a radius ratio of 0.60, aspect ratio of 31.0. The results indicate that as the Rayleigh number is increased, the flow
experiences a transition from steady flow to a very regular oscillatory flow, and then a supercritical Hopf bifurcation as the flow finally transitions to
chaotic behavior. Proper orthogonal decomposition analysis is presented as a method for quantifying the complex dynamic behavior of the system.
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1. INTRODUCTION

This paper describes the relationship between the flow stability of free
convection motion in an annular geometry and the non-isothermal wall
boundary conditions that drive it. The problem investigated here bears
some similarity to the manufacturing process for drawing polymer fiber
in which a polymer preform (cylindrical rod) is heated in a cylindrical fur-
nace with a consequent non-uniform temperature at the moving polymer
surface. In contrast to the drawing process for glass fiber where radiant
heat transfer dominates and convective heat transfer is much less, convec-
tive heat transfer in polymer fiber drawing contributes roughly half of the
total, and so it strongly influences the fiber diameter history. For this rea-
son, an understanding of gas flow instabilities is critical, whether it is for
the purpose of eliminating gas flow oscillations to produce constant di-
ameter fiber, or enhancing oscillations to achieve controllable variations
in fiber diameter.

The annular geometry for this study is shown in Fig. 1. The in-
ner surface of the annulus is the stationary surface of a polymer preform.
The surface temperature of the polymer is dependent on the radiant heat
transfer from the furnace wall, the convective heat transfer from the nat-
ural convection cells in the annulus, as well as conduction heat transfer
within the polymer preform. The upper and lower boundaries of the annu-
lus are tightly fitting irises made of copper, which are each temperature
controlled. Experiments have shown that the flow stability is primarily
controlled by the relationship between the upper iris temperature and the
furnace wall temperature. Further details of the experimental system are
provided by Dillon et al. (2009).

The temperature differences between the vertical surfaces and the
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upper boundary drive a buoyant flow with the formation of multiple con-
vection cells. The temperature oscillations of the convection cells were
measured with thin wire thermocouples located in the air cavity. The ef-
fect of the convection cells was measured with thermocouples embedded
just below the polymer surface. The temperature oscillations were then
characterized by spectral analysis to determine the frequencies.

For natural convection studies in an annulus several parameters are
used to classify the systems. The geometry of the air cavity is represented
by the aspect ratio (A) and the radius ratio (η).

A =
H

Ro −Ri
(1)

η =
Ri

Ro
(2)

where Ro is the outer radius of the annulus, Ri is the inner radius
of the annulus, and H is the height of the annulus. For the experimental
system described here, the radius ratio is η = 0.40 and the aspect ratio is
A = 20.7.

2. BACKGROUND

2.1. Natural Convection

The majority of natural convection studies in an annulus or two-dimensional
rectangular cavity have been with simplified thermal boundary condi-
tions, most typically with isothermal vertical walls. A review of two-
dimensional natural convection in the rectangular geometry is provided
in Dillon et al. (2009).
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Table 1 Summary of experimental natural convection studies in vertical annuli. Adapted from Dillon et al. (2009).

Author Ra Pr η A Description
Choi and Korpela (1980) 5e3− 2e4 0.71 0.68 38.6 Smoke photos with wavenumber of 2.72 reported.

Critical Grashof of 9100 reported.
Stork and Muller (1975) 2e3− 4e3 0.71 0.25 1.4-6.4 Smoke visualization of the flow.
Yiqin et al. (1995) 7e3− 3e7 0.71 0.3-0.8 10.1-42 Reported experimental Nusselt numbers.

Also considered tilt angle of annulus.
Keyhani et al. (1983) 10e3− 10e6 0.71 0.23 27.6 Also considered Helium.
Weidman and Mehrdadtehranfar (1983) 10e4− 10e6 15-150 0.62 64 Critical Ra based on photos (Rac = 1− 1.33e5).
Dillon et al. (2009) 2e7− 7.5e7 0.71 0.60 31.0 Measured temperature in cavity center.
Present work 6e7− 1e7 0.71 0.40 20.7 Measured temperature in cavity center and

preform surface.

Figure 1 Diagram of the natural convection experiment. Thermocouple
locations are shown as dots in the furnace wall and polymer pre-
form.

The stability of flow in an annular cavity with isothermal vertical
walls is governed by the Prandtl number (Pr), the Rayleigh number (Ra),
and the geometry. At small Rayleigh numbers the flow is steady. As the
Rayleigh number is increased the flow becomes unstable, first resulting in

multicellular secondary flow patterns, and then as the Rayleigh number is
further increased the flow becomes chaotic. The critical Rayleigh number
(Rac) is used in buoyancy flows to characterize the transition between
steady flow and the onset of oscillatory flow.

Ra =
ρ2gcpβ(∆T )H3

kµ
(3)

Pr =
cpµ

k
(4)

where cp is the specific heat at constant pressure, g is the accelera-
tion of gravity, β is the isobaric coefficient of thermal expansion, µ is the
dynamic viscosity, k is the thermal conductivity, and ρ is the density. By
convention in the literature ∆T is defined as the difference between the
temperatures of the two isothermal vertical walls. Most studies of annular
regions have treated a heated inner wall and a cooled outer wall.

