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ABSTRACT 

Topology optimization (TO) is an important and powerful tool to obtain efficient and lightweight structures 
in conceptional design stage and a series of representative methods are implemented [1-5]. TO are mainly 
based on the classical finite element analysis (FEA), resulting in an inconsistency between geometric model 
and analytical model. Besides, there are some drawbacks of low analysis accuracy, poor continuity between 
adjacent elements, and high computational cost for high-order meshes. Thus, isogeometric analysis (IGA) is 
proposed [6] to replace FEA in TO. Using the Non-Uniform Rational B-Splines (NURBS), IGA successfully 
eliminates the defects of the conventional FEA and forms a new research direction, isogeometric topology 
optimization (ITO) [7-12]. Although these methods have high accuracy and high solution efficiency, they are 
accompanied with significant time costs. With the rapid development of machine learning (ML) and deep 
learning (DL), data-driven TO methods are generated to reduce computational costs and speed up 
optimization process [13-18]. In this paper, an ITO method based on deep neural networks is proposed. The 
computational time of optimization can be effectively reduced while ensuring high accuracy. With an IGA-
FEA two-resolution SIMP method, the ML dataset can be obtained during early iterations of the topology 
optimization process. Thus, there is no need to pre-process in the whole framework. Unlike existing data-
driven methods, generating datasets online both significantly saves data collection time and enhances 
relevance to the design problem. In the optimization process, the ML model can be updated online by 
continuously collecting new data to ensure that the optimized topology structures are closer to the standard 
results. Through a series of 2D and 3D design examples, the generality and reliability of the method are 
effectively demonstrated by the relative differences and speedups and its time-saving advantage becomes 
more obvious as the design scale increases. Furthermore, the impacts of framework parameters and neural 
network hyper-parameters on the results are studied through several controlled experiments. 
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