∆Tliterature = Tinnerwall − Touterwall (5)

In addition to numerical simulations, there have also been a number
of experimental investigations of natural convection in annular cavities as
summarized in Table 1, including this work. None of the prior experi-
mental studies address the case of a non-isothermal outer wall.

2.2. Proper Orthogonal Decomposition

Reduced order models have become popular in recent years as a tool
for understanding dynamic systems, particularly those involving complex
fluid behavior. Proper orthogonal decomposition (POD) is a mathemati-
cal technique for reducing the dimensionality of a data set consisting of
a large number of related variables while retaining as much information
as possible about the data. In complex dynamic systems POD may be
used to aid analysis of results and quantify the dynamic behavior of the
system.

Proper Orthogonal Decomposition (POD) has many names and is
also known as Karhunen-Louve Decomposition and principle compo-
nent analysis (PCA). POD is broadly the Singular Value Decomposition
(SVD) of a data matrix, which is typically normalized, Trefethen and Bau
(1997). The POD may be computed using three different equivalent tech-
niques as shown by Liang et al. (2002) but the SVD technique will be
used in this work.

In the SVD calculation each principle component is a linear combi-
nation of the original variables and all principle components are orthogo-
nal to each other so there is no redundant information. The first principal
component is calculated as a single axis in space. When each observa-
tion is projected onto that axis the resulting values form a new variable.
The second principal component is another axis in space perpendicular
to the first. The principle components form an orthogonal basis for the
space of the data and it is common for the sum of the first few principle
components to exceed 90 percent of the total variance in the system.
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Table 2 Summary of POD modeling for dynamic fluid and heat transfer systems.

Author Analysis Type Problem Overview

Sirovich et al. (1991) POD Full channel flow.
Bonnet et al. (1994) POD LSE Axisymmetric jet shear layer.
Tarman (1996) POD Galerkin Rayleigh-Benard Convection.
Liakopoulos et al. (1997) POD Galerkin Convection in a tall cavity.
Webber et al. (1997) POD Minimal channel flow.
Ly and Tran (2001) POD Rayleigh-Bernard Convection.
Citriniti and George (2000) POD Axisymmetric mixing layer.
Park and Jung (2001) POD Galerkin Inverse natural convection.
Podvin and Quere (2001) POD Convection in a tall cavity.
Sahan (2000) POD Galerkin Natural convection

in a vertical channel
Blinov et al. (2004) POD MPS Conduction
Tarman (2003) POD Galerkin Rayleigh-Benard Convection.
Asokan and Zabaras (2005) POD Rayleigh-Benard Convection.

Polynomial Chaos

POD has been used for characterization of fluid systems by a number
of investigators, particularly for turbulent or chaotic systems, as in Homes
et al. (1996) and Park and Jung (2001). Table 2 provides a summary of
some of the literature for this type of problem.

Several of the authors working on reduced order models included
experimental results. Bonnet et al. (1994) combined the POD technique
with Linear Stochastic Estimation (LSE) to compare experimentally ob-
tained velocity measurements with their model. Citriniti and George
(2000) used 138 hot-wire anemometers to gather the velocity field used
for their POD analyses.

A few papers in the literature have discussed the possibility that the
number of modes required to represent the system may correspond to
the order of the dynamic system. Ties of this nature have been made
by Ball et al. (2005) whose eigenvalue calculations (approximately 500)
correspond well with the Lyapunov dimension calculations. Homes et al.
(1996) suggests that for this type of analysis the number of modes re-
tained should represent 90 percent of the energy in the system. However
in previous work by the current authors, more than 99% of the energy had
to be captured by the modes in order to give an accurate representation of
the flow in an annular region.

Several POD models were developed for natural convection in a tall
cavity. Liakopoulos et al. (1997) considered A = 40 and Podvin and
Quere (2001) considered A = 4; however, the POD was based on a
computational model of an air cavity rather than experimental results.

3. WALL TEMPERATURE PROFILES

A key characteristic of the experimental system is the outer wall tempera-
ture profile. Fig. 2 is an example of a furnace wall temperature profile that
results in chaotic flow. In contrast to the conventional definition of ∆T ,
the flow behavior observed experimentally has been better characterized
by defining ∆T to be the difference between the peak wall temperature
(Tpeak) and the upper iris temperature (Tiris) where the upper iris tem-
perature is the average temperature of the upper horizontal boundary of
the cavity.

∆T = Tpeak − Tiris (6)

This definition correctly captures the expected trend, which is that
a high Rayleigh number (high ∆T ) results in chaotic flow, whereas a
low Rayleigh number (low ∆T ) results in steady flow. For some cases
of steady flow, Tiris can be higher than Tpeak, in which case the ∆T
defined in Equation 6 is negative and so also is the Rayleigh number.

Figure 2 Wall temperature profile for chaotic behavior in the annular air
cavity. η = 0.40, ∆T = 25oC.

This definition of ∆T was chosen in contrast to the traditional defini-
tion (∆Tliterature) because for this work, the vertical walls have a non-
uniform temperature distribution, the outer vertical surface of the annulus
is warmer than the inner surface, and because the temperature difference
with the upper iris (Tiris) is what actually drives the buoyant behavior.

At high ∆T chaotic temperature oscillations occur in the air cavity
and the wall profile is consistent with Fig. 2, where the top iris temper-
ature is approximately 35oC and the peak wall temperature (Tpeak) is
approximately 60oC. As the upper iris temperature (Tiris) is increased,
oscillatory behavior occurs in the air cavity. As the ∆T is further de-
creased steady behavior occurs in the air cavity and the wall profile is
characteristic of Fig. 3 where the peak wall temperature is now lower
than the upper iris temperature, 60oC versus 71oC respectively. This
results in a negative ∆T ; however, the behavior still shows the correct
trend, where the lower ∆T ’s indicate steady behavior and higher ∆T ’s
are increasingly oscillatory and then chaotic.
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Figure 3 Wall temperature profile for steady behavior in the annular air
cavity. η = 0.40, ∆T = −11oC.

4. EXPERIMENTAL SYSTEM

Thin wire thermocouples (0.125 mm) are suspended in an annular cavity
to record temperature oscillations in the air. Fig. 1 shows a schematic of
the experimental system with the thermocouple locations. The four air
thermocouples are spaced at 90o azimuthal increments. Each of the air
thermocouples in the furnace is designated by its azimuthal location, 0o,
90o, 180o, and 270o.

Additional thermocouples are placed along the exposed, exterior
surfaces of the polymer preform, the inner wall of the furnace, and at key
locations including the inner surfaces of the copper irises. These thermo-
couples are used to determine the thermal boundary conditions, and to
control the temperature on the vertical furnace wall, the upper horizontal
boundary, and the lower horizontal boundary.

For the η = 0.40 results presented in this paper, thin wire thermo-
couples were embedded just slightly below the acrylic (PMMA) preform
surface at z = 0mm and 50mm (relative to the midheight of the annu-
lus as shown in Fig. 1). This was achieved by: 1) machining a channel
for the thermocouple wires, 2) tacking the wires into the channels, and
3) filling the channels with a 50/50 mixture of commercial adhesive and
MMA. This mixture was chosen because it has similar thermal properties
to the original acrylic, and the mixture has a longer drying time than pure
MMA, which allowed the thermocouples to be placed properly.

Fig. 4 shows a cross-section of the acrylic preform with placement
of the thermocouples at 180o azimuthal offsets to provide duplication.
The important dimensions for the channel milling are in the radial and
azimuthal directions, with a depth of 0.254 mm (.01 inches) from the
surface as shown in Fig. 4 (not to scale). Fig. 5 shows a completed
channel with an embedded thermocouple.

The furnace has an inner height (H) of 0.39 m (15.5 in), an inner
diameter of 0.064 m (2.5 in), and is capped at both ends by irises. To
control the vertical temperature profile along the furnace wall it is pos-
sible to apply power to any combination of 11 power taps located along
the vertical height of the furnace. For these experiments power was ap-
plied across the mid-region of the furnace, z = −5.5 cm to z = 5.5 cm.
This matches the conditions used to produce polymer fiber and results
in a non-uniform temperature profile in the furnace wall. The top and
bottom copper irises are each heated and independently controlled with
thermocouples located on the outside surface of each iris.

Figure 4 Cross-section of the polymer preform showing the embedded
thermocouples. Not to scale.

Figure 5 Close up of an acrylic preform with embedded thermocouple
(wire).

An example of air temperature data for the radius ratio η = 0.60 is
shown in Fig. 6. The raw temperatures (Traw) are expressed as devia-
tions from the temporal mean values (Tmean) as the residual:

residual =
Traw − Tmean

Tmean
(7)

Fig. 7 illustrates the corresponding spectral density function (sdf)
calculated using a Welch’s Overlapped Segment Averaging (WOSA) method
with 20 windows. Additional details about the spectral analysis and ex-
perimental procedure are included in the prior work, Dillon et al. (2009).
For these experimental conditions the flow clearly shows a periodic be-
havior with near harmonic higher order frequencies.

5. RESULTS FOR RADIUS RATIO η = 0.40

The observed flow for η = 0.40 exhibits all flow regimes. This is in
contrast to prior results for η = 0.60 which did not exhibit chaotic be-
havior for the same imposed thermal boundary conditions. For η = 0.40,
the steady region exists for ∆T < −11oC and the oscillatory region
exists for −11oC < ∆T < −5oC. A quasi-periodic region exists for
−5oC < ∆T < 2oC. The region ∆T > 2oC is classified as chaotic.

At an iris temperature of 32oC (∆T = 28oC) the system demon-
strates characteristics of a truly chaotic flow. In this case chaotic behavior
is defined by Stogatz (2000), where aperiodic indicates trajectories that
do not settle to fixed points or periodic orbits. Chaotic flow is indicated
visually by aperiodic temperatures as shown in Fig. 8 for η = 0.40 and
the ∆T = 25oC furnace condition. The corresponding spectral analysis
in Fig. 9 indicates that no single frequency has a dominant intensity.
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Figure 6 Air temperature residuals for the oscillatory regime of η =
0.60. Results shown are for the thermocouple located at 270oC
and the ∆T = 25oC furnace condition. Adapted from Dillon
et al. (2009).

Figure 7 Air temperature frequencies for the oscillatory regime of η =
0.60. The frequencies indicate that the system has strong oscil-
lations near 0.1 and 0.2 Hz. Results shown are for the thermo-
couple located at 270oC and the ∆T = 25oC furnace condition.
Adapted from Dillon et al. (2009).

Figure 8 Air temperature residuals for the chaotic regime of η = 0.40.
Results shown are for the thermocouple located at 270o and the
∆T = 25oC furnace condition.

Figure 9 Air temperature frequencies for the chaotic regime of η = 0.40.
The frequencies indicate that the system is chaotic because no
significant frequencies dominate. Results shown are for the ther-
mocouple located at 270o and the ∆T = 25oC furnace condi-
tion.
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The quasi-periodic region for η = 0.40 is shown in Fig. 10. A single
peak frequency, shown in Fig. 11, occurs at 0.05 Hz. Quasi-periodic
behavior also occurs for the previously studied η = 0.60, but in the case
of η = 0.40, the magnitude of the frequency has a much lower spectral
power (dB) by comparison.

Figure 10 Air temperature residuals for the quasi-periodic regime of η =
0.40. Results shown are for the thermocouple located at 0o and
the ∆T = −1oC furnace condition.

Figure 11 Air temperature frequencies for the quasi-periodic regime
of η = 0.40. A primary frequency of 0.05 Hz is observed.
Results shown are for the thermocouple located at 0o and the
∆T = −1oC furnace condition.

The oscillatory region for η = 0.40 also occurs, and an example is
shown in Fig. 12 for the ∆T = −7oC furnace condition. This oscillatory
flow has primary frequencies at 0.06 Hz, 0.11 Hz (period halving), and
0.17 Hz, as illustrated in Fig. 13. The amplitude of the oscillations is
very small for these experimental conditions, and the frequencies have
low spectral power compared to results from the previous studies with
η = 0.60.

As expected for the steady region, there is no significant variation in
temperature and no frequencies observed in the frequency spectrum. An
example is shown in Fig. 14 and Fig. 15 for the ∆T = −11oC furnace
condition.

6. POLYMER SURFACE TEMPERATURE VARIATION

For the application of drawing polymer fiber, an understanding of the re-
lationship between air temperature and polymer temperature variations is
important. In these experiments with an annular cavity, the temperature
of the polymer (acrylic) preform is influenced by conduction within the
stationary solid preform, radiation from the furnace wall, and gas phase
convection in the annular cavity. Results from the thermocouples just
below the surface of the preform indicate that the behavior of the air di-
rectly affects the polymer temperature, but as expected a lower amplitude
of temperature variations occur. The temperatures just below the preform
surface are correlated in time with the measured air temperatures.

In the quasi-chaotic regime the preform thermocouples show a quasi-
chaotic variation with amplitudes an order of magnitude lower than those
in the air. Fig. 16 shows the frequency spectrum of the preform tem-
perature for the quasi-periodic regime, corresponding to the frequency
spectrum of the air temperature shown in Fig. 11. Fig. 17 shows the fre-
quency spectrum of the preform temperature for the oscillatory regime,
corresponding to the frequency spectrum of the air temperature shown
in Fig. 13. It is clear from comparison of the air and preform behavior
that the surface of the preform is following the air effects, but with much
lower spectral power.

7. AIR TEMPERATURE VARIATIONS IN THE VERTICAL
DIRECTION

A subset of experiments was conducted to understand the complexity of
the natural convection cells forming in the annular cavity. No visualiza-
tion is possible due to the furnace construction but one of the thin wire
thermocouples was traversed vertically (z > 0) to understand the changes
in amplitude and mean temperature of the oscillations in the upper air
cavity.

Fig.18 shows the air temperature variations as a function of vertical
z location for the chaotic regime of η = 0.40. The dot indicates the mean
temperature for each z location and the bar indicates the standard devi-
ation, representing the approximate amplitude of the oscillations. Large
amplitude oscillations exist through most of the air cavity, and the mean
air temperatures follow the general trend imposed by the non-isothermal
furnace wall.

Fig.19 shows the measured air temperature variations as a function
of vertical z location for the oscillatory regime of η = 0.40, indicating the
possible existence of multiple cells in the annular cavity. Multiple cells
have been observed in previous work, including Reeve (2003), and Choi
and Korpela (1980). Particle Imaging Velocimetry (PIV) also revealed
the existence of multiple cells in a non-annular geometry that is more
characteristic of the polymer fiber drawing environment, Reeve (2003).

8. DYNAMIC SYSTEM BEHAVIOR OF η = 0.40 AND
COMPARISION TO η = 0.60

Here a comparison is made between results from the wider annular cavity
of η = 0.40 to a narrower cavity of η = 0.60, previously investigated
and reported in Dillon et al. (2009). It should be noted that in the pre-
vious study of η = 0.60, a polycarbonate preform was used instead of
acrylic as in the η = 0.40 study. The advantage of a polycarbonate pre-
form is that much higher furnace wall temperatures can be imposed (and
therefore a greater range of ∆T ’s), without risk of deformation of the pre-
form; however, the advantage of an acrylic preform is that thermocouples
can be conveniently embedded below the surface, using back-fill mate-
rial (methyl methacrylate) with similar thermal characteristics to acrylic
(polymethyl methacrylate). For this reason, polycarbonate temperatures
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Figure 12 Air temperature residuals for the oscillatory regime of η =
0.40. Results shown are for the thermocouple located at 0o and
the ∆T = −7oC furnace condition.

Figure 13 Air temperature frequencies for the oscillatory regime of η =
0.40. Primary frequency occur at 0.06 Hz, 0.11 Hz, and 0.17
Hz. Results shown are for the thermocouple located at 0o and the
∆T = −7oC furnace condition.

Figure 14 Air temperature residuals for the steady regime of η = 0.40.
Results shown are for the thermocouple located at 270o and the
∆T = −11oC furnace condition.

Figure 15 Air temperature frequencies for the steady regime of η =
0.40. Results shown are for the thermocouple located at 270o

and the ∆T = −11oC furnace condition.
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Figure 16 Preform temperature frequencies for the quasi-periodic regime
of η = 0.40. Results shown are for the thermocouple located in
the preform at z = 0, and the ∆T = −1oC furnace condition.
The frequency spectrum indicates that the preform surface has a
similar response near 0.05 Hz to the air temperature frequency
shown in Fig. 11.

Figure 17 Preform temperature frequencies for the oscillatory regime of
η = 0.40. Results shown are for the thermocouple located in
the preform at z = 0, and the ∆T = −7oC furnace condition.
The frequency spectrum indicates that the preform surface has a
similar response near 0.06 Hz and 0.11 Hz to the air temperature
frequencies shown in Fig. 13.

40 45 50 55 60

5
10

15
20

Traverse Run 705 35-60-32 D-H

Temperature [C]

Z 
Lo

ca
tio

n 
[c

m
]

[

[
[

[
[

[
[

[
[

[
[
[

[
[

[
[

[
[

[
[

]

]
]

]
]

]
]

]
]

]
]

]
]
]

]
]

]
]

]
]

Figure 18 Air temperature variations as a function of vertical z loca-
tion for the chaotic regime of η = 0.40, ∆T = 25oC furnace
condition. The dot indicates the mean temperature for each z lo-
cation, and the bar indicates one standard deviation, representing
the approximate amplitude of the oscillations.

Figure 19 Air temperature variations as a function of vertical z location
for the oscillatory regime of η = 0.40, ∆T = −5oC furnace
condition. The dot indicates the mean temperature for each z lo-
cation, and the bar indicates one standard deviation, representing
the approximate amplitude of the oscillations.
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were not measured in the previous η = 0.60 study. Acrylic preform tem-
peratures were measured in the η = 0.40 study, as given in Section 6
of this paper, but these temperature variations occurred at relatively low
amplitude due in part to the much lower ∆T ’s imposed in the thermal
boundary conditions for η = 0.40 compared to η = 0.60. Since only
air temperatures were measured for both η = 0.40 and η = 0.60, these
measurements provide the basis of comparison for convection in the two
annular geometries.

Table 3 summarizes, for η = 0.40 and η = 0.60, the air temper-
ature frequencies and amplitudes observed for each of the flow regimes
(chaotic, quasi-periodic, and oscillatory). The first row entries of Table
3 are the range of ∆T ’s imposed to produce each of the flow regimes,
including the steady flow regime. In the η = 0.60 configuration, the sys-
tem did not reach a fully chaotic regime. To reach a fully chaotic regime,
active cooling of the upper iris would have been required. For η = 0.40
and an imposed ∆T between 28oC < ∆T < 2oC, the system is fully
chaotic (as shown in Fig. 8 for ∆T = 25oC).

Table 3 Summary of imposed ∆T ranges, measured air temperature am-
plitudes and frequencies, for the wider (η = 0.40) and narrower
annular air cavities (η = 0.60). The reported amplitudes are an
average of the four thermocouples in the air cavity. The experi-
mental results for the narrower air cavity are documented in Dil-
lon et al. (2009).

Description Chaotic Quasi- Oscillatory Steady

periodic
∆T [oC]
η = 0.40 28 to 2 2 to -5 -5 to -11 ∆T < −11
η = 0.60 - 45 to 29 29 to 11 ∆T < 11

Amplitude [oC]
η = 0.40 2.05 0.33 0.16
η = 0.60 - 4.12 0.74
Primary

Frequencies [Hz]
η = 0.40 0.05 0.06, 0.11
η = 0.60 - 0.05 0.11, 0.22

In comparison to the quasi-periodic regime of η = 0.40 (Fig. 10 and
Fig. 11), a much larger ∆T must be imposed to obtain the quasi-periodic
regime of η = 0.60, as shown in Table 3. The resulting amplitude of
air temperature variations for η = 0.60 is much greater than that for
η = 0.40 (4.12 to 0.33). The air temperature frequencies however for
the two geometries are practically the same at 0.05 Hz, in their respective
quasi-periodic regimes.

The oscillatory regime of η = 0.40 (Fig. 12 and Fig. 13) may
be compared to the oscillatory regime of η = 0.60 (Fig. 6 and Fig.
7). Again as shown in Table 3, a much larger ∆T must be imposed to
obtain the oscillatory regime of η = 0.60 than that required to generate
regular oscillations for η = 0.40. Also, the oscillatory air temperature
amplitude for η = 0.60 is greater than that for η = 0.40 (0.74 to 0.16).
The air temperature frequencies for the oscillatory regimes of the two
geometries are distinctly different as listed in Table 3, and as illustrated
by a comparison of Fig. 13 (for η = 0.40) and Fig. 7 (for η = 0.60).

For a constant peak wall temperature of Tpeak = 80oC in the η =
0.60 study, Fig. 20 shows recorded air temperature frequencies as a func-
tion of the top iris temperature. Starting in the oscillatory regime at the
right side of the plot with ∆T = (Tpeak−Tiris) = 80−65oC = 15oC,
three frequencies are clearly visible. As the top iris temperature is de-
creased to 55oC, with ∆T = 25oC, these three characteristic frequen-
cies are still clearly visible (shown also by the three highest peaks in Fig.
7). Near Tiris = 55oC, the frequencies bifurcate and the system then

approaches a chaotic condition as Tiris = 51oC and ∆T = 29oC.
In the η = 0.40 study, with a constant peak wall temperature of

Tpeak = 60oC, the results are less clear because the system becomes
chaotic very quickly near Tiris = 58oC (∆T = 2oC). Nevertheless, the
same general behavior is illustrated in Fig. 21 as in Fig. 20. For both
geometries, with η = 0.40 and η = 0.60, the systems undergo a fre-
quency doubling route to chaos, consistent with other convection systems
Homes et al. (1996). The transition from the steady regime to the oscil-
latory regime occurs as a supercritical Hopf bifurcation, also consistent
with the results of other authors who have studied natural convection for
∆T imposed across two isothermal vertical walls.

Figure 20 Frequencies measured for η = 0.60 over a range of ∆T ’s
(Rayleigh number). Dotted lines have been added to emphasize
frequency bifurcations near Tiris = 55oC (∆T = 25oC).

9. PROPER ORTHOGONAL DECOMPOSITION

Computational fluid dynamic (CFD) simulation has been carried out for
this experimental system and is reported in Dillon (2011). Non-isothermal
boundary conditions, low buoyancy driving force, and long computation
times make it computationally expensive to apply CFD simulation for
practical industrial fiber drawing. For this reason a reduced order model
of the experimental data has been developed to quantify the dynamic sys-
tem behavior.

Assume a matrix X is an m × n matrix composed of multiple ob-
servations from an experiment. In this case, each column represents mea-
sured temperatures at each time, and each row represents data collected
for an imposed set of thermal boundary conditions with specified ∆T .

X =

26664
Ta(t1) Ta(t2) . . .
Tb(t1) Tb(t2) . . .

...
...

Tm(t1) Tm(t2) . . .

37775
Proper Orthogonal Decomposition (POD) is based on the diagonal-

ization of the matrix X . The mathematical procedure transforms the
number of possibly correlated variables into a smaller number of uncor-
related variables. The first component contains as much of the variation
in the system as possible.
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Figure 21 Frequencies measured for η = 0.40 over a range of ∆T ’s
(Rayleigh number). Frequency bifurcations occur near Tiris =
66oC (∆T = −6oC).

For the POD analysis the data is centered by the mean of each row.
Then the covariance matrix Cx is calculated. The covariance matrix is
a square, symmetric m ×m matrix whose diagonal represents the vari-
ance of particular measurements. Small diagonal terms indicate that the
variables are statistically independent.

Cx =
1

n− 1
XXT (8)

Singular Value Decomposition (SVD) is used to diagonalize the ma-
trix. The SVD diagonalization is shown in Equation 9, where U ∈
Cm×m is unitary, V ∈ Cn×n is unitary, and Σ ∈ Rm×n is diagonal.
If full SVD is used for calculations, it may be applied to rank deficient
matrices, as shown in Trefethen and Bau (1997).

X = UΣV ∗ (9)

Theorem: Every matrix X ∈ Cm×n has a singular value
decomposition. Furthermore, the singular values {σj} are
uniquely determined, and if X is square and the σj dis-
tinct, the singular vectors {uj} and {vj} are uniquely de-
termined up to complex signs (complex scalar factors of ab-
solute value 1).

A visual representation of the SVD process is shown in Fig. 22. The
following theorems illustrate the way SVD is linked to POD, where the
first theorem confirms that the basis vectors are unique, and the second
theorem allows determination ofN such that the Nth partial sum captures
as much of matrix X as possible.

Theorem: X is the sum of r rank-one matrices.

X = Σr
j=1σrujv

∗
j (10)

Theorem: For any N such that 0 ≤ N ≤ r, the partial sum
is defined as:

X = ΣN
j=1σrujv

∗
j

And if N = min{m,n}, define σN+1 = 0. Then

‖X −XN‖2= σN+1

Figure 22 Visual representation of the SVD diagonalization. Adapted
from Trefethen and Bau (1997).

SVD provides a type of least-square fitting algorithm, which projects
the matrix onto low-dimensional representations in a formal, algorithmic
way, Trefethen and Bau (1997). The matrix may also be projected onto
other bases as considered by a number of authors listed in Table 2 (pro-
jection type is included in the table). For the results presented here, the
matrix is projected back onto the modes, to quantify the accuracy of the
empirical eigenvalues.

The experimental data was first analyzed as a matrix of only the mea-
sured air temperatures, and then subsequently as a matrix combination of
air and polymer preform temperatures. Table 4 shows the matrix size for
each analysis. For each analysis only one air thermocouple and one pre-
form thermocouple needed to be treated because of the redundancy in the
frequency data as determined by evaluating the covariance between the
different azimuthally located air and preform thermocouples.

Table 4 Matrix sizes for SVD of the air temperature data alone, and the
combined air and preform temperature data.

Matrix Air Data Air and
Preform Data

X 12x201 24x201
U 201x201 201x24
Σ 201x12 201x24
V 12x12 24x24

9.1. POD of Air Temperature Data

Table 5 lists the eigenvalues and energies associated with each of the
modes, for the analysis of only the air temperatures. Eight modes are
needed to represent 90 percent of the energy. Homes et al. (1996) rec-
ommend that the number of modes be determined in order to capture 90
percent of the energy, and furthermore that no excluded mode should con-
tain more than one percent of the remaining energy. In this analysis, only
the 90 percent energy threshold was used. Future work could investigate
the increased accuracy that would occur by including additional modes.

The magnitudes of the modes are shown in Fig. 23. Fig. 24 com-
pares the behavior of the first mode with the experimental data. (The data
has been normalized to make the variations clearer.) Here it is evident
that the first mode is insufficient to characterize the actual behavior, as
the system transitions from a strongly oscillatory to chaotic regime with
increasing ∆T . More than one mode is clearly required to capture the
behavior of the system.

The 90 percent threshold is used to determine the total modes re-
quired, which in this case is eight. Fig. 25 compares the behavior of the
combined first eight modes with the experimental data. Although the ex-
cluded modes, 9-12, each contain more than one percent of the energy,

10
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Table 5 Summary of modes and energy for air temperature analysis.

mode eigenvalue Energy Total Energy
σ percent percent

1 0.0098536 18.4415 18.4415
2 0.0083267 15.584 34.0255
3 0.007322 13.7035 47.729
4 0.0064848 12.1367 59.8657
5 0.0058181 10.8889 70.7546
6 0.0047224 8.8382 79.5928
7 0.0045264 8.4714 88.0642
8 0.0026675 4.9924 93.0566
9 0.0017098 3.2 96.2566
10 0.00080831 1.5128 97.7694
11 0.00062095 1.1621 98.9315
12 0.00057088 1.0684 100
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Figure 23 Modes calculated for the air temperature POD analysis.

modes 1-8 capture the important features of the experimental informa-
tion. For this range of ∆T , there is considerable dynamic information as
the system transitions from steady to oscillatory and then to chaotic with
increasing ∆T . Even with these transitions, the experimental data is well
characterized by the first eight modes.

9.2. POD of Air and Preform Temperature Data

Table 6 lists the eigenvalues and energies associated with each of the
modes, for the analysis of both the air and preform temperatures. In this
case, ten modes are needed to capture 90 percent of the energy. If addi-
tional accuracy is desired then the modes containing on the order of one
or more percent of the energy could be included, as suggested by Homes
et al. (1996), indicating modes up to mode 19 should be included.

The comparison between the behavior based on ten modes and the
experimental data is shown in Fig. 26. The use of ten modes (90% en-
ergy) appears to capture most of the air temperature behavior, but some-
what less of the response in the polymer preform temperature. This sug-
gests that more modes are needed to capture the air and preform temper-
atures simultaneously.

10. CONCLUSIONS

Experimental results for natural air convection in an η = 0.40, A = 20.7
annular cavity show fully chaotic behavior for ∆T > 2oC. This is in
contrast to previous results in an η = 0.60, A = 31.0 cavity which

Table 6 Summary of modes and energy for air and preform temperature
analysis.

mode eigenvalue Energy Total Energy
σ percent percent

1 0.0098603 16.9356 16.9356
2 0.008334 14.3141 31.2497
3 0.0073384 12.6042 43.8539
4 0.0064926 11.1514 55.0053
5 0.0058349 10.0217 65.0270
6 0.00477 8.1928 73.2198
7 0.0045366 7.7918 81.0116
8 0.0026832 4.6086 85.6202
9 0.0017317 2.9743 88.5945
10 0.001215 2.0869 90.6814
11 0.00086 1.4771 92.1585
12 0.00067928 1.1667 93.3252
13 0.00061279 1.0525 94.3777
14 0.00056793 0.97545 95.3532
15 0.00045438 0.78043 96.1336
16 0.00036096 0.61997 96.7534
17 0.00033485 0.57512 97.3285
18 0.00031727 0.54494 97.8734
19 0.00029244 0.50228 98.3757
20 0.0002242 0.38508 98.7608
21 0.00020404 0.35045 99.1112
22 0.00018467 0.31719 99.4284
23 0.00016704 0.28689 99.7153
24 0.00016562 0.28446 100

showed no chaotic behavior for the range of ∆T ’s imposed, as high as
∆T = 45oC. Furthermore, temperature oscillations in the wider η =
0.40 geometry showed much lower amplitudes than those in the narrower
η = 0.60 geometry.

In both η = 0.40 and η = 0.60 geometries, as the buoyant driving
potential (∆T ) is increased, the transition from steady to oscillatory flow
occurs as a supercritical Hopf bifurcation, and then the system follows a
frequency doubling route to chaos. In previous studies of the η = 0.60
geometry, frequency bifurcation was very clear; however, the imposed
driving potential (∆T ) was not sufficiently large to produce fully chaotic
flow. By contrast, fully chaotic flow was readily achieved with imposed
∆T as low as 2oC in the η = 0.40 system, but the transition from oscil-
latory to chaotic behavior occurred over such a narrow change in ∆T that
frequency bifurcation was much less clear in this wider annular geometry.

For the η = 0.40 geometry, the two strongest air temperature fre-
quencies are at 0.06 and 0.11 Hz in the oscillatory regime, and at 0.05
Hz in the quasi-periodic regime. These same frequencies are respec-
tively echoed in the polymer preform temperatures, for the oscillatory
and quasi-periodic flow regimes.

For the oscillatory regime of η = 0.40, air temperature variations
were measured over a range of vertical z locations. These measurements
suggest the probable existence of distinct and multiple flow cells in the
oscillatory regime.

In the natural convection systems studied here, a wide dynamic range
is explored over two flow transitions from steady to oscillatory and then
to chaotic. For such systems, the POD modes do not show strong ex-
ponential decay, as in previous studies from the literature. In previous
results with a smaller number of modes the analyses were not based on
transition systems. Other results from the literature required far fewer
modes to accurately capture the system behavior; however, in such cases,
Sahan (2000), the authors analyzed only one flow transition rather than
two.
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Figure 24 First mode (dashed) projected onto the experimental air temperature data (solid) for η = 0.40. The data has been normalized to a unit scale
to make the variations more clear. The experimentally imposed ∆T is shown at the left margin for each data set.
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Figure 25 Combined first eight modes (dashed) projected onto the experimental air temperature data (solid) for η = 0.40. The data has not been
normalized to emphasize that the magnitudes of the errors are small. The experimentally imposed ∆T is shown at the left margin for each data
set.
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Table 7 summarizes the number of modes required in the POD anal-
yses to capture 90 percent of the energy in the η = 0.40, A = 20.7
annular air system. In the first case, only air temperatures are used in
the POD analysis and eight modes are required to meet the 90 percent
energy threshold. Comparisons with the original experimental data show
that the projected modes adequately capture air temperature behavior in
the chaotic regime, but are less successful in the oscillatory and steady
regimes. In the second case, both air and preform temperatures are used
in the POD analysis, and ten modes are required to meet the 90 percent
energy threshold.

Table 7 Summary of POD results for air temperature data only and com-
bined air and preform temperature data.

Experimental Experimental Air
Air Data and Preform Data

∆T [oC] -10 to 14 -10 to 14

Flow chaotic, chaotic,
Regimes oscillatory oscillatory

and steady and steady

Modes 8 10
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NOMENCLATURE

A Aspect ratio
cp specific heat
H annulus height
k thermal conductivity
PIV Particle Image Velocimetry
POD Proper Orthogonal Decomposition
POF Polymer Optical Fiber
Pr Prandlt Number
R radius
Ra Rayleigh Number
sdf Spectral Density Function
SVD Singular Value Decomposition
t time
T temperature
r radial coordinate
WOSA Welch’s Overlapped Segment Averaging
z vertical coordinate

Greek Symbols
ρ density
η radius ratio
∆T temperature difference (Tpeak − Tiris)

Subscripts
c critical
i inner
o outer

Figure 26 Combined first ten modes (dashed) projected onto experimen-
tal air and preform temperature data (solid) for η = 0.40. The
data has been normalized to a unit scale to make the variations
more clear. The experimentally imposed ∆T is shown at the left
margin for each data set.
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